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Abstract

Decisions that involve bundling or unbundling a large number of objects, such as

deciding on the bundle structure or optimizing bundle prices, are based on underlying

valuation function over the set of all possible bundles. Given that the number of pos-

sible bundles (i.e., subsets of the given set of objects) is exponential in the number of

objects, it is important for the decision-maker to be able to represent this valuation

function succinctly. Identifying all structural sources of synergy in subset valuations

might point to simple and concise representation of the valuation function. We char-

acterize additive and multiplicative representations of synergies in subset valuations

and subset utility, which in turn points to necessary and sufficient conditions for a

succinct representation of subset valuations to exist.

*This work is to honor Peter Fishburn, whose contribution and guidance was critical to formulating and
proving the main result. I am grateful for Peter’s friendship and mentorship, and am honored to have had
opportunities to collaborate with him.

1



1 Introduction

Representation of valuations over multiple objects is foundational in modeling, from models

of human behavior and choice to models of economic and market mechanisms. These valua-

tions are often interrelated, and if modeling involves choice or decisions over sets of objects,

an additional information for representing valuations over sets of objects may be necessary.

This work provides a characterization for the existence of succinct linear representation of

valuations over sets of objects, thereby indicating what structural properties are needed to

ensure practical tractability of such representation, and suggesting what information would

need to be elicited.

The issue of selecting or choosing a subset of available multiple objects arises naturally

in many practical settings. For example, understanding a customer’s valuations over sets

of objects is critical for an e-ratailer’s personalized assortment and pricing decision tailored

for that customer (e.g., see [9, 26]). Similarly, a seller of customizable product, from a

software service to a car, needs to understand customer valuations over sets of additional

options or features in order to decide on optimal bundling (e.g., see [25, 3, 36]). For another

example, consider digital advertising markets that in real time insert targeted ads into a

content shown to users. The advertiser valuation for a user depends on the user’s attributes

(e.g., location, demographics, etc.) which are represented by the user’s digital imprint. This

valuation is not simply an additive function, e.g., the value for a female older than 65 in New

York City need not be equal to the sum of values the advertiser has for reaching a female,

a New York City resident, and a person older than 65. In fact, digital advertising markets

are designed to allow advertisers express their valuations over sets of user attributes and to
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match each user with an advertiser in real-time by embedding the ad into the content as it is

being loaded by the user (e.g., see, [2, 5, 8, 10]). Therefore, understanding preferences over

subsets is a prerequisite for making meaningful decisions in creating, choosing, allocating or

pricing multiple objects.

The fundamental problem of eliciting or estimating preferences over the set of all sub-

sets is that the number of subsets could be prohibitively large irrespective of computational

and communicational power of the decision-maker. For example, more than a quadrillion

possible subsets can be created from 50 objects (since 250 − 1 > 1.1 quadrillion). Thus, it

is not surprising that even the problem of choosing a subset of a finite set is known to be

computationally unmanageable, [35]. This intractability in developing or utilizing fully gen-

eral models for subset valuations to guide subset choice, allocation and/or pricing decisions,

underscores the need for identifying settings in which a succinct, tractable representation of

subset valuations is possible.

In the aforementioned assortment problem, prevailing practice has been to employ data-

driven approaches and statistical estimation techniques (see, e.g., [24, 6]), typically assuming

that the assortment value is simply a linear function of the values of its individual objects.

This ignores substitutabilities and complementarities among objects in the assortment and

hence could yield suboptimal decisions. Some recent work [4], however, has extended a clas-

sical multinomial logit (MNL) model from individual item selection to subset selection, by

expanding this linear valuation with additional terms corresponding to capturing synergetic

impacts for a small number of subsets. Practical implementability and usefulness of this

approach hinges on the ability to identify subsets and/or features driving these adjustments.
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The challenge of modeling subset valuations is critical for combinatorial auctions [12]:

market mechanisms in which sets of objects are traded. In combinatorial auctions bidders

submit bids on bundles, i.e., subsets of the set of objects (instead of having to submit

separate bids on single objects). Thus, every bidder needs to understand its own preferences

over all possible bundles. On the other hand, the bid-taker has to choose a combinatorial

auction procedure that elicits enough information about bidders’ bundle valuations, so that

an optimal allocation and pricing decision can be made. Thus, an efficient elicitation of

bundle valuations is a central issue of combinatorial auction design [31] that has stimulated

a considerable research interest (e.g., [11, 29, 30, 33, 8]). For example, one of the approaches

in the design and use of combinatorial auctions is to approximate bundle valuations by a

simple function. The most natural candidate is the linear approximation (a.k.a. additive

subset utility) that estimates the value of any bundle by the sum of the values of the

individual objects in that bundle. The number of parameters in this case equals the number

of objects, which is considerably smaller than the number of all bundles. The problem

with such a simple approximation is that it neglects synergetic effects of bundle valuations.

