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Abstract

On-demand delivery platforms—such as restaurant delivery services—can “stack” orders, as-
signing orders from multiple customers to a single driver. While this typically reduces operating
costs, it also impacts customers, drivers, and service providers (e.g., restaurants) by increasing
delivery times and affecting their utility from participating in the platform. To investigate the
implications of order stacking, we develop a model with delay-sensitive customers that endog-
enizes the decisions of all platform stakeholders. We first find that for an on-demand delivery
market to be economically viable, order stacking should not be excessive because stacking may
lead to unacceptable delays for customers. Second, it is optimal for the platform to stack some
orders as long as customer valuations for the service are not too small; we derive the platform’s
optimal stacking level and discuss how it depends on various market conditions. Third, cus-
tomers prefer more order stacking than any other market participant, including the platform,
because with order stacking the platform offers a lower price to customers, which ultimately
increases both the number of customers participating and their individual utility from the ser-
vice. Fourth, unless the time to drop off orders is negligible or the number of available drivers
is very small, the platform can earn more profits by offering direct (non-stacked) deliveries for
customers that live far from the service provider. Consequently, if implemented correctly, order
stacking may benefit customers and platforms alike.

1 Introduction

Restaurant delivery platforms represent a large and increasingly important part of the food industry,

their growth accelerated by the COVID-19 pandemic (McKinsey & Company 2021, Rana and

Haddon 2021a). DoorDash is the largest of these platforms in the U.S., accounting for two thirds

of the U.S. restaurant delivery market (Kaczmarski 2024), and delivering over 500 million orders

each quarter (Business Wire 2023). The business model of such platforms is characterized by high

revenue, high costs (particularly labor), and very low margins (McKinsey & Company 2021, Rana

and Haddon 2021a). DoorDash and Uber, the two companies that collectively control most of the

food delivery market in the U.S., have not been profitable since going public (Rana and Haddon

2021a). Because of this, operational efficiency is key to the long-term viability of restaurant delivery

platforms.
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Because the single largest cost facing platforms is driver compensation (Rana and Haddon

2021a), one important way they have sought to improve operational efficiency is by “stacking” two

or more orders together and assigning them to a single driver (Carson 2019, McKinsey & Company

2021, Weinstein and Luo 2021, Deliveroo 2022).1 Platforms claim that stacking orders reduces labor

needs and gets orders where they need to go faster (Weinstein and Luo 2021, Deliveroo 2022, Uber

2022b), and enables drivers to earn more money more efficiently (Weinstein and Luo 2021, Deliv-

eroo 2022, DoorDash 2022, Uber 2022a). However, some drivers complain that delivering stacked

orders reduces their wages and results in lower customer ratings, because customers complain about

the greater delays that result when a driver has to drop off additional orders before delivering a

customer’s food (see, e.g., Reddit 2018, 2020, 2021). Hence, while stacking orders can potentially

reduce operating costs, it may have adverse effects on driver and customer participation, not to

mention restaurant revenue. As a result, the ultimate value of stacking to platforms is unclear.

In this paper, we consider precisely this trade-off as we seek to understand the implications

of order stacking for on-demand delivery platforms and customers, drivers, and service providers

that use them. To study these issues, we build a game theoretic model that endogenizes the

actions of a platform, customers, drivers, and a restaurant participating in the delivery service:

the platform chooses the price to offer customers and the wage to offer drivers, customers choose

whether to order, and drivers and the restaurant choose whether to participate. While our primary

motivation is order stacking by restaurant delivery platforms such as DoorDash and UberEats,2 our

model applies broadly to any on-demand delivery platform that faces a trade-off between operating

costs and customer service when stacking delivery orders (e.g., as with delivery from grocery or

convenience stores via platforms like Instacart).

We consider the following key research questions. First, does order stacking impact the viability

of an on-demand delivery market? If so, how does it affect the conditions for the existence of a mar-

ket equilibrium with positive demand? Second, what is the optimal stacking level for the platform,

and how does it depend on the underlying market parameters? Third, how does the platform’s

optimal stacking level compare to the preferred stacking level of the other market participants?

Fourth, when is it most valuable for the platform to offer differentiated services to customers, i.e.,

by giving some customers stacked deliveries and other customers direct (non-stacked) deliveries?

We begin by analyzing the equilibrium with an exogenous level of order stacking. We find that

a market with positive demand exists only if the order stacking level is not too large. In other

words, order stacking makes it more difficult for a delivery market to be economically viable, and

excessive stacking can result in the market breaking down. The equilibrium further falls into one

1Throughout the paper, we use the term “stacking,” which has been used by some firms in the industry; other
terms for this practice include “batching” and “bundling.”

2The problem of order stacking reducing customer utility via increased waiting times—and thereby adversely
impacting customers, drivers, and restaurants—is particularly salient in restaurant deliveries, as customers ordering
meals are especially time-sensitive compared to, e.g., customers ordering packaged goods from a retailer.
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of two qualitatively different regimes characterized by the relative number of available delivery

drivers: in the first regime, sufficient drivers are available to allow the platform to set its preferred

price and wage levels—we refer to this regime as the abundant driver regime. In the second regime,

the platform is constrained by the number of available drivers and so must set a sub-optimal price

and wage—this regime is called the scarce driver regime. While increasing the stacking level makes

market existence less likely, it can make it more likely that the equilibrium falls into the abundant

driver regime, which in turn increases the platform’s profit.

