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Most of what you need to remember about basic statistics 
 

Consider a random variable called X that is a time series (a set of observations ordered in time) 
consisting of the following 20 observations:  

        114, 126, 123, 112, 68, 116, 50, 108, 163, 79,   67, 98, 131, 83, 56, 109, 81, 61, 90, 92.   
 

 
 
How should we forecast what will happen next?  The simplest forecasting model that we might 
consider is the mean model,1 which assumes that the time series consists of independently and 
identically distributed (“i.i.d.”) values, as if each observation is randomly drawn from the same 
population.  Under this assumption, the next value should be predicted to be equal to the 
historical sample mean if the goal is to minimize mean squared error.  This might sound trivial, 
but it isn’t.  If you understand the details of how this works, you are halfway to understanding 
linear regression.  (No kidding:  see section 3 of the regression notes handout.) 
 
To set the stage for using the mean model for forecasting, let’s review some of the most basic 
concepts of statistics.  Let: 
 

X = a random variable, with its individual values denoted by x1, x2, etc. 
N = size of the entire population of values of X (possibly infinite)2 
n = size of a finite sample of X 

                                                 
1 This might also be called a “constant model” or an “intercept-only regression.” 
2 The term “population” does not refer to the number of distinct values of X.  The same value could occur many 
times in the population. For example, the values of X could be integers or just 0’s and 1’s. 
(c) 2014 by Robert Nau, all rights reserved.  Main web site:  people.duke.edu/~rnau/forecasting.htm  
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The population (“true”) mean µ is the average of the all values in the population: 

 
 

The population variance  σ2 is the average squared deviation from the true mean: 
 
 
 
 
The population standard deviation σ is the square root of the population variance, i.e., the “root 
mean squared” deviation from the true mean. 
 
In forecasting applications, we never observe the whole population.   The problem is to forecast 
from a finite sample.  Hence statistics such as means and standard deviations must be estimated 
with error. 
 
The sample mean is the average of the all values in the sample: 
 
 
 
This is the “point forecast” of the mean model for all future values of the same variable.   The 
sample mean of the series X that was shown above is 96.35.   So, under the assumptions of the 
mean model, the point forecast for X for all future time periods should be 96.35. 
 
The sample variance  s2 is the average squared deviation from the sample mean, except with a 
factor of n−1 rather than n in the denominator: 
 
 
 
 
The sample standard deviation is the square root of the sample variance, denoted by s.  The 
sample standard deviation of the series X is equal to 28.96. 
 
Why the factor of n−1 in the denominator of the sample variance formula, rather than n?  This 
corrects for the fact that the mean has been estimated from the same sample, which “fudges” it in 
a direction that makes the mean squared deviation around it less than it ought to be.  Technically 
we say that a “degree of freedom for error” has been used up by calculating the sample mean 
from the same data.  The correct adjustment to get an “unbiased” estimate of the true variance is 
to divide the sum of squared deviations by the number of degrees of freedom, not the number of 
data points 
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The corresponding statistical functions in Excel3 are: 

• Population mean  =   AVERAGE (x1, …xN) 

• Population variance =   VAR.P (x1, …xN) 

• Population std. dev. =   STDEV.P (x1, …xN) 

• Sample mean  =   AVERAGE (x1, …xn) 

• Sample variance  =   VAR.S (x1, …xn) 

• Sample std. dev. =   STDEV.S (x1, …xn) 

 
Now, why all this obsession with squared error?  It is traditional in the field of statistics to 
measure variability in terms of average squared deviations instead of average absolute 4 
deviations around a central value, because squared error has a lot of nice properties: 

• The central value around which the sum of squared deviations are minimized is, in fact, 
the sample mean.  This may not be intuitively obvious, but it is easily proved by calculus. 
So, when we fit forecasting models by minimizing their sums of squared errors, we are 
implicitly calculating means, even when we are estimating many things at once.  In 
particular, when we estimate the coefficients in a linear regression model by minimizing 
squared error, which our regression software does for us automatically, we are implicitly 
calculating the “mean effect” of each of the independent variables on the dependent 
variable, in the presence of the others. 

