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Abstract

We develop a multi-period model of dynamically evolving market shares. Firms

compete by choosing long-run investment strategies that determine customer retention

and new customer attraction in every period. We investigate equilibrium behavior

and focus on conditions for emergence of negative strategies, i.e., strategies that put

more emphasis on hurting the competitor�s market share than on increasing one�s

own market share. We show that negative strategies are more likely to emerge in

a saturated market and to be triggered by �rms that lag behind the market share

leader, and that negative strategies are unlikely to emerge in the �nal period of the

competition.
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1 Introduction

Negative advertising and activities whose primary goal is hurting a competitor are not

standard business practices. Yet, businesses occasionally engage in direct attacks on their

competitors. This is best observed in consumer goods industry since negative attacks are

often prominent in advertising campaigns aimed at the general public. Several advertising

campaigns in the soft drink industry during the "cola wars" between Coca-Cola Company

and PepsiCo during 1980s and 1990s are examples of such practices. More recent examples

include the Apple andMicrosoft ad war with Apples�s "Get aMac" campaign andMicrosoft�s

"I am a PC" response, and the Verizon Wireless and AT&T ad war that started with

Verizon�s attack "There is a map for that" ad campaign followed by AT&T�s "Set the

record straight" response. (Beard, 2010, documents and discusses numerous examples.)

While businesses generally stay away from attacking competitors and tend to focus on

directly helping their bottom line, negative advertising and promotional activities aimed at

competitors appear to be widespread in political contests. The topic of negative advertising

and negative political campaigns is well-studied in political science literature (e.g., Skaperdas

and Grofman, 1995; Lau et al., 1999; Che et al., 2007; Lau et al., 2007; Lau and Rovner,

2009).

There are many attempts to explain the emergence of negative advertising strategies,

ranging from emotional decision-making to intensity of competition (Beard, 2010 tries to

classify motives for several prominent negative campaigns). Given the prevalence of negative

campaigns in politics, it is natural to conjecture that some of the distinguishing features of

political competition ought to be the features found in any environment in which negative

advertising is likely to happen. The most prominent such feature is the tournament nature

of political contests: the winner does not care about the number of votes (i.e., market share)

as long as it has more votes than the opponents (relative market share). In addition, in some

political contests there is a winner-take-all e¤ect since the election loser is locked out of any

political power. (Quelch and Jocz, 2007, use this argument to explain the discrepancy in the

use of negative advertising in politics vs. business competitions.) Another prominent feature
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of political contests is that there is clearly de�ned ending time: the election day (which

somewhat compares to selling perishable seasonal goods case in business competitions). If

the competition has no prede�ned ending, engaging in negative advertising allows for a

possibility of retaliation from competitors which would mitigate the incentive to engage in

negative advertising in the �rst place. With a prede�ned ending time of the competition (or

if there exists a small number of critical time points in the competition in which most of the

utility will be realized), it is plausible that negative advertising strategies could emerge just

before that moment so that no time is left for opponents to implement possible retaliatory

strategies. The infamous "October surprise" in US Presidential Elections, i.e., expectations

of some negativity emerging within the last couple of weeks of the campaign, �ts within

such an explanation.

In this paper, we develop a theoretical model with the goal of understanding conditions

for negative advertising strategies to emerge as (a rational) equilibrium behavior, as well as

conditions under which a decision to engage in negative advertising would be sub-optimal.

Our model, formally de�ned in Section 2, tracks changes in market-shares over �nitely

many time periods. Market-shares change as a result of the activities of all players (�rms,

candidates). In each time period, players implement costly investment decisions and these

decisions jointly impact market-shares in the next period. Players are assumed to be utility

maximizing and their utility is a time-discounted sum of utilities from each time period. The

utility in each time period is an increasing linear function of the player�s market share, minus

an increasing linear function of the opponents�market share (if opponents�market share

linear coe¢ cient is zero, the player cares only about its own market-share in that period),

minus the cost of investments the player made in that period. We study equilibrium behavior

in this model.

Since players are ex ante symmetric in the model, we focus on a single player�s activities.

In order to facilitate our analysis, we make a simplifying assumption of aggregating the

behavior of all opponents into a single combined opponent. Thus, the model we present and

analyze has two players competing for market-shares.
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The modeling choice that is of critical importance for any relevance and meaningfulness

of our results is the de�nition of negative advertising strategies: a player�s advertising strat-

egy at a given time period t is negative if the player�s decisions are aimed more at decreasing

the opponent�s market share than at increasing one�s own market share. Our de�nition of

negative advertising is similar to that of Skaperdas and Grofman (1995). (However, our

model captures more general behavior, since Skaperdas and Grofman�framework is static,

it does not involve equilibrium analysis, and it focuses on player utilities that are relevant

for political competition only.) Negative advertising has been modeled and studied exten-

sively in marketing. While the majority of marketing literature deals with empirical and

experimental studies focusing on e¤ects of negativity on consumers (e.g., Shiv et al., 1997),

de�ning negative advertising strategies is mostly discussed as a special case of comparative

advertising "in which a di¤erentiative technique is employed" (James and Hansel, 1991).

However, several theoretical models in marketing have similar features to our model. The

core idea of evolving market shares through targeted investment of players is similar to that

behind targeted advertising strategies (e.g., Iyer et al., 2005), while optimization behind

decision-making in our dynamic multi-period model has a similarity to dynamic optimal

control models in advertising (Heller and Chakrabarti, 2002; Feichtinger et al., 1994). The

formulation of the dynamic game in our model and use of the Lagrange method in numer-

ical computations is somewhat similar to the formulation and analysis of a dynamic game

presented in Chow (1997)

We �nd that, in our model, negative advertising strategies could emerge as an equilib-

rium behavior both in political competition and in business competition. There are several

parameters relevant for the existence of equilibria with negative advertising strategies. For

example, it is not surprising to see that negative advertising strategies emerge when (i) the

player cares about the opponent�s market share and (ii) it is much more costly to adver-

tise with the goal of increasing one�s market share than to invest in advertising aimed at

reducing opponent�s market share. (We model costs to be convex.)

A parameter that turns out to be relevant is the initial market share endowment of the
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player relative to the market saturation (i.e, size of the market which is captured by the

player or the opponent). We show that players who are lagging behind are more likely

to engage in negative advertising than players who are market leaders. This �ts within

the examples mentioned in the opening paragraph (PepsiCo vs. Coca Cola, Apple vs.

Microsoft, Verizon vs. AT&T): the company who triggered a negative advertising war was

lagging behind the market leader. In terms of political competition, this result indicates

that the candidate who is lagging behind is more likely to turn to negative campaigning,

which is also found to hold in the models of Skaperdas and Grofman (1995) and Harrington

and Hess (1996). Furthermore, we show that negative advertising is more likely to emerge

when players have similar market shares in a saturated market (i.e., when the proportion of

uncommitted customers/voters is small). This aligns with empirical �ndings of Lovett and

Shachar (2011) who analyzed advertising data from several US congressional races.

The dynamic multi-period feature of our model yields some insights into the timing of

the start of negative advertising activities. We �nd that it is nearly impossible (except for

some extreme, unrealistic choices for cost functions) for negative advertising to emerge in

the last period of the game, and in any period of the game in which the player�s own market

share is of signi�cant importance to their utility. Under the assumption that businesses

overwhelmingly focus on the present and on the immediate future, the latter can be viewed

as an argument why negative advertising is not prevalent in business competition.

The paper is organized as follows. In the next section, we de�ne the basic model.

In Section 3 we discuss how the Luce choice model can be reduced to our basic model,

de�ne negative advertising strategies and discuss equilibrium existence. We then, in Section

4, discuss the two-period game model which allows us to present most of our �ndings.

In Section 5, we discuss several generalizations of the model, including the case of more

than two periods, and di¤erent forms of the cost functions. Proofs and some technical

generalizations are relegated to Appendices.
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2 A Dynamic Model of Market-Share Competition

There are two players in the market and the market structure is observed in �nitely many

discrete time periods t = 0; 1; : : : ; T . The players are denoted 1 and 2. The market shares

at time t are given by a non-negative vector

V (t) = (V
(t)
0 ; V

(t)
1 ; V

(t)
2 );

with V (t)0 + V
(t)
1 + V

(t)
2 = 1. The market share of player i = 1; 2 at time t is denoted by

V
(t)
i � 0; the proportion of the market not captured by the players is V (t)0 � 0.

The changes in market shares from period t to period t+1 (t = 0; 1; :::; T �1) are de�ned

by the transition matrix

P (t) =

26664
p
(t)
00 p

(t)
01 p

(t)
02

p
(t)
10 p

(t)
11 p

(t)
12

p
(t)
20 p

(t)
21 p

(t)
22

37775 (1)

where p(t)ij � 0, and
P

j p
(t)
ij = 1 for i = 0; 1; 2. Therefore, p(t)ij is the proportion of cus-

tomers/voters from V
(t)
i who will transition to V (t+1)j . The market shares at period t + 1

are de�ned by

V (t+1) = V (t)P (t) (2)

2.1 Market Share Transitions

Player 1 and Player 2 can both potentially invest into market share transitions from i to j.

Let the intensity or magnitude of Player 1 and 2 investment e¤ort aimed at transitioning

consumers/voters from i to j be m(t)
ij1 and m

(t)
ij2, respectively with m

(t)
ij1 2 [0;m], m

(t)
ij2 2 [0;m]

and t = 0; 1; :::; T�1. (This magnitude could be thought of as a monetary investment aimed

at transitioning customers/voters from v
(t)
i ) to V

(t+1)
j , bounded by some large number m.)

Market share transitions are then determined according to a generalized Luce�s choice
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axiom (Luce, 1959),

p
(t)
ij =

8><>:
h
�
m
(t)
ij1+m

(t)
ij2

�
h
�
m
(t)
i01+m

(t)
i02

�
+h
�
m
(t)
i11+m

(t)
i12

�
+h
�
m
(t)
i21+m

(t)
i22

� if Pj2f0;1;2g

�
m
(t)
ij1 +m

(t)
ij2

�
6= 0;

1=3 if
P

j2f0;1;2g

�
m
(t)
ij1 +m

(t)
ij2

�
= 0

(3)

for i; j 2 f0; 1; 2g;

where h (�) is continuous, k-homogeneous (k > 0), strictly increasing function with h (0) = 0.

Note that m(t)
ij1 + m

(t)
ij2 is the aggregate magnitude of investment aimed at transitioning

customers/voters from V
(t)
i to V (t+1)j , so with h set to be the identity function, we get

the classical Luce�s choice axiom. Function h can be understood as an indirect utility

function of a representative customer/voter given the consumption price level. The choice

of p(t)ij = 1=3 in case of no investment at all targeting customers/voters from V ti , addition,

de�ning p(t)ij = 1=3 when
P

jm
(t)
ij1 +m

(t)
ij2 = 0 is needed for completeness reasons. (It follows

from limm!0 h(m)=3h(m), but is not important since such zero aggregate investment is

always a dominated strategy, as will be shown later in Proposition 2.1.)

2.2 Investment costs and the utility function

The cost functions associated with magnitudes are eCij1(m(t)
ij1) and eCij2(m(t)

ij2). Therefore, we

allow costs to depend on a particular transition from V
(t)
i to V (t+1)j that is being targeted

by an investment (as well as on the identity of the player who is investing). We assume

that the cost functions are continuous, increasing, and convex (although we will show that

the existence of the equilibrium does not require the convexity). We also normalize costs at

zero investment level: eCij1(0) = eCij2(0) = 0.
Player 1�s lifetime utility is

TX
t=0

rt[�
(t)
1 V

(t)
1 � �1�

(t)
2 V

(t)
2 ]�

T�1X
t=0

X
i;j2f0;1;2g

rt[ eCij1(m(t)
ij1)]

where r 2 (0; 1] is the time discount factor and �(t)i is the time-varying weight for player i
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market share at time t. Therefore, �(t)i V
(t)
i describes revenues drawn from player i market

share at time t; since the total market volume is normalized, �ti=N determines player�s

revenue per customer/voter in period t if there are N potential customers/voters in the

whole market. The parameter �i is the time-invariant weight that player i puts on the

impact of market share of its opponent. (If opponent�s market share does not directly a¤ect

player�s utility, �i = 0) Analogously, player 2�s lifetime utility is

TX
t=0

rt[�
(t)
2 V

(t)
2 � �2�

(t)
1 V

(t)
1 ]�

T�1X
t=0

X
i;j2f0;1;2g

rt[ eCij2(m(t)
ij2)]

This utility function attempts to capture various possibilities.

For example, setting �(t)i = 0 for t = 0; :::; T �1, allows only the market share in the �nal

period T to a¤ect players�utilities. Such a situation could occur when the market share

captured by a player is converted into utility only in a predetermined consumption moment

for customers. This setting could �t highly seasonal sales and sales of perishable goods and

is an obvious �t for political competition since players (candidates) compete for votes cast

and the market shares are only relevant on the election day.

For another example, the parameter �i determines the impact of the opponent�s revenues

on the player i�s utility. For �(t)1 = �
(t)
2 , �i = 1 allows for the di¤erence of market shares

to impact the utility. This is similar to an important distinction of political competition in

which the actual market share is secondary to the relative market share, i.e., it is important

to have more votes than the opponent, regardless of the actual vote count. (For winner-

takes-all political contests, it would be more appropriate to use rank functions that allocate

revenues only to the market-share leader, i.e., the election winner, but such function is non-

linear and not tractable for our analysis. Our formulation still captures the e¤ect of relative

standing in market-shares while keeping the utility function tractable.)
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2.3 Strategy choices and equilibria

The players want to maximize their own lifetime utility by simultaneously choosing magni-

tudes of their investments of all transitions throughout the game.

Thus, player 1 chooses

m
(t)
ij1 2 [0;m]; i; j = 0; 1; 2; t = 0; : : : ; T � 1;

and player 2 chooses

m
(t)
ij2 2 [0;m]; i; j = 0; 1; 2; t = 0; : : : ; T � 1:

The equilibrium choices will be denoted by m(t)�
ij1 and m

(t)�
ij2 .