After all, the reason for considering creation, choice, allocation and/or pricing of bundles

is to exploit potential synergies from the bundling process. However, it could be true that

potential sources of synergies are limited and easily identified (several examples can be

found in [32]), in which case bundle valuations might be represented in a succinct and

simple way, yielding a readily implementable combinatorial auction that does not suffer

from computational intractability.

This note provides a necessary and sufficient condition for subset valuations (and subset

utility) to be representable as a sum (or a product) of different synergetic effects. (For
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example, an advertiser who values reaching out to females or New York City residents or

those older than 65, might put an additional value for reaching a user who has all three

of these features.) More precisely, given a collection of properties that each subset could

have or not have, we characterize the existence of weights, one for each such property, such

that the utility of any subset is the sum of the weights corresponding to the properties that

subset possesses. One special case, where only sources of synergy are binary interactions

(i.e., synergetic effects are limited to pairs of objects that a subset contains) has been the

topic of [22]. The results presented here generalize those in [22]. However, our main point is

not that results from [22] can be generalized, but it is that our generalization indicates that

correctly identifying sources of synergy could yield to simple subset valuation and subset

utility functions.

2 Representation

Denote the finite set of indivisible items by [n] = {1, 2, . . . , n}. The set of all possible subsets

that could be constructed from these n items, i.e., the set of all subsets of [n] is denoted by

2[n]. We will sometimes abuse notation and denote the singleton set {x} by x.

We assume that every two subsets A,B ∈ 2[n] can be compared. We use ≻ to denote the

strict preference relation on 2[n], so that A ≻ B when A is preferred to B. We say that ≻

is complete if, for any two sets A and B, A ̸= B, either A ≻ B or B ≻ A. If neither A ≻ B

nor B ≻ A, we write A ∼ B. In other words, ∼ is the indifference relation derived from ≻.

We use A ⪰ B to denote that B is not preferred to A, i.e., that either A ≻ B or A ∼ B.

The preference relation ≻ is asymmetric if for every A,B, A ≻ B implies that not B ≻ A.
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The preference-indifference relation ⪰ is transitive if, for every A,B,C, A ⪰ B and B ⪰ C

imply A ⪰ C. As in [14], ≻ is a weak order if and only if (i) ≻ is asymmetric and (ii) ⪰ is

transitive.

Throughout, we make the following

Assumption. The preference relation ≻ is a weak order.

If a preference relation over subsets of [n] were not a weak order, one would think

that there is some inconsistency, since both asymmetry and transitivity are quite natural

conditions in this setting.

Proposition 1 There exists u : 2[n] → ℜ, u(∅) = 0, such that

A ≻ B ⇔ u(A) > u(B). (1)

The fact that a weak order over a finite set can have a representation in real numbers is

well-known, e.g., see [14].

Note that the representation u from Proposition 1 is not unique: for any strictly increas-

ing f : ℜ → ℜ with f(0) = 0, f ◦ u is also a representation of ≻. When does a simple

representation u of ≻ exist? In particular, we are interested in functions u that are linear

functions with a manageable number of terms.

Example 2 An additive subset utility.

Suppose u(A ∪ B) = u(A) + u(B)− u(A ∩ B). Then u(S) =
∑

x∈S u(x) for all S ⊆ [n].

Thus, u is an additive function completely defined by the n values u(x) for x ∈ [n].
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Next, we define a set property to be any function P : 2[n] → {0, 1} . P can be viewed as

a characteristic function of a set property: if P (A) = 1, then set A has property P , and if

P (A) = 0 then set A does not have property P . Here are some simple examples:

� One could be interested in sets of a certain size, since economies of scale could be

important. Thus, one can define property P≥k by setting P≥k(A) = 1 if and only if

|A| ≥ k. Obviously, similar cardinality-based set properties can also be defined (e.g.,

P≤k, P=k).