• Variances (rather than standard deviations or mean absolute deviations) are additive 
when random variables that are statistically independent are added together. 

• From a decision-theoretic viewpoint, large errors often have disproportionately worse 
consequences than small errors, hence squared error is more representative of the 
economic consequences of error.  Why?  A small error in your analysis will probably not 
result in a bad decision or a wrong conclusion.  The future may turn out slightly different 
from what you expected, but you probably would have done the same thing anyway, so it 
doesn’t matter very much.  However, if the error is large enough, then it may lead to a 
wrong-headed decision or conclusion that will have bad consequences for you or 
somebody else.  So, in many situations we are relatively more concerned about the 
occasional large error than the more frequent small error.  Minimizing squared error 
when choosing among forecasting models is a rough guideline for doing this. 

• Variances and covariances also play a key role in normal distribution theory and 
regression analysis, as we will see.  All of the calculations that need to be done to fit a 
regression model to a sample of data can be done based only on knowledge of the sample 
means and sample variances and covariances of the variables. 

                                                 
3 In earlier versions of Excel the sample standard deviation and variance functions were STDEV and VAR, and the 
corresponding functions for population statistics were STDEVP and VARP. 
4 Actually, there is a lot of interest nowadays in the use of absolute error rather squared error as the objective to be 
minimized when fitting models, especially in econometrics.  This approach yields parameter estimates that are less 
sensitive to the presence of a few large errors and is also useful for model selection in high-dimensional data sets, 
but it is beyond the scope of this course. 
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The standard error of the mean is: 
 

 
 

• This is the estimated standard deviation of the error that we would make in using the 
sample mean X  as an estimate of the true mean µ , if we repeated this exercise with 
other independent samples of size n.  

• It measures the precision of our estimate of the (unknown) true mean from a limited 
sample of data. 

• As n gets larger, SEmean gets smaller and the distribution of the error in estimating the 

mean approaches a normal distribution.  This is one of the most fundamental and 
important concepts in statistics, known as the “Central Limit Theorem.” 

• In particular, it decreases in inverse proportion to the square root of the sample size, so 
for example, 4 times as much data reduces the standard error of the mean by 50%. 

 
What’s the difference between a standard deviation and a standard error? 

• The term “standard deviation” refers to the actual root-mean-squared deviation of a 
population or a sample of data around its mean. 

• The term “standard error” refers to the estimated root-mean-squared deviation of the 
error in a parameter estimate or a forecast under repeated sampling. 

• Thus, a standard error is the “standard deviation of the error” in estimating or forecasting 
something  

The mean is not the only statistic for measuring a “typical” or “representative” value drawn from 
a given population.  For example, the median (50th %-tile) is another summary statistic that 
describes a representative member of a population.  If the distribution is symmetric (as in the 
case of a normal distribution), then the sample mean and sample median will be approximately 
the same, but if the distribution is highly “skewed”, with more extreme values on one side than 
the other, then they may differ significantly.   For example, the distribution of household income 
in the U.S. is highly skewed.  The median US household income in 2010 was $49,445, whereas 
the mean household income was $67,530, about 37% higher, reflecting the effect of a small 
number of households with extremely high incomes.  Which number better measures the income 
of the “average” household?    

That being said, the most commonly used forecasting models, such as regression models, focus 
on means (together with standard deviations and correlations) as the key descriptive statistics, 
and point forecasts are usually expressed in terms of mean values rather median values, because 
this is the way to minimize mean squared error.  Also, in many applications (such as sales 
forecasting), the total over many periods is what is ultimately of interest, and predictions of mean 
values in different periods (and/or different locations) can be added together to predict totals. 

Another issue is that when forecasting at a very fine level of detail (e.g., units of a given product 
sold at a given store on a given day), the median value of the variable in a single period could be 

mean
sSE

n
=
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zero!  Expressing a forecast for such a variable in terms of the median of its distribution would 
be trivial and uninformative. 

Furthermore, nonlinear transformations of the data (e.g., log or power transformations) can often 
be used to turn skewed distributions into symmetric (ideally normal) ones, allowing such data to 
be well fitted by models that focus on mean values. 
 
Forecasting with the mean model. 
 