Note that all choices have to be made at time t = 0 when only initial market shares

V
(0)
0 + V

(0)
1 + V

(0)
2 = 1 are known. This model �ts situations in which investments in

particular targeted advertising activities have to be made in advance, such as having to

book ad slots ahead of time. (We also note that the equilibria that we discuss in this paper

are subgame perfect with respect to t, i.e., the equilibria in this simultaneous one-shot

game model coincides with equilibria in a sequential game model where choices m(t)
ij1;m

(t)
ij2

are made sequentially at each time period t = 0; : : : T � 1 with knowledge of history and

V
(t)
0 + V

(t)
1 + V

(t)
2 = 1.)

In our model, zero aggregate magnitude investment aimed at targeting customers/voters

in Vi, i = 0; 1; 2 cannot be an equilibrium choice.

Proposition 2.1 For any i = 0; 1; 2 and any t = 0; : : : ;T j!�j!1,
P

j2f0;1;2g

�
m
(t)�
ij1 +m

(t)�
ij2

�
>

0.

Proof. Suppose that
P

j2f0;1;2g

�
m
(t)�
ij1 +m

(t)�
ij2

�
= 0. Then, either of the players has an

incentive to deviate from such magnitude choices. Consider player 1. Player 1�s utility

function is continuous and increasing in V (t+1)i and, thus continuous and increasing in p(t)i1 .
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Cost function eCi11 is continuous and eCij1(�) can be arbitrarily small for arbitrarily small
�. However, investing mi11 = � instead of zero increases p(t)i1 from 1=3 to 1. Therefore,

m
(t)�
i11 6= 0.

In view of Proposition 2.1, we will consider the intensity decision with positive aggregate

intensities in the rest of this paper. Hence, player 1�s optimization problem is

maxfm(t)
ij1: t=0; :::; T�1; i=0; 1; 2; j=0; 1; 2g

PT
t=0 r

t[�
(t)
1 V

(t)
1 � �1�

(t)
2 V

(t)
2 ]�

PT�1
t=0

P
i;j2f0;1;2g r

t[ eCij1(m(t)
ij1)]

Subject to

V (t+1) = V (t)P (t);

1 = V
(t)
0 + V

(t)
1 + V

(t)
2 ;

p
(t)
ij = h

�
m
(t)
ij1 +m

(t)�
ij2

�
=
�
h
�
m
(t)
i01 +m

(t)�
i02

�
+ h

�
m
(t)
i11 +m

(t)�
i12

�
+ h

�
m
(t)
i21 +m

(t)�
i22

��
; i; j 2 f0; 1; 2g;

V
(t+1)
0 ; V

(t+1)
1 ; V

(t+1)
2 � 0; 0 � m(t)

ij2 � m;P
j2f0;1;2g

�
m
(t)�
ij1 +m

(t)
ij2

�
� " > 0,

V
(0)
0 ; V

(0)
1 ; V

(0)
2 are given.

We impose the Nash equilibrium concept and thus it is noticed that m(t)�
ij2 for i; j 2 f0; 1; 2g

are equilibrium values chosen by player 2. The constant" > 0 can be imagined as the

smallest unit of money. Player 2�s problem is similar

maxfm(t)
ij2: t=0; :::; T�1; i=0; 1; 2; j=0; 1; 2g

PT
t=0 r

t[�
(t)
2 V

(t)
2 � �2�

(t)
1 V

(t)
1 ]�

PT�1
t=0

P
i;j2f0;1;2g r

t[ eCij2(m(t)
ij2)]

Subject to

V (t+1) = V (t)P (t);

1 = V
(t)
0 + V

(t)
1 + V

(t)
2 ;

p
(t)
ij = h

�
m
(t)�
ij1 +m

(t)
ij2

�
=
�
h
�
m
(t)�
i01 +m

(t)
i02

�
+ h

�
m
(t)�
i11 +m

(t)
i12

�
+ h

�
m
(t)�
i21 +m

(t)
i22

��
for i; j 2 f0; 1; 2g;

V
(t+1)
0 ; V

(t+1)
1 ; V

(t+1)
2 � 0; 0 � m(t)

ij1 � m;P
j2f0;1;2g

�
m
(t)
ij1 +m

(t)�
ij2

�
� ", " is a small positive number,

V
(0)
0 ; V

(0)
1 ; V

(0)
2 are given.
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Theorem 2.2 The game has a (mixed strategy) Nash equilibrium.

Proof. We use Glicksberg�s Fixed Point Theorem (Glicksberg, 1952).

Obviously, the strategy space is not empty. Therefore, the optimization problems for

player 1 and 2 are both feasible.

The strategy space of the optimization problem is a compact metric space, since 0 �

m
(t)
ij1 � m, 0 � m

(t)
ij2 � m,

P
j2f0;1;2g

�
m
(t)
ij1 +m

(t)
ij2

�
� " where " is a small positive number,

and the constraints are continuous functions.

The utility functions are continuous by de�nition.

Hence, the equilibrium exists by direct application of the Glicksbergs Fixed Point The-

orem.

Remark:

1. Note that the theorem does not require the cost functions to be convex.

2. The existence of a pure strategy Nash equilibrium requires the utility function to

be quasi-concave and the strategy be set to a non-empty convex, and compact set.

Therefore, the only requirement that is not automatically satis�ed is convexity.

Assumption 1. Player 1 sets m(t)
101, m

(t)
121, m

(t)
221, and m

(t)
021 to zero, while Player 2 sets

m
(t)
202, m

(t)
212, m

(t)
112, and m

(t)
012 to zero.

This assumption is intuitive, players will not invest in the activities that hurt themselves.

Lemma 2.3 Let the equilibrium intensities be m(t)�
ij1 and m

(t)�
ij2 . With Assumption 1, Player

1 and Player 2�s equilibrium transition probabilities will not be a¤ected by rescaling the

intensities, i.e., (��i )
1=km

(t)�
ij1 and (�

�
i )
1=km

(t)�
ij2 , where

��1 = 1=
�
h
�
m
(t)�
102

�
+ h

�
m
(t)�
111

�
+ h

�
m
(t)�
122

��
,

��2 = 1=
�
h
�
m
(t)�
201

�
+ h

�
m
(t)�
211

�
+ h

�
m
(t)�
222

��
,

and ��0 = 1=
�
h
�
m
(t)�
001 +m

(t)�
002

�
+ h

�
m
(t)�
011

�
+ h

�
m
(t)�
022

��
.

11



Moreover, given cost functions associated with intensities, there exists a unique new set of

continuous and strictly increasing cost functions, i.e.,

Cij1 (�) , eCij1 �(��i )k h�1 (�)� ;
and Cij2 (�) , eCij2 �(��i )k h�1 (�)� ;

associated with market share transitions, among which player 1 chooses
n
p
(t)
11 ; p

(t)
21 ; p

(t)
20 ; p

(t)
01 ; p

(t)
001

o
,

player 2 chooses
n
p
(t)
22 ; p

(t)
12 ; p

(t)
10 ; p

(t)
02 ; p

(t)
002

o
, and p(t)00 = h

�
h�1

�
p
(t)
001

�
+ h�1

�
p
(t)
002

��
, such that

it is equivalent to model with intensities and with market share transitions.

Proof. With Assumption 1, market transitions are

p
(t)
11 =

h
�
m
(t)
111

�
h
�
m
(t)
102

�
+h
�
m
(t)
111

�
+h
�
m
(t)
122

� ;
p
(t)
12 =

h
�
m
(t)
122

�
h
�
m
(t)
102

�
+h
�
m
(t)
111

�
+h
�
m
(t)
122

� ;
p
(t)
10 =

h
�
m
(t)
102

�
h
�
m
(t)
102

�
+h
�
m
(t)
111

�
+h
�
m
(t)
122

� ;

p
(t)
22 =

h
�
m
(t)
222

�
h
�
m
(t)
201

�
+h
�
m
(t)
211

�
+h
�
m
(t)
222

� ;
p
(t)
21 =

h
�
m
(t)
211

�
h
�
m
(t)
201

�
+h
�
m
(t)
211

�
+h
�
m
(t)
222

� ;
p
(t)
20 =

h
�
m
(t)
201

�
h
�
m
(t)
201

�
+h
�
m
(t)
211

�
+h
�
m
(t)
222

� ;
and

p
(t)
00 =

h
�
m
(t)
001+m

(t)
002

�
h
�
m
(t)
001+m

(t)
002

�
+h
�
m
(t)
011

�
+h
�
m
(t)
022

� ;
p
(t)
01 =

h
�
m
(t)
011

�
h
�
m
(t)
001+m

(t)
002

�
+h
�
m
(t)
011

�
+h
�
m
(t)
022

� ;
p
(t)
02 =

h
�
m
(t)
022

�
h
�
m
(t)
001+m

(t)
002

�
+h
�
m
(t)
011

�
+h
�
m
(t)
022

� :
Let the equilibrium intensities be m(t)�

ij1 and m
(t)�
ij2 . Then we can normalize the denomi-
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nators by introducing

��1 , 1=
�
h
�
m
(t)�
102

�
+ h

�
m
(t)�
111

�
+ h

�
m
(t)�
122

��
;

��2 , 1=
�
h
�
m
(t)�
201

�
+ h

�
m
(t)�
211

�
+ h

�
m
(t)�
222

��
;

and

��0 , 1=
�
h
�
m
(t)�
001 +m

(t)�
002

�
+ h

�
m
(t)�
011

�
+ h

�
m
(t)�
022

��
:

Take p(t)�11 for example,

p
(t)�
11 =

h
�
m
(t)�
111

�
h
�
m
(t)�
102

�
+h
�
m
(t)�
111

�
+h
�
m
(t)�
122

�
=

��1h
�
m
(t)�
111

�
��1

�
h
�
m
(t)�
102

�
+h
�
m
(t)�
111

�
+h
�
m
(t)�
122

��
= ��1h

�
m
(t)�
111

�
:

Since h (�) is homogeneous degree k, and is de�ned on [0;1),

p
(t)�
11 = h

�
(��1)

1=km
(t)�
111

�
.

Therefore, if we de�ne

m
(t)��
111 , (��1)1=km

(t)�
111

m
(t)��
102 , (��1)1=km

(t)�
102

and m(t)��
122 , (��1)1=km

(t)�
122 ;

the transition is just the function of the intensity, i.e, p(t)�11 = h
�
m
(t)��
111

�
. It is noticed that

m
(t)��
111 , m

(t)��
102 , and m

(t)��
122 are not necessarily in the range [0;m] Similarly,

p
(t)�
12 = h

�
m
(t)��
122

�
, p(t)�10 = h

�
m
(t)��
102

�
:

Let the cost function associated with market share transition p(t)�11 be C
�
p
(t)�
11

�
. To match

13



the utility function, we require

C11

�
p
(t)�
11

�
= eC111 �m(t)�

111

�
= eC111 �(��1)km(t)��

111

�
= eC111 �(��1)k h�1 �p(t)�11

��
:

h�1 (�) exists since h (�) is strictly increasing. Similarly,

C12

�
p
(t)�
12

�
= eC122 �(��1)k h�1 �p(t)�12

��
;

and

C10

�
p
(t)�
10

�
= eC102 �(��1)k h�1 �p(t)�10

��
:

Similarly, we get cost functions associated with market share transitions on party 2.

C22

�
p
(t)�
22

�
= eC222 �(��2)k h�1 �p(t)�22

��
;

C21

�
p
(t)�
21

�
= eC211 �(��2)k h�1 �p(t)�21

��
;

C20

�
p
(t)�
20

�
= eC201 �(��2)k h�1 �p(t)�20

��
;

For party 0, p(t)�01 and p(t)�02 are similar,

C01

�
p
(t)�
01

�
= eC011 �(��0)k h�1 �p(t)�01

��
;

C02

�
p
(t)�
02

�
= eC022 �(��0)k h�1 �p(t)�02

��
:

However, there is slightly di¤erence for p(t)�00 since both player 1 and player 2 will a¤ect this

probability. De�ne

p
(t)�
001 = h

�
m
(t)��
001

�
; m

(t)��
001 , (��0)1=km

(t)�
001 ;

p
(t)�
001 = h

�
m
(t)��
001

�
; m

(t)��
002 , (��2)1=km

(t)�
002 :

Then

p
(t)�
00 = h

�
h�1

�
p
(t)�
001

�
+ h�1

�
p
(t)�
002

��
;

14



and
C001

�
p
(t)�
001

�
= eC001 �(��0)k h�1 �p(t)�001

��
;

C002

�
p
(t)�
002

�
= eC002 �(��0)k h�1 �p(t)�002

��
:

Since h (�) is a strictly increasing function, by the construction, there are one-to-one

mapping between

p
(t)�
11 ; p

(t)�
21 ; p

(t)�
20 ; p

(t)�
01 ; p

(t)�
001

and

m
(t)��
111 ;m

(t)��
211 ;m

(t)��
201 ;m

(t)��
011 ;m

(t)��
001 ;

respectively. Similarly, there is one-to-one mapping between

p
(t)�
22 ; p

(t)�
12 ; p

(t)�
10 ; p

(t)�
02 ; p

(t)�
002

and

m
(t)��
222 ;m

(t)��
122 ;m

(t)��
102 ;m

(t)��
022 ;m

(t)��
002 ;

respectively.

As there is also one-to-one mapping between m(t)��
ij1(2) and m

(t)�
ij1(2) given �

�
i , the objective

function of player 1 with cost function eCij1 �m(t)
ij1

�
, which is optimized by

n
m
(t)�
ij1

o
givenn

m
(t)�
ij2

o
, can be optimized by

n
p
(t)�
11 ; p

(t)�
21 ; p

(t)�
20 ; p

(t)�
01 ; p

(t)�
001

o
with the adjusted cost function

Cij1 (�) , eCij1 �(��i )k h�1 (�)�, given np(t)�22 ; p
(t)�
12 ; p

(t)�
10 ; p

(t)�
02 ; p

(t)�
002

o
. Similarly, the objective

function of player 2 with cost function eCij2 �m(t)
ij2

�
, which is optimized by

n
m
(t)�
ij2

o
givenn

m
(t)�
ij1

o
, can be optimized by

n
p
(t)�
22 ; p

(t)�
12 ; p

(t)�
10 ; p

(t)�
02 ; p

(t)�
002

o
with the adjusted cost function

Cij2 (�) , eCij2 �(��i )k h�1 (�)�, given np(t)�11 ; p
(t)�
21 ; p

(t)�
20 ; p

(t)�
01 ; p

(t)�
001

o
.