� Set properties could take into account synergetic values that come out of topological

properties of the underlying set of items. For example, if items are vertices of a

graph, one can define set functions corresponding to many graph properties, e.g., set

Pconn(A) = 1 if and only if the subgraph induced by A is connected. For another

graph example, if items are edges of some graph, one could, e.g., set PST (A) = 1 if

and only if A contains a spanning tree of the graph.

� For every S ⊂ [n], property PS can describe whether set A contains S or not. Set

PS(A) = 1 if and only if S ⊆ A. A special case occurs when S = {x}, i.e., setting

Px(A) = 1 if and only if x ∈ A. Note that an additive subset utility u from Example 2

is a linear combination of Px functions:

u =
∑
x∈[n]

u(x)Px.

Further, additionally setting Pxy(A) = 1 if and only if {x, y} ⊆ A, allows for going

beyond individual elements, and capturing contributions of pairwise interactions to
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u(S):

u =
∑
x∈[n]

wxPx +
∑

{x,y}⊆[n]

wxyPxy,

where wx = u(x) and wxy = u({x, y})− u(x)− u(y). Note that this is the functional

format of subset valuations whose existence is characterized in [22].

In fact, any ≻ can be represented by a utility function that is a linear combination of set

property functions:

Proposition 3 Every representation u of any weak order ≻ on 2[n] is a linear combination

of at most 2n− 1 set property functions. The set of representations u ∈ R2n−1 of a complete

≻ that can be decomposed into a linear combination of less than 2n−1 set property functions

has measure zero.

Proof. For every nonempty set A ⊆ [n], define its indicator set function PA by setting

PA(S) = 1 if and only if S = A. Then

u =
∑

A⊆[n],A ̸=∅

u(A)PA.

We now show that the set of representations u of a complete ≻ that can be decomposed

into a linear combination of less than 2n − 1 set property functions, has measure zero. Let

P1, . . . Pk be set property functions and w1, . . . wk real numbers such that

u =
k∑

j=1

wjPj.
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Then, denoting all nonempty subsets of [n] by A1, A2, . . . , A2n−1, we have

u(Ai) =
k∑

j=1

wjPj(Ai), i = 1, . . . 2n − 1. (2)

Let M be a 0-1 matrix with 2n− 1 rows and k columns defined by Mij = Pj(Ai). Note that

any collection of set properties generates some 0-1 matrix M . Denoting

u = (u(A1), . . . , u(A2n−1))
T and w = (w1, . . . , wk)

T , (2) becomes

u = Mw.

The rank of M is at most k, and thus, for k < 2n − 1, the image of M is a proper linear

subspace of ℜ2n−1, which has measure zero. Since there is a finite number of 0-1 matrices

with 2n − 1 rows and k < 2n − 1 columns, the union of the images of all such matrices has

measure zero in ℜ2n−1. Thus, the set of representations u that cannot be decomposed into

a linear combination of less than 2n − 1 set property functions has measure one.

Proposition 3 establishes that a linear representation of subset valuations might gener-

ically require exponentially many set functions. This suggests that any method for repre-

senting, eliciting or estimating subset valuations in a generic setting will be computationally

intractable (pointing to the limitation of the MNL generalization presented in [4], and in-

herent limitations of other approaches; e.g., [1] establish a more formal connection between

different approaches used in machine learning, while [13] make a similar connection between

Mallows-based model and certain class of size-independent subset choice models).

However, in many practical settings, there might be a limited number of set properties

9



that determine all subset valuations. In such cases, methods that focus on determining

or estimating how these properties contribute to a subset value, could be tractable and

implementable.

Example 4 Consider an advertiser with value v for reaching a female New York City

resident older than 65, while having a zero value for reaching any users that do not have

all of these attributes. User’s digital imprint can be thought of as a binary string of length

n (e.g., cookie info), so any user is characterized by S ⊆ [n] where i ∈ S if and only if ith

digit of the binary string is 1. Suppose that (female indicator:) fth digit is 1 if and only if

the user is identified as female; (location indicator:) one of digits in L ⊂ [n] is 1 if and only

if the user resides in one of the New York City zipcodes; and (age indicator:) one of digits

in A ⊂ [n] is 1 if the user’s age is one encoded by that digit. Then, the set property Ptarget

describing users that are worth targeting, i.e., valuable to the advertisers, is defined as:

Ptarget(S) = Pf (S) ∧ P≥1(S ∩ L) ∧ P≥1(S ∩ A).