Building on this, we then consider the optimal level of order stacking for all market participants.

We find that the platform’s optimal stacking level is positive if customer valuations for the service

are not too small. Hence, even though order stacking can make it more difficult for a market to

exist, some degree of stacking can be beneficial for the platform, as stacking decreases operating

costs and makes it easier for the platform to deal with a shortage of drivers. When drivers are

abundant, the preferred stacking levels of all market participants can be strictly ordered: customers

prefer the highest level of stacking, followed by the platform, the restaurant, and drivers. Thus,

even though stacking increases delivery times of individual customers, in equilibrium it benefits

the customers the most because the platform can use stacking to serve more customers at a lower

price than it can without stacking. On the other hand, stacking (at the platform’s optimal level)

negatively impacts driver surplus, due to the reduced wages and lower number of drivers recruited

by the platform. In other words, the precise operational cost savings that benefit the platform

come at the expense of drivers.

Finally, we consider an alternative service model for the platform—motivated by emerging

practice at some delivery platforms—in which the platform stacks orders for customers located

close to the restaurant (for whom delays are minimal) and offers direct deliveries for customers

located far from the restaurant (for whom delays are long). We find that this alternative model can

strictly increase profit for the platform unless the drop-off time of each order is negligible (which is

unlikely in practice) or the driver pool is very small. Hence, unless there is a significant shortage of

drivers, the platform can increase its profit by offering differentiated levels of service to customers

based on their distance from the restaurant.

2 Literature

Our paper is related to the literature on order stacking—or, more generally, pooling or bundling—in

ride-hailing and delivery platform settings. Both settings differ from taxi and centralized delivery

services in that drivers are not employees of the companies; instead, drivers are market partici-

pants that decide when and how much to work. We begin our discussion of the literature by first

considering stacking in the more established ride-hailing literature, then survey the more nascent

literature on delivery platform operations.
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In ride-hailing platforms, assigning two or more riders to be in the same car at the same time is

called “(ride) pooling.” Pooling has significant operational importance—in areas where Uber and

Lyft offer pooling, 20% and 40% of rides, respectively, were pooled as of December 2017 (Shaheen

and Cohen 2019). Because of this, pooling has attracted substantial attention in the research

literature on ride-hailing (see, e.g., Hu et al. 2020, Jacob and Roet-Green 2021, Zhang and Nie

2021a,b, Gopalakrishnan et al. 2019, Taylor 2024). Wang and Yang (2019) present a recent survey

on ride-hailing platforms, and Shaheen and Cohen (2019) provide an introduction to pooling in

various contexts, including ride-hailing platforms. Of most relevance to our work, Wang and Zhang

(2022) study how the surpluses of all participants in a ride-hailing platform are affected by ride

pooling. They model a pooled ride as having a lower rider valuation than a solo ride, and find that

the platform is better off offering pooling if the gap between the valuations of pooled and solo rides

is not too large. Riders always benefit from pooling being offered, but drivers can be hurt by it. In

fact, if driver reservation utilities are uniformly distributed (as they are in our model), drivers are

always worse off when the platform allows pooling. Wang and Zhang (2022) also present a numerical

study indicating that social welfare is increased by offering pooling. Taking the perspective of a

platform, Bahrami et al. (2022) consider how a ride-hailing platform should set fares, target vehicle

occupancy, and fleet size to maximize its profit, also characterizing when the platform should offer

solo or pooled rides together or in isolation. Unlike Wang and Zhang (2022) and our paper, Bahrami

et al. (2022) assume that the platform sets the fleet size as a decision variable, and thus do not

model drivers as rational agents. While ride pooling is conceptually similar to order stacking in

food delivery platforms, there are significant differences between the two settings. Perhaps the

biggest difference is that restaurants participate in food delivery platforms, in addition to drivers

and customers that participate in both types of platforms. The presence of restaurants makes a

food delivery platform a three-sided market in which customers, drivers, and restaurants must be

incentivized to participate. In addition to the economic differences between the platforms, there

is also an operational difference. In ride-hailing platforms, drivers are dispatched to customers’

individual locations to pick them up and transport them. By contrast, food delivery platforms

dispatch drivers to one of a fixed set of restaurants (in our case, to a single restaurant) to pick up

the orders and deliver them. Thus, the delivery problem for food delivery platforms is anchored at

the restaurant(s) in a way that the routing problem for ride-hailing platforms is not.

In contrast to pooling in ride-hailing platforms, there has been little research about the effects of

stacking in food delivery platforms, where prior work has focused more on the impact of platforms

on restaurants (e.g., Chen et al. 2022, Feldman et al. 2023). The closest works to ours in this

literature are those by Bahrami et al. (2023), Liu et al. (2023), Chen and Hu (2024), Ke et al.