On the other hand, since every m(t)��
ij1(2) can be replicated by m

(t)�
ij1(2), the optimization

problem with transitions can be achieved by some optimization problem with intensities.

Therefore, modeling with intensities is equivalent to modeling with market share transi-

tions, given the adjusted cost function and p(t)�00 = h
�
h�1

�
p
(t)�
001

�
+ h�1

�
p
(t)�
002

��
.

As a result, we will adopt the modeling where players decide on their costly investments in

15



transitions, p(t)ij . With Assumption 1, Player 1 invests in market share transitions that could

positively in�uence his market share (p01; p11; p21) and/or negatively in�uence his opponents

market share (p20, in addition to p21). Analogously, Player 2 invests in transitions p02; p12; p22

and/or p10. (Both players could also have interest in controlling p00.)

Looking at the changes of market shares in a given time period t that are result of chosen

transitions, we can measure whether Player 1 invested more into increasing its own market

share

p
(t)
01V

(t)
0 + p

(t)
21V

(t)
2 (4)

or into decreasing the opponent�s (i.e., Player 2) market share

p
(t)
20V

(t)
2 + p

(t)
21V

(t)
2 : (5)

Comparing (4) and (5) and analogous quantities for Player 2, we have the following de�ni-

tions for negative (positive) advertisement strategy.

De�nition 2.4 We de�ne d(t)i as Positive Advertisement Index at time t for player i:

d
(t)
1 = p

(t)
01V

(t)
0 � p(t)20V

(t)
2 ; (6)

d
(t)
2 = p

(t)
02V

(t)
0 � p(t)10V

(t)
1 : (7)

If d(t)i > 0, then Player i chooses a strictly positive advertisement strategy at time t since

it focuses more on increasing its market share than on decreasing the opponent�s market

share. Conversely, if d(t)i < 0, Player i chooses a strictly negative advertisement strategy

since it focuses more on increasing its market share than on decreasing the opponent�s

market share. (Note that a direct transition between V1 and V2 has both a positive and

negative impact, in context of labeling activities as positive or negative advertising, and

cancels out in comparison of quantities (4) and (5).)
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We can rewrite player 1�s optimization problem as

maxfp(t)01 ;p
(t)
11 ;p

(t)
21 ;p

(t)
20 ;p

(t)
001:t=0;:::;T�1g

PT
t=0 r

t[�
(t)
1 V

(t)
1 � �1�

(t)
2 V

(t)
2 ]

�
PT�1

t=0 r
t[C01(p

(t)
01 ) + C21(p

(t)
21 ) + C20(p

(t)
20 ) + C11(p

(t)
11 ) + C001(p

(t)
001)]

subject to

V (t+1) = V (t)P (t) = V (t)

26664
p
(t)
00 p

(t)
01 p

(t)�
02

p
(t)�
10 p

(t)
11 p

(t)�
12

p
(t)
20 p

(t)
21 p

(t)�
22

37775 ;
1 = V

(t)
0 + V

(t)
1 + V

(t)
2 ;26664

p
(t)
00 p

(t)
01 p

(t)�
02

p
(t)�
10 p

(t)
11 p

(t)�
12

p
(t)
20 p

(t)
21 p

(t)�
22

37775
26664
1

1

1

37775 =
26664
1

1

1

37775 ;
p
(t)
00 = h

�
h�1

�
p
(t)
001

�
+ h�1

�
p
(t)�
002

��
;

V
(t+1)
0 ; V

(t+1)
1 ; V

(t+1)
2 � 0;

p
(t)
01 ; p

(t)
11 ; p

(t)
21 ; p

(t)
20 ; p

(t)
001 � 0,

V
(0)
0 ; V

(0)
1 ; V

(0)
2 are given.

p
(t)�
02 , p

(t)�
10 , p

(t)�
12 , p

(t)�
22 , and p

(t)�
002 are equilibrium values chosen by Player 2. For player 2,

17



the optimization problem is similar,

maxfp(t)02 ;p
(t)
22 ;p

(t)
12 ;p

(t)
10 ;p

(t)
002:t=0;:::;T�1g

PT
t=0 r

t[�
(t)
2 V

(t)
2 � �2�

(t)
1 V

(t)
1 ]

�
PT�1

t=0 r
t[C02(p

(t)
02 ) + C12(p

(t)
12 ) + C10(p

(t)
10 ) + C22(p

(t)
22 ) + C002(p

(t)
002)]

subject to

V (t+1) = V (t)P (t) = V (t)

26664
p
(t)
00 p

(t)�
01 p

(t)
02

p
(t)
10 p

(t)�
11 p

(t)
12

p
(t)�
20 p

(t)�
21 p

(t)
22

37775 ;
1 = V

(t)
0 + V

(t)
1 + V

(t)
2 ;26664

p
(t)
00 p

(t)�
01 p

(t)
02

p
(t)
10 p

(t)�
11 p

(t)
12

p
(t)�
20 p

(t)�
21 p

(t)
22

37775
26664
1

1

1

37775 =
26664
1

1

1

37775 ;
p
(t)
00 = h

�
h�1

�
p
(t)�
001

�
+ h�1

�
p
(t)
002

��
;

V
(t+1)
0 ; V

(t+1)
1 ; V

(t+1)
2 � 0;

p
(t)
02 ; p

(t)
22 ; p

(t)
12 ; p

(t)
10 ; p

(t)
002 � 0,

V
(0)
0 ; V

(0)
1 ; V

(2)
1 are given.

p
(t)�
01 , p

(t)�
20 , p

(t)�
21 , p

(t)�
11 , and p

(t)�
001 are equilibrium values chosen by Player 1.

In the following discussions, we will consider a linear function h (�). Then

p
(t)
00 = h

�
h�1

�
p
(t)
001

�
+ h�1

�
p
(t)
002

��
= p

(t)
001 + p

(t)
002.

3 Linear Cost Functions

Consider linear cost functions C (p) = cijpij. This can be attained by assuming linear cost

functions associated with intensities. We �rst discuss the case T = 2. We can express the

18



market shares at t = 2 are

V
(2)
1 = p

(1)
01 [p

(0)
10 V

(0)
1 + p

(0)
20 V

(0)
2 + V

(0)
0 (p

(0)
001 + p

(0)
002)]

+p
(1)
11 [p

(0)
11 V

(0)
1 + p

(0)
21 V

(0)
2 + V

(0)
0 p

(0)
01 ]

+p
(1)
21 [p

(0)
12 V

(0)
1 + p

(0)
22 V

(0)
2 + V

(0)
0 p

(0)
02 ]

and

V
(2)
2 = p

(1)
02 [p

(0)
10 V

(0)
1 + p

(0)
20 V

(0)
2 + V

(0)
0 (p

(0)
001 + p

(0)
002)]

+p
(1)
12 [p

(0)
11 V

(0)
1 + p

(0)
21 V

(0)
2 + V

(0)
0 p

(0)
01 ]

+p
(1)
22 [p

(0)
12 V

(0)
1 + p

(0)
22 V

(0)
2 + V

(0)
0 p

(0)
02 ].

The market shares at t = 1 are

V
(1)
1 = p

(0)
11 V

(0)
1 + p

(0)
21 V

(0)
2 + V

(0)
0 p

(0)
01

and

V
(1)
2 = p

(0)
12 V

(0)
1 + p

(0)
22 V

(0)
2 + V

(0)
0 p

(0)
02 .

We �rst make the following cost assumptions.

Assumption 2A c21 � c20.

Assumption 2A�c12 � c10.

These assumptions indicate that it is cheaper to directly attract opponent�s customers

than to turn them away from the opponent.

Assumption 2B c01 � c001.

Assumption 2B�c02 � c002.

These assumptions indicate that it is cheaper to attract uncommitted customers than

to focus on keeping them uncommitted.

By Theorem 2.2, since linear cost functions are also convex, there exists a pure strat-
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egy Nash Equilibrium in the subgame at t = 1. The following Proposition 3.1 shows the

suboptimality of negative advertisement in the last period.

Proposition 3.1 With Assumption 2A, or with Assumption 2B and there are more un-

committed customers a¤ected by the player than opponent�s customers who will become un-

committed, i.e.,

p
(1)�
20 V

(1)�
2 �

�
1� p(1)�002 � p

(1)�
02

�
V
(1)�
0 , (8)

Player 1 will not engage in strictly negative advertisement in the last period, i.e., d(1)1 � 0.

Remarks:

1) Assumption 2A alone can induce no strictly negative advertisement in the last period.

2) In fact, Assumption 2A drives p(1)20 down to 0; Assumption 2B and condition (8) drive

p
(1)
01 up to 1� p

(1)�
002 � p

(1)�
02 . Therefore, condition (8) holds if Assumption 2A holds.

Proof. Proof is by contradiction.

If V (1)�2 = 0, it is obvious that there is no strictly negative advertisement.

If V (1)�2 6= 0 and V (1)�0 6= 0, suppose there exists a set of choices in the support such that

d
(1)
1 < 0. Rewriting d(1)1 < 0 we get

p
(1)�
01 V

(1)�
0 < p

(1)�
20 V

(1)�
2 . (9)

Note that V (1)�0 = p
(0)�
10 V

(0)
1 + p

(0)�
20 V

(0)
2 +V

(0)
0 (p

(0)�
001 + p

(0)�
002 ) and V

(1)�
2 = p

(0)�
12 V

(0)
1 + p

(0)�
22 V

(0)
2 +

V
(0)
0 p

(0)�
02 are between 0 and 1 by de�nition. Also, p(1)�20 > 0. By (9), p(1)�01 < 1� p(1)�002 � p

(1)�
02 if

p
(1)�
20 V

(1)�
2 �

�
1� p(1)�002 � p

(1)�
02

�
V
(1)�
0 ;

which also means that the maximal value of p(1)�01 can reverse the negative advertisement.

We try to �nd pro�table deviations at t = 1 for p(1)20 2 (p
(1)�
01 V

(1)�
0 =V

(1)�
2 ; p

(1)�
20 ] and p

(1)
01 2

[p
(1)�
01 ;min

n
p
(1)�
20 V

(1)�
2 =V

(1)�
0 ; 1� p(1)�002 � p

(1)�
02

o
).

It is feasible for player 1 to decrease p(1)20 by " > 0, i.e. p
(1)new
20 = p

(1)
20 � ", or increase p

(1)
01

by " > 0, i.e. p(1)new01 = p
(1)
01 + ". To balance these changes in order to satisfy the feasible
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constraints, we must have p(1)new21 = p
(1)
21 + ", or p

(1)new
001 = p

(1)
001 � ". These are the choice

variables that could be controlled by player 1.

Player 1�s revenue is

�
(0)
1 V

(0)
1 � �1�

(0)
2 V

(0)
2

+rfV (0)1 [�
(1)
1 p

(0)
11 � �1�

(1)
2 p

(0)�
12 ]

+V
(0)
2 [�

(1)
1 p

(0)
21 � �1�

(1)
2 p

(0)�
22 ]

+V
(0)
0 [�

(1)
1 p

(0)
01 � �1�

(1)
2 p

(0)�
02 ]g

+r2[�
(2)
1 p

(1)
01 � �1�

(2)
2 p

(1)�
02 ][p

(0)
10 V

(0)
1 + p

(0)�
20 V

(0)
2 + (p

(0)
001 + p

(0)�
002 )V

(0)
0 ]

+r2[�
(2)
1 p

(1)
21 � �1�

(2)
2 p

(1)�
22 ][p

(0)�
12 V

(0)
1 + p

(0)�
22 V

(0)
2 + p

(0)�
02 V

(0)
0 ]

+r2[�
(2)
1 p

(1)
11 � �1�

(2)
2 p

(1)�
12 ][p

(0)�
11 V

(0)
1 + p

(0)�
21 V

(0)
2 + p

(0)�
01 V

(0)
0 ].

and transition probability is determined by (3).

Case 1: Decreasing p(1)20 by " > 0 is pro�table if

r2�
(2)
1 [p

(0)�
12 V

(0)
1 + p

(0)�
22 V

(0)
2 + V

(0)
0 p

(0)�
02 ]�

� r[
�
C21

�
p
(1)
21 + "

�
� C21

�
p
(1)
21

��
+
�
C20

�
p
(1)
20 � "

�
� C20

�
p
(1)
20

��
]:

Let " goes to zero, then we have

r2�
(2)
1 [p

(0)�
12 V

(0)
1 + p

(0)�
22 V

(0)
2 + p

(0)�
02 V

(0)
0 ] � r[C 021

�
p
(1)
21

�
� C 020

�
p
(1)
20

�
]

,

r�
(2)
1 V

(1)�
2 � c21 � c20

By Assumption 2A, this obviously holds.

21



Case 2: Increasing p(1)�01 by " > 0 is pro�table if

r2�
(2)
1 [p

(0)�
10 V

(0)
1 + p

(0)�
20 V

(0)
2 + (p

(0)
001 + p

(0)�
002 )V

(0)
0 ]"

� r[
�
C01

�
p
(1)
01 + "

�
� C01

�
p
(1)
01

��
�
�
C001

�
p
(1)
001 � "

�
� C001

�
p
(1)
001

��
]:

Let " goes to zero, then we have

r2�
(2)
1 [p

(0)�
10 V

(0)
1 + p

(0)�
20 V

(0)
2 + (p

(0)
001 + p

(0)�
002 )V

(0)
0 ] � r[C 001

�
p
(1)
01

�
� C 0001

�
p
(1)
001

�
]

,

r�
(2)
1 V

(1)�
0 � c01 � c001:

By Assumption 2B, this obviously holds.

If V (1)�0 = 0, by the de�nition of d(1)1 , d
(1)
1 = �p(1)�20 V

(1)�
2 � 0. There is no strictly

negative advertisement i¤ p(1)�20 V
(1)�
2 = 0. This can be achieved by pro�table deviation from

Assumption 2A or p(1)�20 V
(1)�
2 � V (1)�0 = 0.