Now let’s go forecasting with the mean model: 

• Let          denote a forecast of xn+1 based on data observed up to period n 

• If xn+1 is assumed to be independently drawn from the same population as the sample x1, 

…, xn,  then the forecast that minimizes mean squared error is simply the sample mean: 

 
 
 
In the special case of the mean model, the sample standard deviation (s) is what is called the 
standard error of the model, i.e., the estimated standard deviation of the intrinsic risk.  Now, 
what is the standard deviation of the error we can expect to make in using        as a forecast for 
xn+1?  This is called the standard error of the forecast (“SEfcst”), and it depends on both the 

standard error of the model and the standard error of the mean.  Specifically, it is the square root 
of the sum of the squares of those two numbers: 
 
 
 
 
 
 
 
 
 

 

 

Note that if you square both sides, what you have is that the estimated variance of the forecast 
error is the sum of the estimated variance of the noise and the estimated variance of the error in 
estimating the mean.   
  

1ˆnx X+ =

2 2 1 1        1     (1 )
2fcst meanSE s SE s s

n n
= + = + ≈ +

The standard error of the mean 
measures the parameter risk (error in 
estimating the “signal” in the data) 

 

1ˆnx +

1ˆnx +

The standard error of the model measures the 
intrinsic risk (estimated “noise” in the data);  
for the mean model, the standard error of the 
model is just the sample standard deviation 

         measures the forecasting risk, 
assuming the model is correct 

fcstSE

End result: for the mean 
model,            is slightly 
larger than the sample 
standard deviation 

fcstSE
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Variances of the different components of forecast error are always additive in this way, for 
linear 5  forecasting models with normally distributed errors.  In fact, we can call this the 
“fundamental law of forecasting risk:” 

It does not take into account the model risk, though! 

For the mean model, the result is that the forecast standard error is slightly larger than the 
sample standard deviation, namely by a factor of about 1+(1/(2n)) .  Even for a sample size as 
small as n=20 there is not much difference: 1+(1/40) = 1.025, so the increase in forecast standard 
error due to parameter risk (i.e., the need to estimate an unknown mean) is only 2.5%.   In 
general, the estimated parameter risk is a relatively small component of the forecast standard 
error if (i) the number of data points is large in relation to the number of parameters estimated, 
and (ii) the model is not attempting to extrapolate trends too far into the future or otherwise 
make predictions for what will happen far away from the “center of mass” of the data that was 
fitted (e.g., for historically unprecedented values of independent variables in a regression model). 
 
Confidence intervals:   A point forecast should always be accompanied by a confidence interval 
to indicate the accuracy that is claimed for it, but what does “confidence” mean?  It’s sort of like 
“probability,” but not exactly.  Rather, 

• An x% confidence interval is an interval calculated by a rule which has the property that 
the interval will cover the true value x% of the time under simulated conditions, 
assuming the model is correct. 

• Loosely speaking, there is an x% probability that your future data will fall in your x% 
confidence interval for the forecast—but only if your model and its underlying 
assumptions are correct and the sample size is reasonably large.  This is why we test 
model assumptions and why we should be cautious in drawing inferences from small 
samples.6 

• If the true distribution of the noise is a normal distribution, then a confidence interval for 
the forecast is equal to the point forecast plus-or-minus some number of forecast standard 
errors, that number being the so-called “critical t-value”: 

                                                 
5 A “linear” forecasting model is one in which the forecast is a linear function of other variables whose values are 
known.  The mean model is the simplest case (a trivial example of a linear function), and linear regression models 
and ARIMA models are more general cases.  In the case of the mean model, the parameter risk is a constant, the 
same for all forecasts.  In more general models, the parameter risk associated with a particular forecast depends on 
the values of independent variables that are multiplied by the parameters.  The parameter risk is larger for values of 
the independent variables that are extreme relative to the values in the sample of data to which the model was fitted. 
6 If the sample size is small, then information that you possess “prior” to the data analysis—even if it is very 
subjective—becomes relatively much more important and should be taken into account when making inferences or 
predictions.  So-called “Bayesian” methods of inference and prediction provide a systematic way for doing this and 
are increasingly being used throughout the field of statistics.  The statistics department at Duke University is one of 
the world’s leading centers of research in this area. 