(2024), and Ye et al. (2024). Both Bahrami et al. (2023) and Liu et al. (2023) model restaurants,

customers, and drivers as price-sensitive agents on a platform. Bahrami et al. (2023) compare

the equilibria attained when the platform is respectively a profit-maximizer and a social welfare-

4



maximizer. They find that the socially optimal equilibrium has lower restaurant commissions

and higher driver wage than the profit-maximizing equilibrium. Considering the platform to be a

profit-maximizer, Liu et al. (2023) compare restaurant surplus and social welfare in the presence

and absence of a platform, finding that the presence of a platform increases both. Neither paper

examines the effects of order stacking, which is the heart of our paper. Chen and Hu (2024), on the

other hand, compare two online fleet routing policies of a platform in a disk service area centered

at the restaurant. Considering uniformly distributed customer orders following a Poisson process,

they examine whether it is better for the platform to assign one order or two orders to drivers under

a first-come-first-served policy. However, they model drivers as employees rather than economic

agents, so their paper is more appropriately considering in-house drivers rather than platform

drivers. In the transportation literature, Ke et al. (2024) and Ye et al. (2024) develop spatial

models to study the effect of order assignment policies on a food delivery platform’s profit and

social welfare. Our work is differentiated from the aforementioned three studies because we provide

a theoretical analysis on how order stacking impacts the payoffs of all market participants—the

platform itself as well as customers, drivers, and a restaurant.

Our research is also broadly related to the growing operations research and management science

(OR/MS) literature on managing platforms (see, e.g., Cachon et al. 2017, Taylor 2018, Bai et al.

2019, Bimpikis et al. 2019, Guda and Subramanian 2019, Bernstein et al. 2021, Besbes et al. 2021,

Astashkina et al. 2022, Benjaafar et al. 2022, Castillo et al. 2022, Freund et al. 2022, Hu et al. 2022,

Ma et al. 2022, Siddiq and Taylor 2022, Lian and van Ryzin 2023). Chen et al. (2020) provide

a detailed overview of various modeling approaches in this literature. Some of the studies in this

context focus on autonomous vehicles in ride-hailing platforms (see, e.g., Freund et al. 2022, Siddiq

and Taylor 2022, Lian and van Ryzin 2023), whereas several ride-hailing studies consider drivers

as independent agents (see, e.g., Cachon et al. 2017, Taylor 2018, Bimpikis et al. 2019, Jacob and

Roet-Green 2021). We also consider drivers as independent agents and investigate the use of pricing

to match supply with demand in a platform setting. Nevertheless, as noted at the beginning of this

section, our focus on food delivery platforms, especially the inclusion of deliveries from a restaurant

in our model, significantly differentiates our work from the aforementioned studies.

3 Model

Consider a food delivery platform operating in a linear city (Hotelling 1929) with a restaurant

located at the origin. A continuum of infinitesimal (potential) customers are distributed over the

positive real line according to Lebesgue measure. In our base model, the platform offers delivery

service to all customers on the positive real line—in Appendix E.1, we consider an extension of this

model where the platform has a fixed service radius, where customers outside of the service radius

are not permitted to participate.
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We let L be the number of deliveries made by each driver on the platform. If L > 1, then the

platform is said to be “stacking” orders; if L = 1, the platform offers direct deliveries. Thus, we

call L the order stacking level of the platform. (We first treat L as an exogenous variable and then

analyze the optimal value of L.)

We model deliveries as a game between four market participants—the platform, customers,

drivers, and the restaurant—based on the following sequence of events:

1. The platform determines the price P to charge customers for the delivery service.3

2. All customers on the real line observe P and determine whether to order.

3. Based on the number of customer orders and the order stacking policy, the platform deter-

mines how many drivers to recruit, and the platform adjusts driver pay to induce participation

by the appropriate number of drivers at the minimum cost to the platform.

4. The platform assigns drivers to orders. We assume that each driver is assigned to deliver

a mass of L each located within a continuous interval, i.e., neighboring orders are grouped

together for delivery.

5. After all the deliveries are made, collected revenue is shared between the platform and the

restaurant.

Next, we describe each of the above market participants in more detail, beginning with customers.

3.1 Customers

Customers are expected utility maximizers who, after observing the price P , choose between or-

dering delivery from the restaurant via the platform and forgoing consumption (or, equivalently,

consuming an exogenous outside option). Customers have homogeneous valuations V for their or-

ders, and experience a disutility proportional to the time it takes their orders to be delivered, i.e.,

the waiting time. A customer’s waiting time is the total time between the customer ordering a meal

and the ordered meal arriving at the customer’s location. In practice, this time is determined by (i)

the time it takes a driver to reach the restaurant, (ii) the time it takes the restaurant to fulfill the

order, and (iii) the time it takes the driver to bring the meal to the customer. In our base model,

for simplicity and to focus on the effects of order stacking on (iii), we assume that both (i) and (ii)

are equal to zero; however, we extend the base model to allow for a positive meal preparation time

(or, equivalently, driver travel time to the restaurant) in Appendix E.2. Thus, in our base model,

3In practice, the price might be set jointly by the restaurant and the platform. For instance, the restaurant might
set the the menu price of the food, while the platform sets the delivery fees. For simplicity, we assume the platform
maintains all pricing power. This is meant to reflect the fact that even if the restaurant sets the menu price, the
platform has the ability to raise or lower the price beyond this value, by either charging additional service fees (to
raise the price) or offering discounts or promotions (to lower the price).
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the waiting time for a particular customer consists entirely of driver delivery time, which in turn

is comprised of two components: the travel time from the restaurant to the focal customer (which

is incurred regardless of the stacking level), and the drop-off time associated with any orders the

driver delivers prior to the focal customer (which depends on the stacking level).