Corollary 3.2 With Assumption 2A, 2A�, 2B and 2B�, neither of the Players devotes to

maintaining the uncommitted customers in the last period, i.e., p(1)�01 + p
(1)�
02 = 1, p(1)�20 = 0,

and p(1)�10 = 0.

Remarks:

Since the equilibriums are not unique and there are at least three degrees of freedom,

p
(1)�
01 , p

(1)�
11 and p(1)�22 can be regarded as undetermined choices.

Proof. With Assumption 2A and Assumption 2B for Player 1, p(1)�20 = 0, p(1)�01 = 1 �

p
(1)�
002 � p

(1)�
02 , p

(1)�
001 = 0; with Assumption 2A�and Assumption 2B�for Player 2, p(1)�10 = 0,

p
(1)�
02 = 1� p(1)�001 � p

(1)�
01 , and p

(1)�
002 = 0. Therefore, p

(1)�
01 + p

(1)�
02 = 1. Then, the uncommitted

customers are completely turned into other parties.

Lemma 3.3 With Assumption 2A, 2A�, 2B and 2B�, there exists a pure strategy subgame

perfect Nash Equilibrium in the two periods game with linear cost functions.
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Proof. By Theorem 2.2, since linear cost functions are also convex functions, there exists a

pure strategy Nash Equilibrium in the subgame at t = 1. By Corollary 3.2, the equilibrium

transitions do not depend on V (1)1 , V (1)2 , or V (1)0 . Hence, the value function at t = 1, i.e.,

take Player 1 for example,

J1

�
V
(1)
1 ; V

(1)
2

�
= maxfp(1)01 ;p

(1)
11 ;p

(1)
21 ;p

(1)
20 ;p

(1)
001g
f�(1)1 V

(1)
1 � �1�

(1)
2 V

(1)
2

�
h
C01(p

(1)
01 ) + C21(p

(1)
21 ) + C20(p

(1)
20 ) + C11(p

(1)
11 ) + C001(p

(1)
001)
i

+r
�
�
(2)
1 V

(2)
1 � �1�

(2)
2 V

(2)
2

�
g for 0 � t � T � 1,

subject to V (T ) = V (T�1)P (T�1) and feasibility constraints,

is linear and continuous in V (1)1 and V (1)2 . Therefore, the subgame at t = 0 is also a continuous

game and the objective function is linear in all transitions. By the above argument again,

there exists a pure strategy Nash Equilibrium in the two periods game.

We turn to identifying situations in which Player 1 chooses strictly negative advertise-

ment in the �rst period. If V (0)2 = 0, there is no strictly negative advertisement in the �rst

period. As a result, the following Proposition 3.4 focuses on V (0)2 6= 0.

Proposition 3.4 With Assumption 2A, 2A�, 2B and 2B�, Player 1 will engage in strictly

negative advertisement in the �rst period when V (0)2 6= 0, i.e. d(0)1 < 0, if and only if

�
1� p(0)�22

�
V
(0)
2 > p

(0)�
01 V

(0)
0 (10)

and V (0)2 r2A(1) � c20 � c21; (11)

where

A(1) =
�
�
(2)
1 + �1�

(2)
2

��
p
(1)�
01 � p(1)�11

�
� �(1)1 =r: (12)

A su¢ cient condition is p(0)�22 < 1, condition (11) and

V
(0)
0 r2A(1) � c001 � c01: (13)
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Remarks:

Similar to Proposition 3.1, condition (13) drives p(0)�01 down to 0, while conditions (10)

and (11) drive p(0)�20 up to 1 � p(0)�22 . Moreover, condition (13) leads to condition (11) if

p
(0)�
22 < 1.

Proof. The su¢ cient part is similar to the proof of Proposition 3.1.

If V (0)0 6= 0, and V (0)2 6= 0, we �rst prove the su¢ cient condition for d(0)1 � 0. Suppose

d
(0)
1 > 0, i.e.,

V
(0)
0 p

(0)�
01 > V

(0)
2 p

(0)�
20 .

We try to �nd pro�table deviations at t = 0 for p(0)20 2 [p
(0)�
20 ;min

n
p
(0)�
01 V

(0)�
0 =V

(0)�
2 ; 1

o
) and

p
(0)
01 2 (p

(0)�
20 V

(0)�
2 =V

(0)�
0 ; p

(1)�
01 ].

Case 1: p(0)�01 > 0.

Obviously, more substantially Player 1 lags behind the opponent, i.e., smaller V (0)1 =
�
V
(0)
1 + V

(0)
2

�
,

larger p(0)�01 has to be. This indicates a larger space of deviation, p(0)new01 = p
(0)
01 � ", and such

deviation would have to be balanced by p(0)new001 = p
(0)
001 + ". Looking at the utility function

for Player 1, such pro�table deviation exists if

�V (0)0 r�
(1)
1 "+ r

2[�
(2)
1 p

(1)�
01 � �1�

(2)
2 p

(1)�
02 ]V

(0)
0

�r2[�(2)1 p
(1)�
11 � �1�

(2)
2 p

(1)�
12 ]V

(0)
0 � [C 0001(p

(0)
001)� C 001(p

(0)
01 )];

for small ". The above condition is equivalent to

V
(0)
0 r2A(1) � c001 � c01;

where

A(1) = �
(2)
1 p

(1)�
01 � �1�

(2)
2 p

(1)�
02 � �(2)1 p

(1)�
11 + �1�

(2)
2 p

(1)�
12 � �

(1)
1

r
:

Case 2: p(0)�20 < 1� p(0)�22 .

A requirement for the analysis in this case is
�
1� p(0)�22

�
V
(0)
2 � V (0)0 p

(0)�
01 . A pro�table

deviation here involves p(0)new20 = p
(0)
20 + ", which should be balanced by p

(0)new
21 = p

(0)
21 � ".
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Again, looking at the utility function for Player 1, such pro�table deviation exists if

V
(0)
2 r2[�

(2)
1 p

(1)�
01 � �1�

(2)
2 p

(1)�
02 � �(2)1 p

(1)�
11 + �1�

(2)
2 p

(1)�
12 � �

(1)
1

r
]

� [C 020(p
(0)�
20 )� C 021(p

(0)�
21 )]:

The above condition is equivalent to

V
(0)
2 r2A(1) � c20 � c21:

Since condition (13) drives p(0)�01 down to 0, while conditions (10) and (11) drive p(0)�20 up to

1� p(0)�22 , by the de�nition of d
(0)
1 , the su¢ cient condition for strictly negative advertisement

is �
1� p(0)�22

�
V
(0)
2 > p

(0)�
01 V

(0)
0 and V (0)2 r2A(1) � c20 � c21

or

V
(0)
0 r2A(1) � c001 � c01, p(0)�22 < 1,

and V (0)2 r2A(1) � c20 � c21:

To prove the necessary part, we will �rst identify the su¢ cient conditions for positive

advertisement following the similar argument as above. There is positive advertisement in

the �rst period if

V
(0)
2 r2A(1) � c20 � c21

or

p
(0)�
20 V

(0)
2 �

�
1� p(0)�02 � p(0)�002

�
V
(0)
0 and V (0)0 r2A(1) � c001 � c01:

Suppose either condition (10) or condition (11) does not hold, i.e.,

�
1� p(0)�22

�
V
(0)
2 � p(0)�01 V

(0)
0 (14)
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or

V
(0)
2 r2A(1) < c20 � c21: (15)

Case 1: condition (14) holds.

Since p(0)20 � 1� p
(0)�
22 ,

p
(0)
20 V

(0)
2 �

�
1� p(0)�22

�
V
(0)
2 � p(0)�01 V

(0)
0 ;

for equilibrium choice of p(0)�01 . There must be no strictly negative advertisement in the �rst

period by any feasible p(0)20 values.

Case 2: condition (15) holds.

This is just one of the su¢ cient conditions for positive advertisement in the �rst period.

Hence, if either condition (10) or condition (11) does not hold, there is no strictly negative

advertisement in the �rst period.

By the proof of Corollary 3.2, with Assumption 2A, 2A�, 2B and 2B�, we must have

p
(1)�
01 + p

(1)�
02 = 1, p(1)�20 = 0, and p(1)�10 = 0. Then

A(1) = �
(2)
1 p

(1)�
01 � �1�

(2)
2

�
1� p(1)�01

�
� �(2)1 p

(1)�
11 + �1�

(2)
2

�
1� p(1)�11

�
� �

(1)
1

r

= p
(1)�
01

�
�
(2)
1 + �1�

(2)
2

�
� p(1)�11

�
�
(2)
1 + �1�

(2)
2

�
� �

(1)
1

r

=
�
�
(2)
1 + �1�

(2)
2

��
p
(1)�
01 � p(1)�11

�
� �

(1)
1

r
:

If V (0)0 = 0, the above conditions are still valid.

This completes the proof.

The following Corollary 3.5 shows the feasibility of negative advertisement.

Corollary 3.5 There always exist equilibrium choices at t = 0 satisfying condition (10).

Moreover, with Assumption 2A, 2A�, 2B and 2B�, there exist equilibrium choices at t = 1
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satisfying conditions (11) or (13) if

V
(0)
2 r2

�
�
(2)
1 + �1�

(2)
2 � �(1)1 =r

�
� c20 � c21

or

V
(0)
0 r2

�
�
(2)
1 + �1�

(2)
2 � �(1)1 =r

�
� c001 � c01;

respectively.

Remarks:

1) Consider the simple cases c20 = c21 and c001 = c01. There is no strictly negative

advertisement in the last period. But, if

�
(2)
1 + �1�

(2)
2 � �(1)1 =r,

it is still possible for player 1 to play strictly negative advertisement in the �rst period. This

condition obviously holds if either �(2)1 = �
(2)
2 = �

(1)
1 = r = 1.

2) In the political competition, i.e., �1 > 0, these conditions are easier to satisfy.

3) If only the �nal market shares matter, these conditions are easier to satisfy.

Proof. By the proof of Proposition 3.4, the equilibrium choices are not unique at t = 1.

Similarly, the equilibrium choices are not unique at t = 0, either.

At t = 0, at least p(0)�22 can be regarded as undetermined. If condition (13) holds, p(0)�01

is driven down to 0. Therefore, there exists p(0)�22 making condition (10) satis�ed. If (13)

does not hold, p(0)�01 can be regarded as undetermined. Hence, there still exist p(0)�01 and p(0)�22

making condition (10) satis�ed.

At t = 1, since there are at least three degrees of freedom, p(1)�01 , p
(1)�
11 and p(1)�22 can be

regarded as undetermined equilibrium choices. It is also noticed that the maximum possible

value of A(1) is

A(1)max = �
(2)
1 + �1�

(2)
2 � �

(1)
1

r
:
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There exist equilibrium choices at t = 1 satisfying conditions (11) or (13) if

V
(0)
2 r2

�
�
(2)
1 + �1�

(2)
2 � �(1)1 =r

�
� c20 � c21

or

V
(0)
0 r2

�
�
(2)
1 + �1�

(2)
2 � �(1)1 =r

�
� c001 � c01;

respectively.

Corollary 3.6 gives how initial market shares a¤ect negative advertisement. It also sheds

light on the optimal strategy of a player who is falling behind.

Corollary 3.6 With Assumption 2A, 2A�, 2B and 2B�, if �xed V (0)0 , decreasing the initial

market share of Player 1, i.e., a smaller value of V (0)1 ; or �xed V (0)1 , decreasing the initial

market share of uncommitted party, i.e., a smaller value of V (0)0 , there occur more equilibri-

ums with Player 1�s strictly negative advertisement in the �rst period and, moreover, Player

1�s advertisement is of more negativity for some particular equilibrium.

Proof. In order to study the e¤ect of initial market shares on equilibriums, we consider the

necessary and su¢ cient conditions.

With Assumption 2A, condition (11) requires that A(1) � 0.

Moreover, with p(0)�22 = 1 and condition (11), there is no strictly negative advertisement.

Hence, conditions (10) and (11) are equivalent to

V
(0)
1 < 1�

�
1 + p

(0)�
01 =

�
1� p(0)�22

��
V
(0)
0

and V (0)1 � 1� V (0)0 � (c20 � c21) =
�
r2A(1)

�
:

First, it is noticed that

V
(0)
1 < 1� V (0)0 � V (0)0 p

(0)�
01 =

�
1� p(0)�22

�
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is equivalent to

0 � V (0)0 p
(0)�
01 =

�
1� p(0)�22

�
< 1� V (0)0 � V (0)1 :

Since the equilibrium choices at t = 0 is not unique, p(0)�01 and p(0)�22 can be regarded to be

undetermined equilibrium choices. Fixed V (0)0 , a smaller V (0)1 , or �xed V (0)1 , a smaller V (0)0

allows greater upper bounds for both p(0)�01 and p(0)�22 .

Second, by the proof of Proposition 3.4, With Assumption 2A, 2A�, 2B and 2B�, A(1) is

rewritten as

A(1) =
�
�
(2)
1 + �1�

(2)
2

��
p
(1)�
01 � p(1)�11

�
� �

(1)
1

r
;

where p(1)�01 , p
(1)�
11 and p(1)�22 can be regarded as undetermined equilibrium choices. It is noticed

that

V
(0)
1 � 1� V (0)0 � (c20 � c21) =

�
r2A(1)

�
is equivalent to

�
(c20 � c21) =

�
r2
�
1� V (0)0 � V (0)1

��
+ �

(1)
1 =r

�
=
�
�
(2)
1 + �1�

(2)
2

�
�

�
p
(1)�
01 � p(1)�11

�
:

Hence, a smaller V (0)1 or a smaller V (0)0 allows smaller lower bound for p(1)�01 � p(1)�11 . Since�
p
(1)�
01 ; p

(1)�
11

�
is free within a unit square, there exist more equilibriums choices at t = 1 with

strictly negative advertisement in the �rst period.

Therefore, there exist more equilibriums with strictly negative advertisement for the

whole game with a smaller V (0)0 or V (0)1 .