Variance of forecasting risk = variance of intrinsic risk + variance of parameter risk 
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• More precisely, for a confidence interval with confidence level p, the appropriate number 

of standard errors is the “critical value of the t distribution with a tail area probability of 
1−p and d degrees of freedom for error”, where the number of degrees of freedom (“d.f.”) 
is the sample size (n) minus the number of parameters which have been estimated from it 
(which is 1 in the case of the mean model). 

 
• In Excel, the critical t-value for a 2-sided confidence interval with confidence level p 

when there are d degrees of freedom is given by the formula  T.INV.2T(1−p, d), or just 
TINV(1−p, d) in older versions of Excel. 
 

• When the 1-parameter mean model is fitted to our 20-observation sample of data, the 
number of degrees of freedom is 20 − 1 = 19, so for a 95% 2-sided confidence interval, 
the critical t-value is T.INV.2T(5%, 19)  (or just TINV(5%,19) in older versions of 
Excel), which comes out to be 2.093. 
 

Here is a so-called “t-table” showing the critical values of the t distribution for some 
representative values of the confidence level and the number of degrees of freedom: 
 
                         Confidence level (for 2-sided confidence interval):               

 50% 68% 80% 90% 95% 99% 99.7% 
        # d.f.:  Infinity 0.67 1 1.28 1.64 1.96 2.58 2.97 

                200 0.68 1 1.29 1.65 1.97 2.60 3 
                100 0.68 1 1.29 1.66 1.98 2.63 3.04 
                 50 0.68 1 1.30 1.68 2.01 2.68 3.12 
                 20 0.69 1.02 1.33 1.73 2.09 2.85 3.4 
                 10 0.70 1.05 1.38 1.81 2.23 3.17 4.02 

Rule-of-thumb value: 2/3 1 4/3 5/3 2 8/3 3 
 
As the number of degrees of freedom goes to infinity, the t-distribution approaches a standard 
normal distribution, whose critical values are shown in the first row of the table.  As you can see, 
the critical t-value is not very sensitive to the number of degrees of freedom except for very low 
numbers of degrees of freedom in conjunction with high levels of confidence (the shaded cells in 
the lower right).  In most cases the critical values of the t distribution are not much different from 
those of the standard normal distribution.  The row below the table shows the “rule of thumb” 
values that closely approximate the actual critical t-values in most situations.  In particular, the 
rule-of-thumb value for a 95% confidence interval is 2, so…. 

 
 
 

Confidence interval = forecast ±  (critical t-value) ×  (standard error of forecast) 
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More rules  of thumb for confidence intervals: 

• For n>>20, a 68% confidence interval is roughly plus-or-minus one standard error, a 95% 
confidence interval is plus-or-minus two standard errors, and a 99.7% confidence interval 
is plus-or-minus three standard errors. 

• A 50% confidence interval is roughly plus or minus two-thirds of a standard error, which 
is one-half the width of an 80% confidence interval, one-third the width of a 95% 
confidence interval, and one-quarter the width of a 99% confidence interval. 

• A confidence interval that covers 95% of the data is often too wide to be very informative.   
A 1-out-of-20 chance of falling outside some interval is a bit hard to visualize.  50% (a 
“coin flip”) or 90% (1-out-of-10) might be easier for a non-specialist to understand.  
Most statistical software, including RegressIt, allows you the option to choose the level 
of confidence for which to calculate confidence intervals. 

• Because the distribution of errors is generally bell-shaped with a central peak and “thin 
tails” (you hope!), the 95% limits are pretty far out compared to where most of the data is 
really expected to fall, i.e., they may make the forecast look less accurate than it really is. 

• Another thing to consider in deciding which level of confidence to use for constructing a 
confidence interval is whether or not you are concerned about extreme events.  If it is a 
high-stakes decision, you may be very interested in the low-probability events in the tails 
of the distribution, in which case you might really want to focus attention on the location 
of the edge of the 95% or even the 99% confidence interval for your prediction.  (In this 
case you will also be very interested in whether the distribution of errors is really a 
normal distribution!  If it isn’t, these calculations will not be realistic.)   But if it is a 
routine or low-stakes decision, then maybe you are more interested in describing the 
middle range of the distribution, e.g., the range in which you expect 50% or 80% or 90% 
of the values to fall. 