Each customer knows their location on the real line, x. Moreover, travel is assumed to occur

at unit speed; hence, the travel time from restaurant to the customer is simply x. To determine

their wait time, customers must also estimate the number of drop-offs that occur prior to their

delivery. We assume that customers are aware of the order stacking policy and hence the number

of deliveries, L, in each order, but are unaware of their exact position in the driver’s sequence of

drop-offs. This is reflective of the fact that it is difficult for a customer to precisely anticipate

their place in the drop-off sequence on a particular delivery run. Because customers do not know

their exact position in the drop-off sequence, they assign equal probability to any position, and

hence in expectation they assume they are in the middle of the drop-off sequence. Specifically,

every customer assumes there is a mass of orders equal to (L − 1)/2 that their driver needs to

drop off before reaching them.4 Each order is assumed to require d units of time to drop off with

a customer (e.g., due to the driver having to park, exit their vehicle, physically deliver the food to

the customer’s door, and return to their vehicle), hence a total delay of d(L− 1)/2 is incurred from

stacked deliveries. When L = 1 (i.e., the platform offers direct deliveries), there is zero stacking

delay.5

Combining these facts, the total expected wait time of a customer at location x > 0 is

W (x) = x+
d(L− 1)

2
. (1)

The marginal disutility of waiting is δ per unit time. Hence, the total utility a customer located at

x receives is their valuation for service minus the price and the disutility from waiting, i.e.,

U(x) = V − P − δW (x). (2)

(In Appendix E.3, we study an extension where the disutility from waiting is a general convex

function of wait time.) The customer orders if and only if U(x) = V − P − δW (x) ≥ 0, or

equivalently, if and only if W (x) ≤ (V − P )/δ. Because W (x) is increasing in x, there exists

a positive real number C such that W (x) ≤ (V − P )/δ if and only if x ≤ C. Therefore, in

equilibrium, only customers located in [0, C] live close enough to the restaurant to receive positive

4When L is an integer, each of the L orders for the driver to drop off is equally likely to be the first, second, . . . ,
Lth, implying that the number of orders that a customer would expect to be dropped off before them is 0L−1 +
1L−1 + 2L−1 + · · ·+ (L− 1)L−1 = (L− 1)/2. When L is not an integer, this is an approximation.

5We assume that customers do not include any drop-off time incurred with the delivery of their own order when
calculating the total delay time; because this is the same regardless of the stacking policy, it is a fixed cost for all
customers participating in the delivery platform, which we normalize to zero.
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utility from ordering through the platform; see Figure 1. Under the wait time given in (1), the

mass of participating customers is

C =
V − P
δ
− d(L− 1)

2
. (3)

Aggregate consumer surplus SC is thus

SC =

∫ C

0
U(x)dx =

δ

2
C2.

0 x C

Participating customers

A focal customerRestaurant

Figure 1. Linear city model and participating mass of customers.

3.2 Drivers

In food delivery platforms, driver pay is based on total trip distance, the time to complete the

trip, and other proprietary factors (DoorDash 2021, Uber 2021). Consequently, we model driver

pay based on trip distance D and time T as equal to ρd gd(D) + ρtgt(T ), where gd(·) and gt(·)
are positive and increasing (possibly non-linear) functions of distance and time, respectively, and

ρd ≥ 0 and ρt ≥ 0 are non-negative coefficients. The other factors unrelated to time or distance

that the platforms use do not apply to our setting. For example, the driver pay could depend on

how well-known the restaurant is among drivers (DoorDash 2021). Because our city has only one

restaurant, we assume that the delivery drivers are all paid at the same rate for deliveries.

We further assume that drivers are assigned randomly to orders. Hence, for each driver, the

(ex-ante) expected utility from participating is

V = ρdE [gd(D)] + ρtE [gt(T )] . (4)

To reflect that drivers have heterogeneous alternatives for how to spend their time outside of

delivering for the platform, the reservation utility v of drivers is assumed to be uniformly distributed

on [0, v], where v > 0. Every driver participates when their utility from doing so, V, exceeds their

reservation utility, v. Potential drivers are infinitesimal with total mass D. Thus, the mass of

participating drivers is

D =




V
vD if V ∈ [0, v],

D if V ≥ v.
(5)
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If, in equilibrium, the platform hires the whole driver pool, we say that drivers are scarce. If the

platform hires a fraction of the driver pool in equilibrium, we say that drivers are abundant.

3.3 Platform and Restaurant

In practice, the platform typically keeps a fixed-percentage commission on the total sales made

through the platform, returning the remaining fraction to the restaurant (Feldman et al. 2023).

