EE 277 Computer Project 2
1-D Finite-Element Method

Part I Due: 5 PM, October 4, 2001.
Part II Due: 5PM, October 12, 2001.

Write a Matlab program using finite-element method to solve a 1-D electromagnetic wave scattering problem. The inhomogeneous scatterer is located within the region \(a \leq x \leq b \) \((b - a \geq 2 \text{ m})\), and the incident field is a plane wave propagating along the positive \(x \) direction. The frequency is \(f = 300/S \text{ MHz} \), where \(S = 1, 2, \cdots, 10 \) for C. Daniel, I. Deshmukh, S. Dhillon, W. Hu, G. Shi, C. Xiao, T. Xiao, Z. Xie, G. Zhang, and Y. Zheng, respectively.

Following requirements must be met:

Part I

1. After discretization, the systems will become \(ZI = V \), where \(Z \) is the impedance matrix, and \(V \) the excitation vector. Derive the closed-form expressions for all elements \(Z_{nm} \).

2. Derive the closed-form expressions for \(V_m \).

Part II

1. The computer code should allow \(\mu(x) \) and \(\varepsilon(x) \) to be piecewise constant materials for up to ten different layers, with layer \(k \) located at \(a \leq a_k \leq x \leq b_k \leq b \) having \(\mu_{r,k} \) and \(\varepsilon_{r,k} \) as their relative permeability and permittivity.

2. Check the correctness of the code for a special case where only one layer exists inside the domain, so that \(a_1 > a \) and \(b_1 < b \) and the material of this layer is different from the background medium (air).

3. Apply the code to this special case with \(a = 0, b = 4, a_1 = 2, b_1 = 3, \mu_{r_1} = 2, \varepsilon_{r_1} = S + 1 \).

4. The code should plot out the field (amplitude and phase) as a function of space. Note that as a function of space, in this 1-D case both \(E \) and \(H \) are continuous across layer boundaries. This serves as a check to your results.

5. The codes should be submitted to the instructor by the deadline through email (qhlin@ee.duke.edu). The submitted package should include a README file explaining your files and how to run to obtain your results.

6. A hard copy of your code and results should be submitted by the deadline, including explanations of your results in sufficient details.