• My own preference: just report the forecast and its standard error and leave it to others 
to apply the rules above to obtain whatever confidence intervals they want. 

 
More about t: 
 
The t distribution is called “Student’s t distribution” because it was discovered by W.S. Gossett 
of the Guinness Brewery, who was a pioneer of statistical quality control in the brewing industry 
and who also published scientific articles anonymously under the pen name “Student”.  
Mathematically, the t distribution is the distribution of the quantity 

 
 
which is the number of standard errors by which the sample mean deviates from the true mean 
when the standard deviation of the population is unknown (i.e., when SEmean is calculated from s 

rather than σ).   The t distribution resembles a standard normal (z) distribution but with slightly 

( )
mean

X
SE

µ−

A 95% confidence interval is (roughly) the forecast “plus-or-minus two standard errors.” 
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“fatter tails” when the number of degrees of freedom is small.  As pointed out above, the t-
distribution approaches a normal distribution as the number of degrees of freedom goes to 
infinity.  The following chart shows a comparison of the normal distribution and t distribution for 
5, 10, and 20 degrees of freedom.  As you can see, they are quite close: 

 

In comparing a t distribution to a standard normal distribution, what matters is the “tail area 
probability” that falls outside some given number of standard errors:  a 95% confidence interval 
is the number of standard errors plus-or-minus outside of which there is a tail area probability of 
5%.  For a lower number of degrees of freedom the “tails” are slightly “fatter”, so a greater 
number of standard errors is needed for a given level of confidence that your estimate won’t 
deviate from the true value by more than that amount.   But in most cases, the empirical rules of 
the thumb given below the t-table on page 16 are a very good approximation.  
 
Our example continued: 
 
Time series X (n=20): 

         114, 126, 123, 112, 68, 116, 50, 108, 163, 79,   67, 98, 131, 83, 56, 109, 81, 61, 90, 92 
 
The true mean and standard deviation of the population from which this time series was 
randomly sampled are µ = 100,  σ = 30, unbeknownst to us in real life.   The sample mean and 
standard deviation, which are all we can observe, are: 
 
 
…and the standard errors of the mean and forecast are: 
 
 
 
 
  

Normal vs. t:  much difference?

-4 -3 -2 -1 0 1 2 3 4

Normal t with 20 df t with 10 df t with 5 df

28.96 / 20 6.48 6.5meanSE = = ≈
2 228.96 6.48 29.68 30fcstSE = + = ≈

96.35 96, 28.96 29X s= ≈ = ≈
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We can use the standard error of the forecast to calculate confidence intervals for the forecasts: 

• 95% confidence interval   =  96.35 ± 2.093 × 29.68    ≈    [34,  158] 

• 50% confidence interval   =  96.35 ± 0.688 × 29.68    ≈    [76,  117] 
• These are based on the critical t-values T.INV(5%, 19) = 2.093 and T.INV(50%, 19) = 

0.688.   
 
Let’s suppose that X is stored in a column on a worksheet next to a column of row index 
numbers (the time scale), and suppose that the time scale extends to row 25, representing future 
time periods for which forecasts are desired, and that Row and X have been assigned as range 
names for the two columns: 
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If you use RegressIt to fit this model by choosing X as the dependent variable and not specifying 
any independent variable(s), and if you use the default 95% level for confidence intervals, and 
check the box for forecasting missing values of the dependent variable, and give it the name 
“Mean model”, like this: 
 

 
 
…then the parameter estimates and forecasts come out looking like this: 
 

 
 
Don’t worry that this model has an R-squared of zero!  This is always the case in a mean model 
(i.e., an intercept-only model).  The important number is the standard error of the model (labeled 
here as “standard error of the regression”), whose value is 28.96, which measures the standard 
deviation of the variations in the past data that have not been explained by the model. 
 