Let F ∈ [0, 1] be the platform’s percentage in the context of our model.

Given this contractual structure, if the restaurant participates in the platform, the restaurant’s

surplus is

SR = (1− F )CP. (6)

The preceding quantity is also referred to as the restaurant’s utility. In our base model, the

restaurant participates whenever its utility is non-negative, i.e., when SR ≥ 0.

The platform generates revenue from customer orders, and its only expense is the compensa-

tion paid to drivers. Note that, given an exogenous stacking level L and a mass of participating

customers C given by (3), it follows that the required number of drivers D is determined by the

following equation:

L =
C

D
⇒ D =

C

L
. (7)

Let SD denote the total payment made to drivers in equilibrium (note that this is also aggregate

driver surplus). The platform earns a total revenue of FPC, and therefore has profit function

SP = FPC − SD. From (5), the equilibrium aggregate driver pay is

SD = DV =




D
v V

2 if V ∈ [0, v],

DV if V ≥ v.
(8)

In (4), V is zero when ρd = ρt = 0, and continuous and strictly increasing in ρd and ρt, implying

that the platform can make V equal to any value by appropriately setting ρd and ρt. The mass of

drivers that participate is determined solely by the value of V, and in Section 4, all parties’ payoffs

are specified, from which it becomes clear that the value of V is payoff-relevant, while the specific

values of ρd, ρt, gd(·), and gt(·) are not. We therefore take V ≥ 0 as the relevant decision variable

for the platform, instead of the coefficients ρd and ρt and functions gd(·) and gt(·). In fact, this

further implies that any compensation function that allows the platform to make V equal to any

positive real number by appropriately setting the contract parameters satisfies this property—even

if it is not separable in distance and time, as in (4)—and can be represented by our model.

Setting V = v recruits all drivers, so to minimize its costs, the platform would never choose

V > v. We can therefore take V ∈ [0, v] to be a constraint in the platform’s pricing problem,

and under this constraint, the expression for aggregate driver surplus given in (8) simplifies to
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SD = DV2/v. Using (5) and (7), we deduce the following under the constraint V ∈ [0, v]:

v

DL
C = V. (9)

Because the left-hand side is a function of the price P only, (9) shows that we can eliminate V from

the model, provided that we add the constraint

C

L
≤ D, (10)

which is equivalent to V ≤ v (the other constraints imply that C is non-negative). The platform

maximizes its profit SP which, given the preceding observations, yields the following optimization

problem:

max
C,P≥0

SP = FPC − v

D

(
C

L

)2

(11)

subject to: C =
V − P
δ
− d(L− 1)

2
, (12)

C

L
≤ D. (13)

We can then solve (12) for P , obtaining

P = V − d(L− 1)δ

2
− δC. (14)

We can use this expression to eliminate the decision variable P , leaving only C as a decision variable.

The resulting problem can be written as

max
C

SP = F

(
V − d(L− 1)δ

2
− δC

)
C − v

DL2
C2

subject to: 0 ≤ C ≤ min

{
2V − d(L− 1)δ

2δ
,DL

}
.

In other words, given the market participation decisions of customers, drivers, and the restaurant,

the platform’s problem reduces to one of picking the participating mass of customers, C, which

it accomplishes by varying the price P ; given this, the platform chooses the minimum driver

compensation that induces the appropriate number of drivers to participate according to the order

stacking level, L.

Finally, social welfare S is defined to be the sum of the surpluses of all market participants, i.e.,

S = SC + SD + SR + SP = SC + PC.

A summary of all notation is given in Table 1.
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V customer valuation for service

v driver maximum outside option value

d drop-off transaction delay

D potential driver mass

ρd driver per-mile pay rate

ρt driver per-hour pay rate

δ customer impatience parameter

F revenue sharing fraction

L order stacking level

P equilibrium price

C equilibrium customer mass

D equilibrium driver mass

SC equilibrium aggregate customer surplus

SD equilibrium aggregate driver surplus

SR equilibrium restaurant surplus

SP equilibrium platform profit

S equilibrium social welfare

Table 1. Summary of key notation.

4 Equilibrium Analysis

In this section, we analyze the equilibrium to the model with an exogenous stacking level, i.e., the

solution to the platform’s optimization problem derived in the preceding section. First, we note

that it is clear from the constraints in the platform’s pricing problem that it is only feasible if

2V − d(L − 1)δ ≥ 0. Furthermore, if this inequality holds with equality, then the only feasible

choice is to set the prices high enough so that no customer participates. However, if the inequality

holds strictly, then we show in Appendix A that the optimal solution always has some mass of

customers (and drivers) who participate, and this further implies that both the platform and the

restaurant earn strictly positive profits. These observations lead to our first main result:

Proposition 1. Assuming all model parameters are positive, there is a market (that is, there is

a positive mass of customers and drivers that participate, and the restaurant and platform find it

strictly profitable to participate) if and only if

2V − d(L− 1)δ > 0. (15)

Furthermore, drivers are scarce if and only if

2V − d(L− 1)δ > 4

(
v

FL
+DLδ

)
; (16)

otherwise, drivers are abundant.
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We refer to (15) as the market condition and (16) as the driver scarcity condition. The market

condition has an intuitive explanation. Dividing by 2 and rearranging, we can express the market

condition as V > d(L−1)δ/2. Thus, a market exists if and only if the customer valuation is greater

than the disutility induced by the mass of orders that a customer expects their driver to drop off

before getting to them. As long as this is the case, there is a positive mass of customers that is

close enough to the restaurant to get positive utility from ordering at some non-negative price.