To prove the e¤ect of initial market shares on the degree of negativity, recall the de�nition

of positive advertisement index

d
(0)
1 = p

(0)
01 V

(0)
0 � p(0)20 V

(0)
2 :

If conditions (10) and (11) hold, there is strictly negative advertisement and p(0)�20 is
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driven up to 1� p(0)�22 . In addition, if condition (13) holds, p
(0)�
01 is driven down to 0; if not,

p
(0)�
01 is regarded as undetermined equilibrium choices.

If conditions (10) or (11) does not hold, there is positive advertisement. p(0)�20 is driven

down to 0 (or undetermined) or p(0)�01 is driven up to 1� p(0)�02 � p(0)�002 .

Since �xed V (0)0 , a smaller V (0)1 , or �xed V (0)1 , a smaller V (0)0 facilitates the necessary

and su¢ cient condition of negative advertisement, the negativity of advertisement increases

at the edge of jumping from positive to negative advertisement. Within some particular

equilibrium, either p(0)�01 (or p(0)�20 ) is driven to the corner or undetermined, so the negativity

of advertisement increases when �xed V (0)0 , decreasing V (0)1 , or �xed V (0)1 , decreasing V (0)0 .

The following Corollary 3.7 shows the comparative statics of parameters in the utility

function. We also expect to see more strictly negative advertisement with political compe-

tition.

Corollary 3.7 With Assumption 2A, 2A�, 2B and 2B�, there exist more equilibriums with

Player 1�s strictly negative advertisement in the �rst period,

1) if in political competition, i.e., �1 > 0, than those in business competition, i.e., �1 = 0;

2) if Player 1 cares more about the opponent�s �nal market share, i.e., a larger value of

�1�
(2)
2 ;

3) if Player 1 cares more about its own �nal market share, i.e., a larger value of �(2)1 ;

4) if Player 1 cares less about its own market share at t = 1, i.e., a smaller value of �(1)1 ;

5) if Player 1 is more patient, i.e., a larger discount factor r.

More the player cares about the opponent�s market share in the last period (i.e., larger

�1�
(2)
2 ), as in the political competition, the negative advertising strategy in the initial period

is more likely. Similarly, if player�s utility puts a considerable importance on its market share

at t = 1, i.e. if �(1)1 is signi�cant, a strictly negative advertisement will not be likely to occur.

Conversely, if �(1)1 is small (or even equal to zero), a strictly negative advertisement in the

initial period is likely. These correspond to a two-shot advertising strategy in which (not
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very signi�cant) market share at t = 1 is ignored and all of the investment in the initial

period is geared towards optimal market structure for potentially large market share gains

at t = T = 2 (when the market share matters). If a player stands to gain at t = 2 from large

V
(1)
0 through positive advertising e¤ort p(1)01 then it could make sense to focus on enlarging

V
(1)
0 which could call for negative advertising e¤orts p(0)20 in the initial period.

Proof. By the proof of Proposition 3.4, with Assumption 2A, 2A�, 2B and 2B�,

A(1) =
�
�
(2)
1 + �1�

(2)
2

��
p
(1)�
01 � p(1)�11

�
� �

(1)
1

r
:

Obviously, �(2)1 , �
(2)
2 , �

(1)
1 , r and �1 a¤ect the decision of negative advertisement at t = 0

only through r2A(1). However, the value of r2A(1) will not a¤ect the multiple equilibrium

choices at t = 0.

By Corollary 3.5, there exist equilibrium choices satisfying condition (10). Therefore, in

order to study the comparative statics of �(2)1 , �
(2)
2 , �

(1)
1 , r and �1, we focus on the necessary

and su¢ cient conditions. Then, condition (11) require

A(1) � A(1) , c20 � c21
V
(0)
2 r2

� 0:

Hence, they require

p
(1)�
01 � p(1)�11 �

�
A
(1)
+ �

(1)
1 =r

�
=
�
�
(2)
1 + �1�

(2)
2

�
:

Moreover, since the equilibrium choices at t = 1 are not unique and thus
�
p
(1)�
01 ; p

(1)�
11

�
is

free within a unit square, there exist more equilibriums with Player 1�s strictly negative

advertisement at t = 1 if �
A
(1)
+ �

(1)
1 =r

�
=
�
�
(2)
1 + �1�

(2)
2

�
is smaller. Thus we have the conclusions.

We close this section by providing the simple examples as follows.
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Example 3.8 Consider the special case �(2)1 = �
(2)
2 = 1 and �(1)1 = �

(1)
2 = �. If � = 0, only

the �nal market shares matter. Suppose there is no discount, i.e., r = 1, all the marginal

costs are equal to c, and �1 = �2 = �.

By Corollary 3.2, neither of the players will adopt negative advertisement. The equilib-

rium choices at t = 1 satisfy p(1)�01 + p
(1)�
02 = 1, p(1)�20 = 0, and p(1)�10 = 0.

At t = 0, by Proposition 3.4, the necessary and su¢ cient condition for Player 1 to adopt

strict negative advertisement is

�
1� p(0)�22

�
V
(0)
2 > p

(0)�
01 V

(0)
0

and p(1)�01 � p(1)�11 � �= (1 + �) :

Moreover, condition (13) in Proposition 3.4 is also p(1)�01 � p(1)�11 � �= (1 + �), which drives

p
(0)�
01 down to 0. Therefore, in this case, Player 1 adopts strict negative advertisement if

and only if p(0)�22 < 1 and p(1)�01 � p(1)�11 � �= (1 + �). Similarly, Player 2 adopts negative

advertisement if and only if p(0)�11 < 1 and p(1)�02 � p(1)�22 � �= (1 + �). The following �gure
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shows the partitions of equilibrium choices at t = 1.

With the increase of p(1)�11 + �= (1 + �) and p(1)�22 + �= (1 + �), the region for both Player 1

and Player 2�s strictly negative advertisement shrinks and then the region for both positive

advertisement appears. Moreover, the increase of � will increase the regions of strictly

negative advertisement.

In order to illustrate the e¤ect of initial market shares, we give up the equal marginal

costs assumption and provide the following example.

Example 3.9 Consider the special case �(2)1 = �
(2)
2 = 1 and �(1)1 = �

(1)
2 = 0. Suppose there

is no discount, i.e., r = 1, and �1 = �2 = �. All the marginal costs are equal to c except

that c21 = c12 = c01 = c02 = (1� ) c, where  > 0.

Similar to Example 3.8, neither of the players will adopt negative advertisement. The

equilibrium choices at t = 1 satisfy p(1)�01 + p
(1)�
02 = 1, p(1)�20 = 0, and p(1)�10 = 0. To focus more
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on e¤ects of the initial market shares, we consider the symmetric equilibrium, i.e.,

p
(1)�
01 = p

(1)�
02 , and p

(1)�
11 = p

(1)�
22 < p

(1)�
01 .

Denote

�p , p(1)�01 � p(1)�11 = p
(1)�
02 � p(1)�22 .

At t = 0, by Proposition 3.4, the necessary and su¢ cient condition for Player 1 to adopt

strictly negative advertisement is

�
1� p(0)�22

�
V
(0)
2 > p

(0)�
01 V

(0)
0

and p(1)�01 � p(1)�11 � c=
�
r2 (1 + �)V

(0)
2

�
:

It is noticed that condition (13) will drive p(0)�01 down to 0. Similarly, Player 2 adopts strictly

negative advertisement if and only if

�
1� p(0)�11

�
V
(0)
1 > p

(0)�
02 V

(0)
0

and p(1)�02 � p(1)�22 � c=
�
r2 (1 + �)V

(0)
1

�
:

Therefore, we have the following partitions on initial market shares, where we make

condition (11) strict.

For some p(0)�01 , p
(1)�
02 , p

(0)�
22 , and p

(0)�
11 Player 1 adopts strictly negative advertisement if

and only if

V
(0)
2 > max

n
p
(0)�
01 V

(0)
0 =

�
1� p(0)�22

�
; c=

�
�pr2 (1 + �)

�o
;

Player 2 adopts strictly negative advertisement if and only if

V
(0)
1 > max

n
p
(0)�
02 V

(0)
0 =

�
1� p(0)�11

�
; c=

�
�pr2 (1 + �)

�o
:
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The following �gure shows the partition of initial market shares.

The decrease of V (0)0 , given V (0)1 increases the region of negative advertisement. Fixed V (0)0 ,

smaller V (0)1 and larger V (0)2 make negative advertisement more possible.

4 Convex Cost Functions

We consider strictly convex cost functions.

The Bellman equations for player 1 are

JT

�
V
(T )
1 ; V

(T )
2

�
= �

(T )
1 V

(T )
1 � �1�

(T )
2 V

(T )
2 ; (16)
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Jt

�
V
(t)
1 ; V

(t)
2

�
= maxfp(t)01 ;p

(t)
11 ;p

(t)
21 ;p

(t)
20 ;p

(t)
001g
f�(t)1 V

(t)
1 � �1�

(t)
2 V

(t)
2

�
h
C01(p

(t)
01 ) + C21(p

(t)
21 ) + C20(p

(t)
20 ) + C11(p

(t)
11 ) + C001(p

(t)
001)
i

+rJt+1

�
V
(t+1)
1 ; V

(t+1)
2

�
g for 0 � t � T � 1,

(17)

where

V
(t+1)
1 = V

(t)
0 p

(t)
01 + V

(t)
1 p

(t)
11 + V

(t)
2 p

(t)
21 ; (18)

V
(t+1)
2 = V

(t)
0 p

(t)�
02 + V

(t)
1 p

(t)�
12 + V

(t)
2 p

(t)�
22 ; (19)

and

1 = V
(t)
0 + V

(t)
1 + V

(t)
2 .

The feasibility constraints are

p
(t)
001 + p

(t)�
002 + p

(t)
01 + p

(t)�
02 = 1; (20)

p
(t)�
10 + p

(t)
11 + p

(t)�
12 = 1; (21)

and p(t)20 + p
(t)
21 + p

(t)�
22 = 1: (22)

4.1 Optimal Transitions

Lemma 4.1 With strictly convex cost functions, the subgame in the last period, i.e., t =

T � 1, has a pure strategy Nash Equilibrium.

Remarks: The equilibrium is not unique. since the feasibility constraints are the same

for both player 1 and player 2, there must be at least 3 degrees of freedom. Hence, the

equilibrium is not unique.

Proof. At t = T � 1, given V (T�1)1 ; V
(T�1)
2 , we take play 1 for example and player 1�s
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objective function

�
(T�1)
1 V

(T�1)
1 � �1�

(T�1)
2 V

(T�1)
2

�
h
C01(p

(T�1)
01 ) + C21(p

(T�1)
21 ) + C20(p

(T�1)
20 ) + C11(p

(T�1)
11 ) + C001(p

(T�1)
001 )

i
+rJT

�
V
(T )
1 ; V

(T )
2

�
is concave in

n
p
(T�1)
01 ; p

(T�1)
11 ; p

(T�1)
21 ; p

(T�1)
20 ; p

(T�1)
001

o
, since JT

�
V
(T )
1 ; V

(T )
2

�
is linear in V (T )1

and V (T )2 , which are also linear in
n
p
(T�1)
01 ; p

(T�1)
11 ; p

(T�1)
21 ; p

(T�1)
20 ; p

(T�1)
001

o
by (18) and (19).

Moreover, the strategy space is non-empty, compact and convex by (20) (21), (22) and

the non-negativity constraints. By Kakutani �xed point, there exists a pure strategy Nash

Equilibrium.

Lemma 4.2 For the subgame game starting at T � 2 (take p(T�1)�11 , p(T�1)�22 and p(T�1)�02 as

free equilibrium choices), there exists a pure strategy subgame perfect Nash Equilibrium if

marginal costs satisfy

min
n
C 0001(p

(T�2)
01 ); C 0021(p

(T�2)
21 ); C 0011(p

(T�2)
11 )

o
� rJT�1;V1V1 ;

where

JT�1;V1V1 =

�
r�
(T )
1

�2
+r2�

(T )
1 �

(T )
2 C00001

�
p
(T�1)�
001

�
=C00002

�
p
(T�1)�
002

�
C0001

�
p
(T�1)�
01

�
+C00001

�
p
(T�1)�
001

� �
�1

�
r�
(T )
2

�2
C0012

�
p
(T�1)�
12

�
+C0020

�
p
(T�1)�
10

� :

Remarks:

1) To have a simple view, let the cost functions be quadratic, i.e., C (p) = cp2ij=2 with

equal marginal cost rate c, r = 1, and �(T )1 = �
(T )
1 = 1. Then this condition is c2 �

(1� �1=2).

2) If �1 is su¢ ciently large such that JT�1;V1V1 is negative, the condition hold.

Proof. Denote Player 1�s value function as J and Player 2�s value function as H.