Note that each separate table (and graph) in RegressIt output is tagged with the model name and 
the sample size.  This may look redundant, but it can be very important in practice.  Often a lot of 
models are fitted to the same variables during one or more analysis sessions, and pieces of output 

http://regressit.com/index.html
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from the best model(s) are later copied and pasted into reports.  Unless more detailed titles are 
added by hand at that stage, it is not always clear which model produced the displayed results. 
 
Presentation of results: 
 
In presenting your results to others, know what to round off and when in the number of decimal 
places you choose to display. 7   Don’t overwhelm your audience with more digits than are 
meaningful for understanding the results.  (Alas, many widely used statistical software packages 
routinely report 10 or more significant digits of precision in their output for any procedure, and 
the numbers are often poorly formatted with misaligned decimal points.)  The calculations shown 
above were rounded off to integer values, and it is uninformative to report any more decimal 
places than that.  It would be silly to report the 95% interval as, say, [34.232, 158.468], or even 
as [34.2, 158.4]. 8  The forecast standard error is 30, so rounding off to integer values is precise 
to within 1/60 of a standard error. Just because your software can give you up to 15 digits of 
precision in any calculation doesn’t mean that you need to display all of them!    It would be 
simplest in this case to just say that the forecast is 96 with a standard error of 30. 
 
In general it is good to choose units for your variables that are mutually consistent (e.g., don’t 
measure some variables in thousands of dollars and others in the same model in billions of 
dollars) and which yield coefficient estimates that don’t differ wildly in orders of magnitude and 
don’t have too many digits before the decimal place or too many zeros after it. 
 
Our example continued: 
 
Under the assumptions of the mean model, the forecast and confidence interval for the next 
period also apply to all future periods, as shown in the forecast table above.  The model assumes 
that all future observations will be drawn from the same distribution, from here to eternity.  So, 
we can extrapolate this one forecast arbitrarily far into the future, and a plot of the forecasts and 
confidence intervals stretching off into the future will look like a set of parallel horizontal lines.  
 
If X is a time series, such as a series of weekly or monthly observations of an economic variable 
or a weather variable, the long-horizon forecasts produced by the mean model do not look very 
realistic.  The distant future is usually more uncertain than the immediate future, and most time 
series forecasting models will reflect this by yielding confidence intervals that gradually get 
wider at longer horizons.  The longer-horizon forecasts for the mean model make more sense if 
X is not really a time series, but rather a set of independent random samples from a population 
that is not changing with time, in which case all the observations are statistically the same 
whether they are performed today or tomorrow, sequentially or in bunches. 
 

                                                 
7  You can use the “increase decimal” and “decrease decimal” functions on the Home toolbar in  
Excel to adjust the number of displayed decimals, and the number displayed in Excel will be the default number 
displayed in Word or Powerpoint if you copy a table of numbers.   
8 About the only reason for reporting your results with more digits than are really significant is for audit-trail 
purposes in case someone tries to exactly reproduce your results.  But for that purpose you can just keep your 
spreadsheet files.  In fact, you should ALWAYS be sure to keep your spreadsheet files and make sure that the “final” 
version has a file name that clearly identifies it with your final report. 



 13 

Here are plots of the forecasts and confidence intervals produced by RegressIt for periods 21 
through 25 at the 95% level of confidence and the 50% level of confidence: 

 

 
 

 
 

 
Note that the 50% confidence interval is about exactly 1/3 the width of the 95% confidence 
interval.  And, as pointed out above, the width of the confidence intervals for forecasts from the 
mean model remains constant as we forecast farther into the future, because all periods in the 
future are expected to be the statistically identical to those in the past. 
 
The calculation of confidence intervals shown above takes into account the intrinsic risk and 
parameter risk in the forecast, assuming the model is correct, i.e., assuming the mean and 
standard deviation really are constant over time, and assuming that variations from the mean 
really are statistically independent from one period to another. 
 