When L = 1, (15) holds for any V > 0. In other words, with direct deliveries, a market always

exists if customers derive positive value from the service. Because the left-hand side of (15) is

decreasing in L, this immediately implies that a market exists only if L is sufficiently small. Put

differently, order stacking (the case where L > 1) makes market existence more difficult because it

increases customer waits even for customers located close to the restaurant. If the stacking level is

too high (i.e., L > 2V/dδ + 1) the market breaks down entirely. The parameters involving drivers

(i.e., v and D) and the restaurant (i.e., F ) influence the equilibrium price but do not influence the

existence of the market. This is because, when there is a price at which some customers and the

platform are willing to participate, the restaurant makes a profit and there is always a positive

mass of drivers who can make a profit.

The scarcity condition (16), on the other hand, implies that when the gap between the customer

valuation and the disutility of waiting is too large, the platform is unable to serve the number of

customers that it would like due to an insufficient driver pool. In turn, this implies that the

available-driver constraint is binding at optimality, limiting the platform’s profit. Because the left-

hand side of (16) is decreasing in L and the right-hand side is convex in L, a greater stacking level

can result in a transition from the scarce driver regime to the abundant driver regime. In other

words, while order stacking can make market existence more difficult per (15), it can also allow

the platform to more effectively operate with a limited driver pool by moving to the abundant

driver regime per (16). This illustrates that order stacking is a double-edged sword that can help

the platform cope with a limited driver pool, provided stacking is not so excessive that the market

breaks down entirely.

4.1 Equilibrium in the Abundant Driver Regime

When drivers are abundant (i.e., (16) is violated), the platform is capable of recruiting the uncon-

strained optimal number of drivers to satisfy the market demand. Our first result in this case shows

that, intuitively, all market participants—drivers, customers, the restaurant, and the platform—

are better off when customers highly value the service (i.e., V is high) and orders are dropped off

quickly (i.e., d is low):

Proposition 2. When drivers are abundant, the surpluses of all four market participants (namely,

SD, SC , SR, and SP ) are strictly increasing in V and strictly decreasing in d.
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As the customer valuation V increases, the platform can both profitably reach more customers and

charge them a higher price. The rise in customer participation requires more drivers and higher

wages, both of which benefit the driver surplus. Consequently, all parties benefit from increasing

V . On the other hand, an increase in the drop-off time d reduces the customer utility and hence the

price that the platform can charge. Such an increase also reduces customer and driver participation

and thus the surplus of all market participants. Because d is essentially a transaction time, it is

not surprising that no party benefits from a larger d.

The next result characterizes how the platform’s profit is affected by several other key market

conditions.

Proposition 3. When drivers are abundant, the platform’s profit, SP , is strictly increasing in D

and F and strictly decreasing in δ and v.

Intuitively, the platform benefits when it can get more drivers for the same cost (i.e., when the

driver pool size D increases, or the maximum outside option value of drivers v decreases) and when

it gets a larger share of the total revenue (i.e., when the revenue sharing fraction F increases).

However, the platform’s profit decreases if customers are more sensitive to waiting (i.e., when the

customer impatience δ increases), because the customer utility is reduced and the platform must

compensate by lowering its price.

To analyze the customer surplus, we distinguish between customers’ aggregate surplus, SC , and

average surplus, SC/C. The following result examines the properties of the mass of participating

customers (C), the aggregate customer surplus (SC), the average customer surplus (SC/C) in

equilibrium.

Proposition 4. When drivers are abundant, we have the following:

(i) The mass of participating customers, C, and the aggregate customer surplus, SC , are strictly

increasing in F and D and strictly decreasing in v.

(ii) In addition, C is strictly decreasing in δ, while SC and SC/C are strictly quasi-concave in δ.

Furthermore, SC is maximized at δSC
while SC/C is maximized at δavgSC

> δSC
.

Proposition 4 states that customers’ participation and surplus increase in response to an increase

in the driver pool size D or a decrease in the maximum outside option value of drivers v. Both

changes essentially make drivers cheaper for the platform. The platform responds by lowering its

price and hiring more drivers, making customers better off and encouraging their participation. C

and SC also increase in the revenue sharing fraction F . As F increases, the platform earns more

revenue per customer order (all else being equal), which allows the platform to lower the price and

increase the number of customers served.

The impact of δ on customers’ participation and surplus is more complicated. If customers

become more impatient, their utility decreases and they participate less (i.e., C decreases in δ).
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However, in response to this, the platform lowers the price, which increases every individual cus-

tomer’s utility. As a result of these two effects working in opposite directions, the aggregate

customer surplus is strictly quasi-concave in δ. The value of δ that maximizes the aggregate cus-

tomer surplus, δSC
, is smaller than the one that maximizes the average customer surplus, δavgSC

.