Without loss of generality, take Player 1 for example. JT
�
V
(T )
1 ; V

(T )
2

�
is linear in both

V
(T )
1 and V (T )2 . By (18) and (19), which are linear in

n
p
(t)
01 ; p

(t)
11 ; p

(t)
21 ; p

(t)
20 ; p

(t)
001

o
, JT

�
V
(T )
1 ; V

(T )
2

�
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must also be linear in
n
p
(T�1)
01 ; p

(T�1)
11 ; p

(T�1)
21 ; p

(T�1)
20 ; p

(T�1)
001

o
. We will show Player 1�s objec-

tive at t = T � 2 is concave in the
n
p
(T�2)
01 ; p

(T�2)
11 ; p

(T�2)
21 ; p

(T�2)
20 ; p

(T�2)
001

o
,

OBJ
(T�2)
1

= �
(T�2)
1 V

(T�2)
1 � �1�

(T�2)
2 V

(T�2)
2

�
h
C01(p

(T�2)
01 ) + C21(p

(T�2)
21 ) + C20(p

(T�2)
20 ) + C11(p

(T�2)
11 ) + C001(p

(T�2)
001 )

i
+rJT�1(p

(T�2)
01 + V

(T�2)
1

�
p
(T�2)
11 � p(T�2)01

�
+ V

(T�2)
2

�
p
(T�2)
21 � p(T�2)01

�
;

p
(T�2)�
02 + V

(T�2)
1

�
p
(T�2)�
12 � p(T�2)�02

�
+ V

(T�2)
2

�
p
(T�2)�
22 � p(T�2)�02

�
):

Suppose the �rst order conditions are valid. Let �(t)0 , �
(t)
1 , and �

(t)
2 be the Lagrangian

multipliers on

p
(t)
001 + p

(t)�
002 + p

(t)
01 + p

(t)�
02 = 1;

p
(t)�
10 + p

(t)
11 + p

(t)�
12 = 1;

and p(t)20 + p
(t)
21 + p

(t)�
22 = 1;

respectively. We consider the interior solution. First order conditions are as follows.

p
(t)
01 : �C 001

�
p
(t)�
01

�
+ rJt+1;V1V

(t)
0 � �(t)0 = 0; (23)

p
(t)
11 : �C 011

�
p
(t)�
11

�
+ rJt+1;V1V

(t)
1 � �(t)1 = 0; (24)

p
(t)
21 : �C 021

�
p
(t)�
21

�
+ rJt+1;V1V

(t)
2 � �(t)2 = 0; (25)

p
(t)
20 : �C 020

�
p
(t)�
20

�
� �(t)2 = 0; (26)

p
(t)
001 : �C 0001

�
p
(t)�
001

�
� �(t)0 = 0: (27)

Envelope theorem indicates

Jt;V1 = �
(t)
1 + rJt+1;V1 �

�
p
(t)�
11 � p(t)�01

�
+ rJt+1;V2 �

�
p
(t)�
12 � p(t)�02

�
; (28)

Jt;V2 = ��1�
(t)
2 + rJt+1;V1 �

�
p
(t)�
21 � p(t)�01

�
+ rJt+1;V2 �

�
p
(t)�
22 � p(t)�02

�
; (29)
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where

JT+1;V1 = JT+1;V2 = 0.

Let t = T � 1, �rst order conditions are valid. Envelope theorem indicates

JT�1;V1 = �
(T�1)
1 + r�

(T )
1 �

�
p
(T�1)�
11 � p(T�1)�01

�
+ r

�
��1�

(T )
2

�
�
�
p
(T�1)�
12 � p(T�1)�02

�
and

JT�1;V2 = ��1�
(T�1)
2 + r�

(T )
1 �

�
p
(T�1)�
21 � p(T�1)�01

�
+ r

�
��1�

(T )
2

�
�
�
p
(T�1)�
22 � p(T�1)�02

�
:

Since the equilibriums are not uniuqe and there are three degrees of freedom, we can regard

p
(T�1)�
11 , p(T�1)�22 and p(T�1)�02 as freely chosen, which are independent of the state variable

V
(T�1)
0 , V (T�1)1 , and V (T�1)2 .

By the �rst order conditions and envelope theorem,

C 021

�
p
(T�1)�
21

�
� C 020

�
p
(T�1)�
20

�
= r�

(T )
1 V

(T�1)
2 ;

C 001

�
p
(T�1)�
01

�
� C 0001

�
p
(T�1)�
001

�
= r�

(T )
1 V

(T�1)
0 :

Hence,

C 0021

�
p
(T�1)�
21

� @p(T�1)�21

@V
(T�1)
1

� C 0020
�
p
(T�1)�
20

� @p(T�1)�20

@V
(T�1)
1

= 0;

C 0021

�
p
(T�1)�
21

� @p(T�1)�21

@V
(T�1)
2

� C 0020
�
p
(T�1)�
20

� @p(T�1)�20

@V
(T�1)
2

= r�
(T )
1 ;

and

C 0001

�
p
(T�1)�
01

� @p(T�1)�01

@V
(T�1)
1(or 2)

� C 00001
�
p
(T�1)�
001

� @p(T�1)�001

@V
(T�1)
1(or 2)

= �r�(T )1 :
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Moreover, since

p
(T�1)�
21 + p

(T�1)�
20 = 1� p(T�1)�22 ;

p
(T�1)�
01 + p

(T�1)�
001 = 1� p(T�1)�02 � p(T�1)�002 ;

we have
@p

(T�1)�
21

@V
(T�1)
1(or 2)

+
@p

(T�1)�
20

@V
(T�1)
1(or 2)

= 0;

and
@p

(T�1)�
01

@V
(T�1)
1(or 2)

+
@p

(T�1)�
001

@V
(T�1)
1(or 2)

= �@p
(T�1)�
002

@V
(T�1)
1(or 2)

:

Similarly, for Player 2, we have

C 0012

�
p
(T�1)�
12

� @p(T�1)�12

@V
(T�1)
2

� C 0010
�
p
(T�1)�
10

� @p(T�1)�10

@V
(T�1)
2

= 0;

C 0012

�
p
(T�1)�
12

� @p(T�1)�12

@V
(T�1)
1

� C 0010
�
p
(T�1)�
10

� @p(T�1)�10

@V
(T�1)
1

= r�
(T )
2 ;

�C 00002
�
p
(T�1)�
002

� @p(T�1)�002

@V
(T�1)
2(or 1)

= �r�(T )2 ;

and
@p

(T�1)�
12

@V
(T�1)
2(or 1)

+
@p

(T�1)�
10

@V
(T�1)
2(or 1)

= 0;

@p
(T�1)�
002

@V
(T�1)
2(or 1)

= �@p
(T�1)�
01

@V
(T�1)
2(or 1)

� @p
(T�1)�
001

@V
(T�1)
2(or 1)

:

Since the cost functions are strictly convex, we can get

@p
(T�1)�
21

@V
(T�1)
1

=
@p

(T�1)�
20

@V
(T�1)
1

=
@p

(T�1)�
12

@V
(T�1)
2

=
@p

(T�1)�
10

@V
(T�1)
2

= 0;
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@p
(T�1)�
21

@V
(T�1)
2

= �@p
(T�1)�
20

@V
(T�1)
2

=
r�
(T )
1

C 0021

�
p
(T�1)�
21

�
+ C 0020

�
p
(T�1)�
20

� ;
@p

(T�1)�
12

@V
(T�1)
1

= �@p
(T�1)�
10

@V
(T�1)
1

=
r�
(T )
2

C 0012

�
p
(T�1)�
12

�
+ C 0010

�
p
(T�1)�
10

� ;
@p

(T�1)�
002

@V
(T�1)
1(or 2)

=
r�
(T )
2

C 00002

�
p
(T�1)�
002

� ;

@p
(T�1)�
01

@V
(T�1)
1(or 2)

=
�r�(T )1 +

�
�@p(T�1)�002 =@V

(T�1)
1(or 2)

�
C 00001

�
p
(T�1)�
001

�
C 0001

�
p
(T�1)�
01

�
+ C 00001

�
p
(T�1)�
001

�
=

�r�(T )1 � r�(T )2 C 00001

�
p
(T�1)�
001

�
=C 00002

�
p
(T�1)�
002

�
C 0001

�
p
(T�1)�
01

�
+ C 00001

�
p
(T�1)�
001

� ;

and

@p
(T�1)�
001

@V
(T�1)
1(or 2)

=
r�
(T )
1 �

�
@p

(T�1)�
002 =@V

(T�1)
1(or 2)

�
C 0001

�
p
(T�1)�
01

�
�
C 0001

�
p
(T�1)�
01

�
+ C 00001

�
p
(T�1)�
001

��
=

r�
(T )
1 � r�(T )2 C 0001

�
p
(T�1)�
01

�
=C 00002

�
p
(T�1)�
002

�
�
C 0001

�
p
(T�1)�
01

�
+ C 00001

�
p
(T�1)�
001

�� :

Hence, the Hessian for Player 1 and Player 2�s value functions are

JT�1;V1V1 =

�
r�
(T )
1

�2
+r2�

(T )
1 �

(T )
2 C00001

�
p
(T�1)�
001

�
=C00002

�
p
(T�1)�
002

�
C0001

�
p
(T�1)�
01

�
+C00001

�
p
(T�1)�
001

�
�

�1

�
r�
(T )
2

�2
C0012

�
p
(T�1)�
12

�
+C0010

�
p
(T�1)�
10

� ;

JT�1;V1V2 =

�
r�
(T )
1

�2
+r2�

(T )
1 �

(T )
2 C00001

�
p
(T�1)�
001

�
=C00002

�
p
(T�1)�
002

�
C0001

�
p
(T�1)�
01

�
+C00001

�
p
(T�1)�
001

�

JT�1;V2V1 =

�
r�
(T )
1

�2
+r2�

(T )
1 �

(T )
2 C00001

�
p
(T�1)�
001

�
=C00002

�
p
(T�1)�
002

�
C0001

�
p
(T�1)�
01

�
+C00001

�
p
(T�1)�
001

�
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JT�1;V2V2 =

�
r�
(T )
1

�2
+r2�

(T )
1 �

(T )
2 C00001

�
p
(T�1)�
001

�
=C00002

�
p
(T�1)�
002

�
C0001

�
p
(T�1)�
01

�
+C00001

�
p
(T�1)�
001

�
+

�
r�
(T )
1

�2
C0021

�
p
(T�1)�
21

�
+C0020

�
p
(T�1)�
20

� ;

HT�1;V2V2 = ��2

 �
r�
(T )
1

�2
C0021

�
p
(T�1)�
21

�
+C0020

�
p
(T�1)�
20

� +
�
r�
(T )
1

�2
+r2�

(T )
1 �

(T )
2 C00001

�
p
(T�1)�
001

�
=C00002

�
p
(T�1)�
002

�
C0001

�
p
(T�1)�
01

�
+C00001

�
p
(T�1)�
001

�
!
;

HT�1;V2V1 = ��2
�
r�
(T )
1

�2
+r2�

(T )
1 �

(T )
2 C00001

�
p
(T�1)�
001

�
=C00002

�
p
(T�1)�
002

�
C0001

�
p
(T�1)�
01

�
+C00001

�
p
(T�1)�
001

� ;

HT�1;V1V2 = ��2
�
r�
(T )
1

�2
+r2�

(T )
1 �

(T )
2 C00001

�
p
(T�1)�
001

�
=C00002

�
p
(T�1)�
002

�
C0001

�
p
(T�1)�
01

�
+C00001

�
p
(T�1)�
001

� ;

and

HT�1;V1V1 =

�
r�
(T )
2

�2
C0012

�
p
(T�1)�
12

�
+C0010

�
p
(T�1)�
10

� � �2
�
r�
(T )
1

�2
+r2�

(T )
1 �

(T )
2 C00001

�
p
(T�1)�
001

�
=C00002

�
p
(T�1)�
002

�
C0001

�
p
(T�1)�
01

�
+C00001

�
p
(T�1)�
001

� :

Then, since p(T�2)20 , p(T�2)001 and
n
p
(T�2)
01 ; p

(T�2)
11 ; p

(T�2)
21

o
are separable, we have

@2OBJ
(T�2)
1

@
�
p
(T�2)
20

�2 = �C 0020(p(T�2)20 );

@2OBJ
(T�2)
1

@
�
p
(T�2)
001

�2 = �C 00001(p(T�2)001 );

@2OBJ
(T�2)
1

@
�
p
(T�2)
01

�2 = �C 0001(p
(T�2)
01 ) + rJT�1;V1V1 �

�
V
(T�2)
0

�2
;

@2OBJ
(T�2)
1

@p
(T�2)
01 p

(T�2)
21

= rJT�1;V1V1V
(T�2)
0 V

(T�2)
2 ;

@2OBJ
(T�2)
1

@p
(T�2)
01 p

(T�2)
11

= rJT�1;V1V1V
(T�2)
0 V

(T�2)
1 ;
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@2OBJ
(T�2)
1

@
�
p
(T�2)
21

�2 = �C 0021(p
(T�2)
21 ) + rJT�1;V1V1 �

�
V
(T�2)
2

�2
;

@2OBJ
(T�2)
1

@p
(T�2)
21 p

(T�2)
01

= rJT�1;V1V1V
(T�2)
2 V

(T�2)
0 ;

@2OBJ
(T�2)
1

@p
(T�2)
21 p

(T�2)
11

= rJT�1;V1V1V
(T�2)
2 V

(T�2)
1 ;

and

@2OBJ
(T�2)
1

@
�
p
(T�2)
11

�2 = �C 0011(p
(T�2)
11 ) + rJT�1;V1V1 �

�
V
(T�2)
1

�2
;

@2OBJ
(T�2)
1

@p
(T�2)
11 p

(T�2)
01

= rJT�1;V1V1V
(T�2)
1 V

(T�2)
0 ;

@2OBJ
(T�2)
1

@p
(T�2)
11 p

(T�2)
21

= rJT�1;V1V1V
(T�2)
1 V

(T�2)
2 :

Therefore, OBJ (T�2)1 is concave in
n
p
(T�2)
01 ; p

(T�2)
11 ; p

(T�2)
21 ; p

(T�2)
20 ; p

(T�2)
001

o
i¤

26666664

@2OBJ
(T�2)
1

@
�
p
(T�2)
01

�2 ; @2OBJ
(T�2)
1

@p
(T�2)
01 p

(T�2)
21

;
@2OBJ

(T�2)
1

@p
(T�2)
01 p

(T�2)
11

@2OBJ
(T�2)
1

@p
(T�2)
21 p

(T�2)
01

;
@2OBJ

(T�2)
1

@
�
p
(T�2)
21

�2 ; @2OBJ
(T�2)
1

@p
(T�2)
21 p

(T�2)
11

@2OBJ
(T�2)
1

@p
(T�2)
11 p

(T�2)
01

@2OBJ
(T�2)
1

@p
(T�2)
11 p

(T�2)
21

@2OBJ
(T�2)
1

@
�
p
(T�2)
11

�2

37777775
is negative semide�nite. The requirement is

rJT�1;V1V1 �
�
V
(T�2)
0

�2
� C 0001(p

(T�2)
01 );

rJT�1;V1V1 �
�
V
(T�2)
2

�2
� C 0021(p

(T�2)
21 );

rJT�1;V1V1 �
�
V
(T�2)
1

�2
� C 0011(p

(T�2)
11 );
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rJT�1;V1V1 � C 0001(p
(T�2)
01 )C 0021(p

(T�2)
21 )=

��
V
(T�2)
0

�2
C 0021(p

(T�2)
21 ) +

�
V
(T�2)
2

�2
C 0001(p

(T�2)
01 )

�
;

rJT�1;V1V1 � C 0001(p
(T�2)
01 )C 0011(p

(T�2)
11 )=

��
V
(T�2)
0

�2
C 0011(p

(T�2)
11 ) +

�
V
(T�2)
1

�2
C 0001(p

(T�2)
01 )

�
;

rJT�1;V1V1 � C 0011(p
(T�2)
01 )C 0021(p

(T�2)
21 )=

��
V
(T�2)
1

�2
C 0021(p

(T�2)
21 ) +

�
V
(T�2)
2

�2
C 0011(p

(T�2)
11 )

�
;

and

rJT�1;V1V1 �
C0001(p

(T�2)
01 )C0021(p

(T�2)
21 )C0011(p

(T�2)
01 )�

V
(T�2)
1

�2
C0001(p

(T�2)
01 )C0021(p

(T�2)
21 )+

�
V
(T�2)
2

�2
C0001(p

(T�2)
01 )C0011(p

(T�2)
11 )+

�
V
(T�2)
0

�2
C0021(p

(T�2)
21 )C0011(p

(T�2)
11 )

:

Then a su¢ cient condition is

rJT�1;V1V1 � min
n
C 0001(p

(T�2)
01 ); C 0021(p

(T�2)
21 ); C 0011(p

(T�2)
11 )

o
:

Similarly, Player 2�s objective is concave in
n
p
(T�2)
02 ; p

(T�2)
22 ; p

(T�2)
12 ; p

(T�2)
10 ; p

(T�2)
002

o
if

rHT�1;V2V2 � min
n
C 0002(p

(T�2)
02 ); C 0012(p

(T�2)
12 ); C 0022(p

(T�2)
22 )

o
;

which obviously holds since HT�1;V2V2 � 0.