Then the advertisers valuation of a user S ⊆ [n] is simply

u = vPtarget.

Note that this valuation function format requires determining only a single parameter v, even

though there are 1 + |L|+ |A| elements of [n] that need to be considered when determining

whether S has a non-zero value. Further, the advertiser’s valuation cannot be decomposed

into a sum of values of individual elements (as in additive subset utility) nor a sum that
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involves values of pairwise interactions (as in the model studied in [22]). An alternative

(|L| × |A|)-dimensional representation would require an interaction term for each tripleton

{f, l, a}, l ∈ L, a ∈ A, of features.

Also note that the advertiser’s valuation can be expanded with additional terms to

capture target users of possibly different value. For example, if the advertiser has value

w for female New York City residents in the 55-65 age group, one can analogously define

Ptarget2(S) = Pf (S)×P≥1(S∩L)×P≥1(S∩B), with B corresponding to digits representing

ages falling in the 55-65 age group. Then, the advertiser’s valuation has two terms: u =

vPtarget + wPtarget2.

Finally, note that the advertiser subset valuations need to be represented in the setting

where each digit of the user’s binary string is an object of the set [n]. In order to effectively

participate in the advertising market, both the advertiser and the market operator (e.g.,

Google Ad Exchange) need to allow for a computationally tractable representation of these

subset valuations. In other words, set properties driving the advertiser’s valuation are known

to the advertiser, so are exogenous. A difficulty the advertiser faces is whether their subset

valuations can be represented using predefined objects of [n] in a way that makes expressing

these valuations (and consequent choices and decisions) manageable; e.g., if n is large (which

is the case with user data in digital ad markets) it would be unmanageable if the advertiser

would need to compute or communicate exponentially many bits of information.

The research question addressed in this paper is that of characterizing ≻ which are linear

combinations of at most k set properties (given exogenously).

We first define
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Cancellation Condition. A preference relation ≻ satisfies the cancellation condition

for the set properties P1, . . . , Pk if for any positive integer j and any A1, A2, ..., Aj and

B1, B2, ..., Bj satisfying

|{l : 1 ≤ l ≤ j, Pi(Al) = 1}| = |{l : 1 ≤ l ≤ j, Pi(Bl) = 1}| for all i = 1, . . . , k (3)

A1 ≻ B1 implies that there exists m ≤ j such that Bm ≻ Am.

If P1, . . . , Pk are the only set properties relevant to determining preference among sets

that are being compared, then the cancellation condition seems to be a natural requirement:

if both collections contain the same number of sets with set property Pi and if that is true

for every Pi, then no collection ”dominates” the other, i.e., if there is a pair Aj ≻ Bj, then

there has to be another pair Bj′ ≻ Aj′ .

Theorem 5 A preference relation ≻ satisfies the cancellation condition for the set proper-

ties P1, . . . , Pk if and only if there exist real numbers wi such that

u =
k∑

i=1

wiPi (4)

is a representation of ≻.

Proof. Suppose that the cancellation condition holds. We use linear algebra and a theorem

of the alternative to show the existence of the representation (4). Let

P (A) = (P1(A), P2(A), . . . , Pk(A)).
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Note that there are m = 2n−1(2n − 1) pairs of different subsets {A,B} and we can without

loss of generality assume that A ⪰ B. If a representation of the form (4) exists, then by (1)

and using notation w = (w1, . . . , wk)
T , for each such pair

A ≻ B ⇒ (P (A)− P (B))w > 0 (5)

and

A ∼ B ⇒ (P (A)− P (B))w = 0. (6)

Thus, representation (4) exists if and only if the system of m linear (in)equalities of the

form (5) or (6) has a solution w.