 14 

But what about model risk?  For example, suppose it is possible that there is some kind of trend?  
In that case it might be appropriate (as a first-order approximation) to fit a linear trend model, 
which is a simple regression model in which the independent variable is the row index or any 
ascending sequence of equally spaced numbers.  The data set here contains a variable called Row 
that can be used for this purpose.  Here is how the linear trend model would be specified in 
RegressIt, with the initial confidence level9 set to 50%: 
 

 
 
…and here is the summary output: 
 

 
 
This is a different modeling assumption, and it leads to different forecasts and confidence 
intervals for the next 5 periods, as shown in the table and chart below.  The forecasts now trend 
downward by 1.739 per period, which is the estimated coefficient of the row-number variable.  
The 50% confidence intervals are only slightly wider than those of the mean model—confidence 
intervals for a linear trend model get wider at longer forecast horizons, but not by much.  Notice 
that the upper 50% confidence limits for this model’s forecasts for periods 23-24-25 are all 
below the point forecast of the first model, which was 96.35. 
 

                                                 
9 The confidence level that is specified at the time that the regression is run can be changed on the model output 
spreadsheet after it has been generated, and the confidence interval calculations and plots will be dynamically 
updated .  This is all that was needed to generate the two different charts shown above. 
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The Excel file with both of these models is available here: 
people.duke.edu/~rnau/Examples_of_mean_and_linear_trend_models.xlsx   
Some of the additional rows of output at the top (residual distribution statistics and ANOVA 
table) have been hidden for simplicity. 
 
Is the linear trend model a plausible alternative model, based on what the data is telling us?  
Trend line models will be discussed in more detail later, but for a preview of that discussion, one 
indicator we can look at is the statistical significance of the estimated trend coefficient in the 
regression model, as measured by its t-statistic.  The t-statistic of a coefficient is its estimated 
value divided by its own standard error, which is its “number of standard errors from zero.”  The 
rule-of-thumb standards are that a coefficient estimate is significant at the 0.05 level if its t-stat is 
greater than 2 in magnitude and it is significant at the 0.10 level if it is greater than 1.67 in 
magnitude.   The t-stat of the trend coefficient is 1.612 in magnitude in this case, as seen in the 
regression summary table above, which is not significant even at the 0.10 level.  (Its exact level 
of significance, which is its P-value, is 0.124.)  This is not so insignificant as to be completely 
meaningless but probably not big enough to be useful for decision making unless it is 
accompanied by other evidence in favor of a negative trend.  Another thing that most naïve 
individuals immediately ask about a regression model is:  “what’s the R-squared?”  The 
(adjusted) R-squared is the percentage by which the estimated error variance of the regression 
model (the square of the standard error of the regression) is less than that of the mean model, i.e., 
it is the percent of variance that the model thinks it has “explained.”  In this case it is 7.8%, 
which is not very impressive.  
 

http://people.duke.edu/~rnau/Examples_of_mean_and_linear_trend_models.xlsx


 16 

A better thing to look at is the standard error of the regression (another name for the standard 
error of the model), which is a lower bound on its forecast standard error.  The standard error of 
the regression is 27.82 in this case, compared to a standard error of 28.96 for the mean model, 
which is not a big improvement—in fact, it is only a 4% reduction!—so it’s hard to choose on 
that basis.   

 
More importantly, these two numbers cannot both be correct as far as errors in predicting the 
future are concerned, because each one is based on the assumption that its own model is the 
correct one, and the models are very different.  If the mean model is correct in its assumptions, 
then the standard error of the linear trend model is a very unrealistic estimate of the accuracy of 
its forecasts for the future, and vice versa.  The model that thinks it is best is not always right, 
which is why you need to exercise your own judgment. 
 
So, the data does not strongly indicate that there is a trend.  However, this is a small sample, so 
we shouldn’t rely only on the data for such an important inference.  We should take into account 
everything we know about the situation that might indicate whether a linear trend is to be 
expected, and if so, whether the estimated trend is at least in the right direction.  But if we do 
choose the linear trend model, it would be dangerous to extrapolate the trend very far into the 
future based on such a small sample, because the longer-horizon forecasts and confidence 
intervals depend very sensitively on the assumption that the trend is linear and constant. 
 
A linear trend model is not a very “robust” model for time-series forecasting. If you have no a 
priori knowledge of whether the series has a positive trend, negative trend, or zero trend, then it 
is more conservative to assume zero trend (i.e., to stick with the mean model or perhaps a moving 
average model that puts more weight on the most recent values) than to use a linear trend model 
with a not-very-significant trend estimate.  However, if you have good reasons for believing 
there is a trend in a particular direction, but you just don’t know if it is steep enough to stand out 
against the background noise in a small sample, then the linear trend model might be logically 
preferred even if its estimated trend coefficient is only marginally significant.  Still, its 
confidence intervals for long-horizon forecasts probably shouldn’t be taken very seriously.  
 