As δ increases from δSC
to δavgSC

, the mass of participating customers and their aggregate surplus

decrease, but their average surplus increases. This implies that there are fewer customers, each of

whom is better off individually.

In our analysis, we also show that both δSC
and δavgSC

are strictly decreasing in L; see Propo-

sition C.1 in Appendix C. This observation offers a practical insight. During the COVID-19 pan-

demic, many people heavily relied on food deliveries (McKinsey & Company 2021, Wang et al.

2021). As the impact of the pandemic diminishes, people would likely have more dining options

and their sensitivity to delay in food deliveries could increase. If food delivery platforms respond

by increasing order stacking to increase efficiency, this might backfire in that there would be fewer

customers, each of which may be worse off. This, in turn, may negatively affect long-term market

penetration.

Next, we consider the impact of market conditions on drivers. Akin to the preceding customer

analysis, we separately analyze the mass of participating drivers (D), aggregate driver surplus (SD),

and average driver surplus (SD/D). The following proposition summarizes this analysis.

Proposition 5. When drivers are abundant, we have the following:

(i) The mass of participating drivers, D, and the aggregate driver surplus, SD, are strictly increasing

in F and strictly decreasing in δ.

(ii) In addition, D is strictly increasing in D and strictly decreasing in v, while average driver

surplus, SD/D, has the opposite behavior. Furthermore, SD is strictly quasi-concave in D and v,

with maximizers DSD
and vSD

, respectively.

In contrast to customers, driver surplus is not necessarily increasing in the driver pool size D. The

aggregate driver surplus, SD, is strictly quasi-concave in D, while the average driver surplus, SD/D,

is strictly decreasing in D. The quasi-concavity of SD in D is a consequence of two effects that

work in opposite directions. One is that as the driver pool gets bigger, the driver compensation

rate drops, making them individually worse off. The other is that as D gets bigger, the platform

can hire more drivers for the same amount of money, so the mass of participating drivers increases.

As a result of these two effects, there are more drivers, each of which is individually worse off, as

the number of available drivers increases. Over low values of D, the aforementioned decrease in

the individual driver surplus is offset in the aggregate by the surge in driver participation. The

opposite happens when D is high.

Drivers’ participation and surplus both increase as F grows. As noted in our customer analysis,

as F increases, the platform earns more revenue per customer and hence lowers the price to expand
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the market. With more customers to serve, the platform also recruits more drivers, which means

that the driver surplus also increases due to an increase the revenue sharing fraction F . The

opposite is true of the customer impatience δ. When customers become more sensitive to waiting,

their utility decreases, leading them to participate less in the platform. With less demand, the

platform uses fewer drivers, and hence, the aggregate driver surplus and the mass of participating

drivers are both negatively affected by an increase in δ.

Lastly, we consider how the restaurant is impacted by the market conditions in equilibrium.

The analysis for the restaurant is similar to that for the platform in most respects because the

revenue is split between them—any change that increases the revenue is beneficial for both the

restaurant and the platform. This leads to the following result.

Proposition 6. When drivers are abundant, we have the following:

(i) The restaurant’s surplus, SR, is strictly increasing in D and strictly decreasing in v and δ.

(ii) In addition, SR is strictly quasi-concave in F with a unique maximizer FSR
∈ (0, 1). More

specifically, SR vanishes at F = 0, strictly increases up to FSR
, and strictly decreases until it

vanishes again at F = 1.

Intuitively, the restaurant benefits from an increase in the driver pool size D, but is worse off when

drivers are harder to hire (increasing v) or customers are less patient (increasing δ). The impact

of the revenue sharing fraction F is quite different, however. Recall that F is the fraction of the

total revenue that the platform retains, with 1− F of the revenue paid to the restaurant. Näıvely,

one might think that the restaurant would prefer to have F as close to 0 as possible, because this

maximizes the portion of the total revenue that is allocated to the restaurant. Proposition 6 shows

that, in fact, the restaurant may be better off with a contract that gives them a smaller percentage

of the total revenue. In decreasing its portion of the total revenue, the restaurant allocates more

money to the platform, and the platform responds to this by recruiting more drivers and expanding

the mass of participating customers, as discussed following Propositions 4 and 5. This means that

the total revenue pie can increase, resulting in the restaurant getting more profit, even though

its percentage of the total revenue is smaller. Consequently, it is not true that the restaurant

always benefits from retaining a higher percentage of the delivery revenue, given the reactions of

all market participants to this revenue share parameter; this suggests that platforms, restaurants,

and policymakers should be careful of “commission cap” laws that place a limit on the fraction

of revenue the platform can retain (see also Feldman et al. 2023), although this comes with an

important caveat, as we discuss in the next section.

4.2 Equilibrium in the Scarce Driver Regime

When drivers are scarce (i.e., (16) holds), the platform is incapable of recruiting its preferred

number of drivers, and hence the platform’s profit is constrained at optimality. In turn, this leads
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to different comparative statics compared to the case of abundant drivers. These differences stem

from one important feature of the scarce driver regime: in this regime, the platform recruits all

drivers in equilibrium, and given that the order stacking level is L, this determines how many

customers the platform serves. In other words, because the platform cannot recruit more drivers,

it cannot serve as many customers as it wants, and the driver population determines how many

customers participate.