Let M be the m×k matrix whose rows are vectors (P (A)−P (B)). Note that all entries

of M are either -1, 0, or 1. The theorem of the alternative (or Farkas Lemma; e.g., see

Theorem B in [15] or Corollary 7.1 in [34]) states that either a solution w exists or there

exists a non-negative integral solution of

yM = 0 (7)

with yi∗ > 0 for at least one i∗ such that the i∗-th row of M corresponds to the inequality

(5). Without loss of generality we may assume that i∗ = 1.

We will complete the sufficiency part of the proof by showing that, if the cancellation

condition holds, such solution y to (7) does not exist, thereby proving that representation

(4) exists. Specifically, we will use y = (y1, . . . , ym) to guide construction of sets A1, . . . , Aj

and B1, . . . Bj on which we will apply the cancellation condition: for every yr ̸= 0 we will
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add yr identical pairs of sets A, B, that correspond to the (in)equality defining r-th row of

M . Thus, the family will have j = y1 + y2 + . . . + ym pairs of sets A, B, with exactly yr

copies of sets A, B defining r-th row of M (and if yr = 0 there will be no copies). Formally,

let y = (y1, . . . , ym) be a non-negative integral nonzero solution of (7). Construct A1, . . . , Aj

and B1, . . . Bj, on which we will apply the cancellation condition, as follows: let j =
∑m

l=1 yl

and, for i such that
∑r−1

l=1 yl < i ≤
∑r

l=1 yl (note that for a given r there will be yr indices

i satisfying this condition), let Ai and Bi be the sets A and B (from either (5) or (6)) that

correspond to the (in)equality that defines the r-th row of M . Note that (7) implies

j∑
l=1

Pi(Al)−
j∑

l=1

Pi(Bl) = 0 for all i = 1, . . . , k (8)

which is equivalent to (3). Also note that by definition of Ai and Bi, we have Ai ⪰ Bi for

all i = 1, . . . j. Furthermore, because y1 > 0 we have A1 ≻ B1. Therefore, if such y existed,

the cancellation condition would not hold. Thus, we conclude that such y does not exist,

completing the sufficiency part of the proof.

Conversely, if ≻ can be represented by (4), then for any A1, . . . , Aj and B1, . . . , Bj, using
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(8) in the third equality, we get

j∑
l=1

u(Al) =

j∑
l=1

k∑
i=1

wiPi(Al)

=
k∑

i=1

wi

j∑
l=1

Pi(Al)

=
k∑

i=1

wi

j∑
l=1

Pi(Bl)

=

j∑
l=1

k∑
i=1

wiPi(Bl)

=

j∑
l=1

u(Bl).

Thus, if A ≻ B, i.e, if u(A1) > u(B1), there has to exists m such that u(Bm) > u(Am), i.e.,

such that Bm ≻ Am.

Two special cases of the cancellation condition and the corresponding result of Theorem 5

are well-known. First, for Px, x ∈ [n], defined as Px(A) = 1 if and only if x ∈ A, the

cancellation condition is a necessary and sufficient condition for an additive utility function

(introduced in Example 2) to exist: see, e.g.,[14]. The case where set properties are extended

to also include two-element sets, i.e., all PS, |S| ≤ 2, defined as PS(A) = 1 if and only if

S ⊆ A, has been the topic of [22].

Theorem 5 also provides a characterization for the existence of a multiplicative repre-

sentation u.

Corollary 6 A preference relation ≻ satisfies the cancellation condition for the set proper-
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ties P1, . . . , Pk if and only if there exist real numbers wi > 0 such that

u =
k∏

i=1

wiPi (9)

is a representation of ≻.

Proof. For any A ⊆ [n] representation (9) can be rewritten as

u(A) =
∏

i,Pi(A)=1

wi

and, thus,

log u(A) =
∑

i,Pi(A)=1

log(wi) =
k∑

i=1

log(wi)Pi(A).

Further note that, u(A) > u(B) if and only if log u(A) > log u(B). Thus, representation (9)

exists if and only if representation u =
∑k

i=1 log(wi)Pi exists, and the latter is characterized

by Theorem 5.

3 Comments

We have characterized the existence of a linear representation of a weak order ≻ on the set of

all subsets of a finite set (Theorem 5). While a linear representation with at most 2n−1 terms

always exists, there is no guarantee that such representation is succinct (Proposition 3).