Therefore, by Kakutani �xed point, there exists a pure strategy Nash Equilibrium at

t = T � 2 as well.

4.2 Two period case T = 2

At t = 1, by the �rst order conditions,

C 021

�
p
(1)�
21

�
� C 020

�
p
(1)�
20

�
= r�

(2)
1 V

(1)
2

C 001

�
p
(1)�
01

�
� C 0001

�
p
(1)�
001

�
= r�

(2)
1 V

(1)
0 :
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Assume quadratic cost function, i.e., C (p) = cijp2ij=2. With quadratic cost functions, �rst

order conditions lead to

p
(1)�
11 = 1� p(1)�12 � p(1)�10 ;

p
(1)�
01 = 1

c01+c001

�
c001

�
1� p(1)�002 � p

(1)�
02

�
+ r�

(2)
1 V

(1)
0

�
;

p
(1)�
001 =

1
c01+c001

�
c01

�
1� p(1)�002 � p

(1)�
02

�
� r�(2)1 V

(1)
0

�
;

p
(1)�
21 = 1

c20+c21

�
c20

�
1� p(1)�22

�
+ r�

(2)
1 V

(1)
2

�
;

p
(1)�
20 = 1

c20+c21

�
c21

�
1� p(1)�22

�
� r�(2)1 V

(1)
2

�
:

The following assumptions ensure that the �rst order conditions are valid (the interior

solutions).

Assumption 3A c21 � r�(2)1 V
(1)
2

If c21 < r�
(2)
1 V

(1)
2 , p(1)�20 = 0. This indicates no strictly negative advertisement in the last

period.

Assumption 3B c01 � r�(2)1 V
(1)
0

If c01 < r�
(2)
1 V

(1)
0 , p(1)001 = 0. However, p

(1)�
01 can still be the interior solution.

We have the following proposition as the necessary and su¢ cient condition for no negative

advertisement in the last period.

Proposition 4.3 With quadratic cost functions, Assumption 3A and 3B, Player 1 will not

play strictly negative advertisement in the last period if and only if

� < 0 or

V
(1)
2 �

c01c21
�
1�p(1)�22

�
�
p
�

2c01�
(2)
1 r

or V (1)2 �
c01c21

�
1�p(1)�22

�
+
p
�

2c01�
(2)
1 r

for � � 0;

where

� = c201c
2
21

�
1� p(1)�22

�2
� 4c01 (c20 + c21) �1rV (1)0

�
c001p

(1)�
001 + r�

(2)
1 V

(1)
0

�
:

Moreover, �xed V (1)0 , smaller Player 1�s market share is, more negative the advertisement
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is i¤ Player 2 is not too strong, i.e.,

V
(1)
2 � c21

�
1� p(1)�22

�
= (2�1r) :

Proof. The condition is just a direct result from the equilibrium solution,

V
(1)
0

�
c001p

(1)�
001 + r�

(2)
1 V

(1)
0

�
=c01

�V (1)2

�
c21

�
1� p(1)�22

�
� r�(2)1 V

(1)
2

�
= (c20 + c21) > 0:

To understand the proposition 4.3, The following corollary provides a su¢ cient condition

of no negative advertisement.

Corollary 4.4 With quadratic cost functions and Assumption 3B, Player 1 will not play

strictly negative advertisement in the last period if

V
(1)
0 �

s
c01c221=

�
4 (c20 + c21) r2

�
�
(2)
1

�2�
;

or

V
(1)
2 � c21=

�
r�
(2)
1

�
:

Remarks: To have a simple view, let c01 = c21 = c20 = c, r = 1 and �
(2)
1 = 1. Then the

su¢ cient conditions above are

V
(1)
0 � c

p
1=8 or V (1)2 � c.

Proof. From the proof of proposition 4.3, with quadratic cost functions, Assumption 3A
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and 3B the positive advertisement strategy index is

d
(1)
1 = p

(1)�
01 V

(1)
0 � p(1)�20 V

(1)
2

= V
(1)
0

�
c001p

(1)�
001 + r�

(2)
1 V

(1)
0

�
=c01

�V (1)2

�
c21

�
1� p(1)�22

�
� r�(2)1 V

(1)
2

�
= (c20 + c21)

�
�
V
(1)
0

�2
r�
(2)
1 =c01 � V

(1)
2

�
c21 � r�(2)1 V

(1)
2

�
= (c20 + c21) :

A su¢ cient condition of no strictly negative advertisement is

�
V
(1)
0

�2
r�
(2)
1 =c01 � V

(1)
2

�
c21 � r�(2)1 V

(1)
2

�
= (c20 + c21) :

The maximal value of the right hand side is achieved when

V
(1)
2 = c21=

�
2r�

(2)
1

�
;

and thus the maximal value is

c221=
�
4 (c20 + c21) r�

(2)
1

�
.

Therefore, this requires

�
V
(1)
0

�2
� c01c221=

�
4 (c20 + c21) r

2
�
�
(2)
1

�2�
:

Another su¢ cient condition of no negative advertisement is

0 � V (1)2

�
c21 � r�(2)1 V

(1)
2

�
= (c20 + c21) :

This requires

V
(1)
2 � 0 or V (1)2 � c21=

�
r�
(2)
1

�
:
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These are contradicted with the feasibility constraint and Assumption 3A if V (1)2 > c21=
�
r�
(2)
1

�
.

However, we know if c21 < r�
(2)
1 V

(1)
2 , p(1)�20 = 0, there is no strictly negative advertisement.

Therefore, V (1)2 � c21=
�
r�
(2)
1

�
is valid for no strictly negative advertisement.

The following proposition consider t = 0. By the �rst order conditions and envelope

theorem, we have

C 020

�
p
(0)�
20

�
� C 021

�
p
(0)�
21

�
= r2A(1)V

(0)
2 ;

C 0001

�
p
(0)�
001

�
� C 001

�
p
(0)�
01

�
= r2A(1)V

(0)
0 ;

where A(1) is de�ned as (similar in the linear cost functions),

A(1) = �
(2)
1 p

(1)�
01 � �1�

(2)
2 p

(1)�
02 � �(2)1 p

(1)�
11 + �1�

(2)
2 p

(1)�
12 � �

(1)
1

r
:

Assume quadratic cost functions, we have

p
(0)�
20 =

1

c20 + c21

�
c21

�
1� p(0)�22

�
+ r2A(1)V

(0)
2

�
;

p
(0)�
21 =

1

c20 + c21

�
c20

�
1� p(0)�22

�
� r2A(1)V (0)2

�
;

p
(0)�
001 =

1

c001 + c01

�
c01

�
1� p(0)�002 � p

(0)�
02

�
+ r2A(1)V

(0)
0

�
;

p
(0)�
01 =

1

c001 + c01

�
c001

�
1� p(0)�002 � p

(0)�
02

�
� r2A(1)V (0)0

�
:

In the following discussion, we assume conditions in Lemma 4.2 hold and thus �rst order

conditions at t = 0 are valid. With quadratic cost functions, the conditions in Lemma 4.2

are

min fc01; c21; c11g � rJT�1;V1V1 ;

where

JT�1;V1V1 =

�
r�
(T )
1

�2
+r2�

(T )
1 �

(T )
2 c001=c002

c01+c001
�

�1

�
r�
(T )
2

�2
c12+c10

:

At t = 0, the following assumptions ensure that the �rst order conditions are valid (the
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interior solutions).

Assumption 4A c21 � �r2A(1)V (0)2 and c20 � r2A(1)V (0)2 :

If c21 < �r2A(1)V (0)2 , p(0)�20 = 0. This indicates no strictly negative advertisement in the

�rst period.

Assumption 4B c01 � �r2A(1)V (0)0 and c001 � r2A(1)V (0)0 :

If c001 < r2A(1)V
(0)
0 , p(0)�01 = 0. There is negative advertisement (but may not be strict)

in the �rst period.

Remarks: To have a simple view, let c01 = c21 = c20 = c001 = c, r = 1, �
(1)
1 = 0, and

�
(2)
1 = �

(2)
1 = 1, if

c < V
(0)
0

�
p
(1)�
01 � p(1)�11 + �1p

(1)�
12 � �1p

(1)�
02

�
;

Player 1 devotes to deterring the opponent, i.e., p(0)�01 = p
(0)�
21 = 0 and p(0)�20 = 1�p(0)�22 . There

is strictly negative advertisement in the �rst period if p(0)�22 < 1.

Proposition 4.5 With quadratic cost functions, Assumption 4A and 4B, Player 1 will play

strictly negative advertisement in the �rst period if and only if

�
1

c001 + c01

�
V
(0)
0

�2
+

1

c20 + c21

�
V
(0)
2

�2�2
A(1)

>
c001

�
1� p(0)�002 � p

(0)�
02

�
c001 + c01

V
(0)
0 �

c21

�
1� p(0)�22

�
c20 + c21

V
(0)
2 :

Moreover, �xed V (0)0 , if A(1) � 0, smaller Player 1�s market share is, more negative the

advertisement is. However, if A(1) < 0, it requires that Player 2 is not too strong, i.e.,

V
(0)
2 � �c21

�
1� p(0)�22

�
=
�
2r2A(1)

�
:

Remarks: This condition is similar to conditions in Proposition 3.4, which also indicates

a larger A(1) will trigger a strictly negative advertisement in the �rst period.
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Proof. By the de�nition of positive advertisement strategy index,

d
(0)
1 = p

(0)�
01 V

(0)
0 � p(0)�20 V

(0)
2

=
1

c001 + c01

�
c001

�
1� p(0)�002 � p

(0)�
02

�
� r2A(1)V (0)0

�
V
(0)
0

� 1

c20 + c21

�
c21

�
1� p(0)�22

�
+ r2A(1)V

(0)
2

�
V
(0)
2

= �
�

1

c001 + c01

�
V
(0)
0

�2
+

1

c20 + c21

�
V
(0)
2

�2�2
r2A(1)

+
c001

�
1� p(0)�002 � p

(0)�
02

�
c001 + c01

V
(0)
0 �

c21

�
1� p(0)�22

�
c20 + c21

V
(0)
2 :

Therefore, d(0)1 < 0 if and only if

c001

�
1� p(0)�002 � p

(0)�
02

�
c001 + c01

V
(0)
0 �

c21

�
1� p(0)�22

�
c20 + c21

V
(0)
2

<

�
1

c001 + c01

�
V
(0)
0

�2
+

1

c20 + c21

�
V
(0)
2

�2�2
r2A(1):

If A(1) � 0, then �xed V (0)0 , more behind Player 1 is lagging, more negative the adver-

tisement is i¤ Player 2 is strong enough, i.e.,

V
(0)
2 � �c21

�
1� p(0)�22

�
=
�
2r2A(1)

�
;

which is consistent with the result A(1) = 0. This obviously holds since V (0)2 is non-negative.

Similarly, if A(1) < 0, the condition is

V
(0)
2 � �c21

�
1� p(0)�22

�
=
�
2r2A(1)

�
:

To understand the Proposition, we provide su¢ cient condition as follows.