Another problem with the linear trend model is that in fitting the trend line it gives equal weight 
to all the data, old and new.  It tries just as hard to fit the very first data points as the very last 
ones.  In real applications, you are generally more interested in how the model has been doing 
lately, i.e., what is happening at the “business end” of the time series.  Alternative models for 
trend extrapolation, which place relatively more weight on the most recent data, will be 
discussed in later sections of these notes. 
 
  

A rule of thumb:  when adjusted R-squared is fairly small (say, less than 20%), the 
percentage by which the standard error of the regression model is less than the standard 
error of the mean model is roughly one-half of adjusted R-squared. 
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There are also other ways in which the mean model might turn out to be the wrong model for a 
given data set.  For example: 
 

• Consecutive deviations from the mean might be correlated with each other 
• The standard deviation of variations around the mean might not be constant over time 
• The mean may have undergone a “step change” at some point in the middle of the series  

 
Each of these alternative hypotheses could be tested by fitting a more complicated model and 
evaluating the significance of its additional coefficients, but once again, you should not rely only 
on significance tests to judge the correctness of the model—you should draw on any other 
knowledge you may have, particularly given the small sample size.  You shouldn’t just blindly 
test a lot of other models without good motivation.   
 
At the end of the day you may have to explain your choice of model to other decision makers, 
perhaps betting their money and your reputation on it, and you ought to have a better argument 
than just “this one has good t-stats” or “it has an R-squared of 85%” or (worst of all) “my 
automatic forecasting software picked it for me.” 
 
 
The mean model is very simple, but it is the foundation for more sophisticated models we will 
encounter later:  regression, random walk, and ARIMA.  It has the same generic features as any 
statistical forecasting model: 

  → One or more parameters to be estimated 

  → An estimate of the intrinsic risk, which is called the 
   “standard error of the model” 

  → An estimate of the parameter risk(s), which is called the  
          “standard error of the coefficient(s)” 

  → A forecast standard error that reflects both intrinsic 
  risk & parameter risk… 

 …AND MODEL RISK TOO! 
 
The formulas for calculating standard errors and confidence limits when using the mean model 
have exactly the same form as those that apply to regression models.   If you understand the 
former, you will understand the latter.  The only difference is that in a regression model the 
estimated mean and its standard error are not constants—they depend on the values of the 
independent variables—and so the standard errors of forecasts are not all the same either.  The 
standard errors of forecasts are larger, and hence confidence intervals are wider, for predictions 
that are made for more extreme conditions or more distant points in the future. 
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To sum up the more general lessons of this chapter:   
 
 
There are no magic formulas for creating good forecasting models, but there are 
best practices you should try to learn, and that’s what this web site is about.    
 
t-stats, P-values, and R-squared, and other test statistics are numbers you should know how to 
interpret and use, but they are not the most important numbers in your analysis and they are not 
the bottom line.   
 
Your bottom-line issues are the following: 

• First of all, what new things have you learned from your data collection and from 
your analysis that might be useful to yourself or others?  Perhaps you learned 
something new about the amount of uncertainty in Y or about trends in Y or about the 
relation between Y and X, and perhaps you learned that you need better quality data 
or more sophisticated models or software in order to be able answer questions like 
that.  Even the latter lesson may be very useful, if you act upon it! 

• What assumptions does your model make, and do they seem reasonable based on 
everything you know? 

• Would these assumptions make sense to someone else, and can you explain them in 
plain language? 

• Would a simpler, easier-to-understand model perform almost as well? 

• How accurate are your model’s predictions for the sample data in real terms, in 
comparison to those of alternative models? 

• How accurate is it likely to be when you use it to predict the future (not merely to fit 
what has been observed in the past)? 

• How good (or bad) are the inferences and decisions you will make when using it? 
 
 


	What’s the difference between a standard deviation and a standard error?