Identifying a small number of properties that determine subset valuations is critical

in many practical settings; one such setting was illustrated in Example 4. In fact, the

tractability and performance of data-driven models for subset valuations critically depends
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on the model specification. For example, regression-based machine learning approaches

in big data settings require a limited number of covariates (which can be viewed as set

properties), so parsimony and tractable model specification is essential, even if the set of

model covariates is suboptimal (e.g., not minimal). Set properties defining subset valuations

need not be unique, and yield a theoretically interesting open question: for a weak order ≻

on 2[n] (possibly with some additional properties of practical interest), determine an upper

bound k so that there exists a representation u which is a linear combination of at most k set

property functions. Theorem 5 either verifies that such function u is indeed a representation

of subset valuations, or provides a family of sets which demonstrate the misrepresentation

via our Cancellation Condition.

It is plausible that functional formats more complex than linear format considered in this

paper, could also yield succinct representations. However, linear functional forms are fun-

damental to regression-based models as data is used to specify the function by determining

optimal coefficients (i.e., weights for set properties). Further, linear functionals are best local

approximations for any differentiable functional form. This suggests that a generic charac-

terization of linear representations of subset valuations presented here is a natural starting

point in the analysis of possible representations utilizing any other functional forms. Addi-

tionally, analyzing linear forms allows for utilizing fundamental duality theorems. The key

to defining our Cancellation Condition and the main argument in the proof of Theorem 5

are both based on one of many equivalent statements of the theorem of the alternative (i.e.,

the Farkas Lemma) which tells us than any inconsistent set of “axioms” can be refuted by

a suitable derivation. . . .This view makes the Farkas Lemma a (small) cousin of various

completeness theorems of logic and of other famous result, such as Hilbert’s Nullstellensatz
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in algebraic geometry ([28]). So, our Cancellation Condition is a natural representation of

the theorem of the alternative: either the linear representation exist or there is inconsistency

manifested in the violation of the Cancellation Condition. This approach in the context of

social choice has been pioneered and utilized by Peter Fishburn: [15] lays out the theoretical

argument, while his numerous papers, e.g. [16, 17, 18, 19, 22, 20, 21, 7], utilize variants of

the argument.

Proof of Theorem 5 on its face value requires constructing exponentially many linear

constraints (5) and (6). However, establishing non-existence of a linear representation only

requires identifying a family of sets that violates the Cancellation Condition. One such

family is in turn provided by those sets that correspond to potentially a small number of

non-zero components of the dual vector y. There might be multiple other families one could

construct, taking into account contextual details of a particular setting (thereby implicitly

constructing the dual vector y).

Whenever there is a need to determine subset valuations, one should try first to assess

the underlying factors that determine those valuations. These factors might be values of

individual objects, as well as other factors (defined here as set properties) that cause either

positive or negative synergetic effects. In this note, we provide necessary and sufficient

conditions for these factors to be additively or multiplicatively combined into a valuation

function. If a reasonably simple valuation function exists, the set properties defining this

function should be viewed as basic atoms for evaluating and comparing bundles. Thus, it

could make sense to take such a “basis” of these set properties into account when designing

elicitation, allocation, optimization, or pricing procedures. (For example, maybe one could

design an auction where basic objects that have to be allocated and priced are such set
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properties.) An approach of trying to determine the main structural blocks of the valua-

tion function is a possible alternative to assessing all valuations directly and/or estimating

those valuations based on (implied) values of individual objects. For instance, Ptarget and

Ptarget2 are such “basis” for the advertiser in Example 4. As the advertiser collects in-

formation from the advertising campaign, they could note discrepancies between realized

valuations and those determined by the representation. (For example, value from Manhat-

tan residents might be different than the value from residents of other city boroughs.) Sets

where such discrepancies are the largest would be natural to guide construction of a new set

property for the linear representation. (If M is a set of digits corresponding to Manhattan

zipcodes, one could simply add P≥1(S ∩M).) Such myopic approach to building structural

blocks of the valuation function by sequentially adding most significant sources of synergy

not yet identified, could be guided by using the linear representation from the proof of

Theorem 5 as they might correspond to the m∗-th linear constraint with m∗ = argmax yk.

(This approach is similar to the idea of the stepwise regression procedure.) While this my-

opic construction of a subset valuation function is likely suboptimal, further study of such

alternative approach could be an interesting research direction.
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