Corollary 4.6 With quadratic cost functions, Assumption 4A and 4B, Player 1 will play
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strictly negative advertisement in the �rst period if

V
(0)
2 >

p
(c20 + c21) = (c001 + c01)c001=

�
2r2A(1)

�
if A(1) > 0;

min
n
0;
�
c21

�
1� p(0)�22

�
+ r2A(1)

�o
> (c20 + c21)

�
c001 � r2A(1)

�
= (c001 + c01) if A(1) � 0:

Proof. With quadratic cost functions, Assumption 4A and 4B, from the proof of Proposition

4.5, we know that

d
(0)
1 =

1

c001 + c01

�
c001

�
1� p(0)�002 � p

(0)�
02

�
� r2A(1)V (0)0

�
V
(0)
0

� 1
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�
c21

�
1� p(0)�22

�
+ r2A(1)V

(0)
2

�
V
(0)
2

� 1

c001 + c01

�
c001 � r2A(1)V (0)0

�
V
(0)
0

� 1

c20 + c21

�
c21

�
1� p(0)�22

�
+ r2A(1)V

(0)
2

�
V
(0)
2 :

Hence, a su¢ cient condition for the occurrence of negative advertisement is

1

c001 + c01

�
c001 � r2A(1)V (0)0

�
V
(0)
0

<
1

c20 + c21

�
c21

�
1� p(0)�22

�
+ r2A(1)V

(0)
2

�
V
(0)
2 :

If A(1) = 0, the condition is

c001 (c20 + c21)

c21 (c001 + c01)
V
(0)
0 <

�
1� p(0)�22

�
V
(0)
2 :

If A(1) > 0, the maximum value of left hand side is

c2001=
�
4 (c001 + c01) r

2A(1)
�
;
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which is achieved by

V
(0)
0 = c001=

�
2r2A(1)

�
:

Since right hand side is greater than

1

c20 + c21
r2A(1)

�
V
(0)
2

�2
;

a su¢ cient condition is

V
(0)
2 >

p
(c20 + c21) = (c001 + c01)c001=

�
2r2A(1)

�
If A(1) < 0, the maximum value of left hand side is

�
c001 � r2A(1)

�
= (c001 + c01) ;

which is achieved when V (0)0 = 1. The minimum value of right hand side is

min
n
0;
�
c21

�
1� p(0)�22

�
+ r2A(1)

�
= (c20 + c21)

o
:

Hence, a su¢ cient condition is

min
n
0;
�
c21

�
1� p(0)�22

�
+ r2A(1)

�o
> (c20 + c21)

�
c001 � r2A(1)

�
= (c001 + c01) :

This include the case whenA(1) = 0. Hence, we have the su¢ cient conditions in the corollary.
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5 Competition in Finitely Many Periods

In this section, we generalize the results in linear cost functions to arbitrarily �nite T � 2

periods.

The following Proposition generalizes Proposition 3.1.

Proposition 5.1 With Assumption 2A, or with Assumption 2B and there are more un-

committed customers than opponent�s customers who will become uncommitted, i.e.,

p
(T�1)�
20 V

(T�1)
2 � V (T�1)0

�
1� p(T�1)�002 � p(T�1)�02

�
,

Player 1 will not engage in strictly negative advertisement in the last period, i.e., d(T�1)1 � 0.

Proof. The proof is similar to the one in Proposition 3.1. We only give the revenue part of

the utility here,

T�1X
t=0

rt[�
(t)
1 V

(t)
1 � �1�

(t)
2 V

(t)
2 ]

+rT [�
(T )
1 p

(T�1)�
01 � �1�

(T )
2 p

(T�1)�
02 ]V

(T�1)
0

+rT [�
(T )
1 p

(T�1)�
21 � �1�

(T )
2 p

(T�1)�
22 ]V

(T�1)
2

+rT [�
(T )
1 p

(T�1)�
11 � �1�

(T )
2 p

(T�1)�
12 ]V

(T�1)
1 .

Suppose d(T�1)1 < 0, which means p(T�1)01 V
(T�1)
0 < p

(T�1)
20 V

(T�1)
2 .

By the similar argument in the proof of Proposition 3.1, we obtain the results.

Similar to Proposition 3.4, we identify situations in which Player 1 chooses a strictly

negative advertising strategy in any previous period t = 0; :::; T � 2.

Proposition 5.2 Player 1 will engage in strictly negative advertisement in the period of
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t = 0; :::; T � 2, when V (0)0 6= 0, and V (0)2 6= 0, i.e. d(0)1 � 0, if and only if

�
1� p(t)�22

�
V
(t)
2 > p

(t)�
01 V

(t)
0 (30)

and V (t)2 r2A(t+1) � c20 � c21; (31)

where

A(t+1) = �
(t+2)
1 p

(t+1)�
01 � �1�

(t+2)
2 p

(t+1)�
02 � �(t+2)1 p

(t+1)�
11 + �1�

(t+2)
2 p

(t+1)�
12 � �

(t+1)
1

r
:

A su¢ cient condition is p(t)�22 < 1, condition (30), and

V
(t)
0 r2A(t+1) � c001 � c01 (32)

Proof. The proof is similar with Proposition 3.4. We give the revenue part of the utility

function.

tX
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1 .

Suppose d(t)1 > 0, which means p(t)01V
(t)
0 > p

(t)
20V

(t)
2 . By the similar trick, we can prove the

results.

Similar to the two period case, we have the following results.

Corollary 5.3 There exist equilibrium choices at time t satisfying condition (30). More-
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over, with Assumption 2A or Assumption 2B, there may exist equilibrium choices at time

t+ 1 satisfying conditions (31) or (32) if

V
(t)
2 r2

�
�
(t+2)
1 + �1�

(t+2)
2 � �(t+1)1 =r

�
� c20 � c21

or

V
(t)
0 r2

�
�
(t+2)
1 + �1�

(t+2)
2 � �(t+1)1 =r

�
� c001 � c01;

respectively.

Corollary 5.4 Decreasing the (predetermined) relative market share of a player in period

t before the end of the game does not decrease the probability of the equilibrium strictly

negative advertisement at that period. Smaller the player�s market share is, conditions for

the player to use strictly negative advertising strategy in the that period are easier to satisfy,

i.e.,

V
(t)
1 < 1�

�
1 + p

(t)�
01 =

�
1� p(t)�22

��
V
(t)
0

and V (t)1 � 1� V (t)0 � (c20 � c21) =
�
r2A(t+1)

�
:

Corollary 5.5 If Player 1 utility depends on the opponents market share, i.e., if �1�
(t+2)
2 >

0, then engaging in strictly negative advertisement is more likely if it is anticipated that the

opponent will in the next round focus more on attracting customers from the player than on

attracting non-committed customers, i.e., if p(t+1)�12 > p
(t+1)�
02 .

Example 5.6 Consider the special case when only �nal market share matters, i.e., �(T )1 6= 0,

�
(T )
2 6= 0, and �(t)1 = �

(t)
2 = 0 for t = 0; :::; T � 1. All the marginal costs are equal to c > 0

except that c21 = c12 = c01 = c02 = (1� ) c, where  > 0.

For t = T � 1, there is no strictly negative advertisement.

For t = T � 2, it similar to our two periods case, and

A(T�1) =
�
�
(T )
1 + �1�

(T )
2

��
p
(T�1)�
01 � p(T�1)�11

�
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the conditions are similar in Proposition 3.4. It is possible to have negative advertisement.

However, for t � T � 3, the necessary and su¢ cient condition is reduced to

V
(t)
0 p

(t)
01 < V

(t)
2

�
1� p(t)�22

�
and c20 � c21.

Since c21 = (1� ) c < c20, there is no strictly negative advertisement in the period t =

0; :::; T � 3.

6 Market Share Related Cost Functions

Here we allow more generalized cost functions, which involve both transition probabilities

and market shares. To maintain the simplicity, we assume that cost functions are homoge-

nous degree one in the market share. The utility function of player 1 is rewritten as
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This utility function can be further expressed as
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1 + C01(p

(t)
01 )� C11(p

(t)
11 ) + C001(p

(t)
001) 0 � t � T � 1

�
(t)
1 t = T

(34)

and

e�(t)2 =

8<: �
(t)
2 + 1

�1
C21(p

(t)
21 ) +

1
�1
C20(p

(t)
20 )� 1

�1
C01(p

(t)
01 )� 1

�1
C001(p

(t)
001) 0 � t � T � 1

�
(t)
2 t = T

.

(35)
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e�(t)1 and e�(t)2 can be regarded as the adjusted weights that Player 1 puts on its own and

its opponent�s market share, respectively. Moreover, in the last period t = T , these adjusted

weights are the same with ones in the benchmark case.

Since the utility functions are continuous as well, we can prove existence of the equilib-

rium as well.

Theorem 6.1 The game with market share related cost functions has a mixed strategy Nash

equilibrium.

Consider linear C (�) function, we can prove the following two propositions with similar

tricks.

Proposition 6.2 In equilibrium of the �nite T period game with market share related cost

functions, with Assumption 2A, or with Assumption 2B and there are more uncommitted

customers than opponent�s customers who will become uncommitted, i.e.,

p
(T�1)�
20 V

(T�1)
2 � V (T�1)0

�
1� p(T�1)�002 � p(T�1)�02

�
,

Player 1 will not engage in strictly negative advertisement in the last period, i.e., d(T�1)1 � 0.

Proof. Proof is by contradiction analogous to the proof of Proposition 5.1.

Compared to the proof of Proposition 5.1, the only di¤erences are the canceling of the

market share V (T�1)2 or V (T�1)0 . Since 0 � V (T�1)2 ; V
(T�1)
0 � 1, it is obvious that conditions

in the proof of Proposition 5.1 are much easier to satisfy.

Proposition 6.3 In equilibrium of the �nite T period game with market share related

cost functions, Player 1 will engage in strictly negative advertisement in the period of

t = 0; :::; T � 2 when V (t)0 6= 0 and V (t)2 6= 0, i.e. d(t)1 < 0, if and only if

�
1� p(t)�22

�
V
(t)
2 > p

(t)�
01 V

(t)
0 (36)

and r2 eA(t+1) � c20 � c21; (37)
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where

eA(t+1) = e�(t+2)1 p
(t+1)�
01 � �1e�(t+2)2 p

(t+1)�
02 � e�(t+2)1 p

(t+1)�
11 + �1

e�(t+2)2 p
(t+1)�
12 �

e�(t+1)1

r
:

A su¢ cient condition is p(t)�22 < 1, condition (36), and

r2 eA(t+1) � c001 � c01: (38)

Proof. Proof is by contradiction similar to the one in Proposition 5.2.

Similar with Proposition 6.2, V (t)0 and V (t)2 are canceled in conditions (38) and (37),

respectively, due to the market share related cost functions. Since e�(t+2)1 and e�(t+2)2 are the

same with �(t+2)1 and �(t+2)2 at time t = T � 2, compared to Proposition 5.2, market related

cost functions facilitates the use of negative advertising strategy if

e�(t+2)1 p
(t+1)�
01 � �1e�(t+2)2 p

(t+1)�
02 � e�(t+2)1 p

(t+1)�
11 + �1

e�(t+2)2 p
(t+1)�
12 �

e�(t+1)1

�
� 0.

Example 6.4 Similar with Example 5.6, we consider the special case where only the �nal

market shares matter, i.e., �(T )1 6= 0, �(T )2 6= 0, and �(t)1 = �
(t)
2 = 0 for t = 0; :::; T � 1.

However, since the adjusted weights may not be zero at t = 0; :::; T � 1, the market shares

at t = 0; :::; T � 1 a¤ect the results.

If Player 1 utility depends on the opponents market share, i.e., if �1�
(t+2)
2 > 0, then

whether to engage in negative advertising strategies depends not only on the sign of p(t+1)�12 �

p
(t+1)�
02 as discussed in Corollary 5.5, but also on the sign of e�(t+2)2 for t = 0; :::; T � 2, which

relies on �1 and the cost functions except for t = T � 2.

7 In�nite Horizon Game

We address the extension of our model to in�nitely many periods. The underlying game is

not a repeated game, as transition probabilities are chosen at the beginning and the market-

58



shares evolve dynamically. Since the set of strategies in the in�nite game is still a continuous

game, it is easy to verify the existence of the Nash equilibrium. Given no ending point in

the in�nite horizon framework, we have a straightforward generalization of Proposition 5.2

for linear cost functions.

Proposition 7.1 Player 1 will engage in strictly negative advertisement in period t when

V
(0)
2 6= 0, i.e. d(t)1 < 0, if and only if

�
1� p(t)�22

�
V
(t)
2 > p

(t)�
01 V

(t)
0

and V (t)2 r2A(t+1) � c20 � c21; (39)

where

A(t+1) = �
(t+2)
1 p

(t+1)�
01 � �1�

(t+2)
2 p

(t+1)�
02 � �(t+2)1 p

(t+1)�
11 + �1�

(t+2)
2 p

(t+1)�
12 � �

(t+1)
1

r
:

A su¢ cient condition is p(t)�22 < 1, condition (39), and

V
(t)
0 r2A(t+1) � c001 � c01:

8 One Shot Game and Commitment

Failure to commit is a potential problem that will destroy the previous equilibria. In the

�nite T period game, each player make a complete plan about the future at t = 0. However,

each of them has the incentive not to commit to what they have planned after the realization

of market shares at that period. Therefore, if no commitment becomes common knowledge,

we need to consider the equilibrium without commitment. Intuitively, the game without

commitment mimics the one shot game (T = 1), taking the volumes in the previous period

as given, since future means nothing to both players.

In the one shot game, the strategy set is convex. Therefore, there exits a pure strategy

Nash equilibrium. With simple calculus, we also can have the following proposition for
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linear cost functions.

Proposition 8.1 With Assumption 2A, or with Assumption 2B and there are more un-

committed customers than opponent�s customers who will become uncommitted, i.e.,

p
(0)�
20 V

(0)
2 � V (0)0

�
1� p(0)�002 � p

(0)�
02

�
,

Player 1 will not engage in strictly negative advertisement, i.e., d(0)1 � 0.

In the �nitely many period game without commitment, the players play one shot game

in each period. Therefore, V (0)0 , V (0)1 , and V (0)0 should be explained as market shares at the

beginning of each period.

9 Concluding Remarks

We examine the e¤ect of negative advertisement strategy on the market share. In particular,

negative advertisement focuses on reducing opponent�s market share by enticing opponent�s

customers to the undecided group, while positive advertisement focuses on increasing one�s

own market-share by attracting undecided customers. This modeling approach considers

both voters�choices and candidates�choices. However, the cost functions for investment

in transition probabilities could consist of both pure �nancial costs as well as costs due to

consumer behavior assumptions that one might want to capture.

In the political competition players care about the relative market-shares which means

that both player�s own market share and its opponent�s market share are relevant. Thus, it

is not surprising that negative advertising strategies are emerging. Even when players only

care about their own market share, negative advertisement strategies are possible, especially

when market-share in the �nal period is important. In such situations, negative strategies

in early periods can turn to be bene�cial when attracting customers in the last period.

More player lags behind the opponent in market-share, more likely are negative adver-

tisement strategies.
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Negative advertisement strategies are not likely to emerge in the �nal period, except

for very special and unrealistic cost functions. For example, there will be no equilibrium

negative strategies in the last period when cost functions are linear and have equal marginal

cost.
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