Thus, the masses of participating customers and drivers, C and D, (and, hence, SC and SD)

become insensitive to changes in many of the model parameters. For example, Proposition 2 states

that each party’s equilibrium surplus strictly increases in V and strictly decreases in d when drivers

are abundant. In contrast, we have the following proposition in the scarce driver regime.

Proposition 7. When drivers are scarce, the surpluses of the restaurant and the platform, SR and

SP , are strictly increasing in V and strictly decreasing in d, but the customer surplus and the driver

surplus, SC and SD, are independent of V and d.

Because of the number of drivers and customers are fixed, an increase in V , which raises the

customer utility (all else being equal), is fully extracted by the platform via an increase in the

price. Similar, an increase in d, which decreases the customer utility, is fully compensated by the

platform via a decrease in the price. Consequently, the platform (and its revenue sharing partner,

the restaurant) can extract all surplus gains and absorb all surplus losses from an increase in the

customer valuation or the drop-off time.

We next consider the behavior of the customer surplus, SC , in the scarce driver regime. The

following proposition is analogous to Proposition 4.

Proposition 8. When drivers are scarce, we have the following:

(i) The mass of participating customers, C, the aggregate customer surplus, SC , and the average

customer surplus, SC/C, are strictly increasing in D and independent of F and v.

(ii) In addition, C is independent of δ, while SC and SC/C are strictly increasing in δ.

In light of our discussion, it is not surprising that the only way to increase or decrease C is to

change D: only by increasing the potential pool of drivers can the mass of participating customers

be expanded. In addition, for fixed D, because the mass of customers is fixed, the more time-

sensitive customers are, the less surplus the platform can extract from them, causing SC and SC/C

to be increasing in δ.

A similar story unfolds with drivers. When drivers are scarce, D = D, implying SD = Dv and

SD/D = v, which gives us the following proposition.

Proposition 9. When drivers are scarce, the mass of participating drivers, D, and the aggregate

driver surplus, SD, are strictly increasing in D, and the aggregate and average driver surpluses, SD

and SD/D, are increasing in v. They are independent of all other model parameters.
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Finally, we move to the equilibrium behavior of the platform and the restaurant in the scarce

driver regime. In contrast to customers and drivers, comparative statics for the platform’s profit

are the same regardless of whether drivers are scarce or abundant, as the following proposition

states.

Proposition 10. When drivers are scarce, the platform’s profit, SP , is strictly increasing in D

and F and strictly decreasing in δ and v.

Intuitively, even when drivers are scarce, the platform continues to benefit from an increase in the

driver pool or its fraction of the revenue, and continues to be harmed by an increase in customer

impatience (which reduces the price the platform can charge) and the outside option value of drivers

(which increases the wage the platform must pay to recruit all drivers). Hence, the conclusions of

Proposition 10 are identical to those of Proposition 3.

By contrast, the restaurant’s profit does exhibit some differences in behavior in the scarce driver

regime, as can be seen in the following proposition.

Proposition 11. When drivers are scarce, the restaurant’s surplus, SR, is strictly increasing in

D, strictly decreasing in δ and F , and independent of v.

Akin to the case of abundant drivers, SR increases in D and decreases in δ when drivers are scarce.

However, while SR decreases in v when drivers are abundant, it is independent of v when there is

a shortage of drivers. This is because the restaurant does not bear the costs of drivers.

For the dependence of SR on F in Proposition 11, the context of the scarce driver regime is

essential. Condition (16) implies that the scarce driver regime holds for all F above a threshold F .

Proposition 11 states that SR is strictly decreasing in F on the interval [F , 1]. By the maximum

theorem (Kreps 2013), SR is continuous, and by Proposition 6, SR is quasi-concave on [0,min{1, F}].
So, we conclude that SR is quasi-concave on [0, 1]. (For a detailed discussion on the implications

of SR being quasi-concave, see the paragraph following Proposition 6.)

5 Optimal Stacking Levels

Having derived the properties of the market equilibrium under an exogenous stacking level, we

now consider the optimal choice of the stacking level and its impact on the market equilibrium.

Specifically, Section 5.1 determines and compares the optimal stacking level from the point of view

of each market participant. Section 5.2 discusses how the optimal stacking levels change in response

to changes in market conditions.

5.1 Comparing Optimal Stacking Levels

We begin by discussing the case where drivers are abundant, and consider how changes in L impact

the market participants. To see this, consider a focal customer located at x. From (1) and (2),
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we see that such a customer prefers L to be smaller because this decreases their wait time. This

customer may therefore want to see a decrease in L (see, e.g., Reddit 2022), but in equilibrium, the

convenience of a shorter wait time comes at the cost of a higher price P , which in turn reduces the

customer’s surplus.

This trade-off between cost and convenience is manifested in the customer surplus being uni-

modal in L, and similar trade-offs affect the payoffs of the other market participants as well. Before

stating our first result in this section, recall that Proposition 1 implies that a market exists if and

only if 0 < L < L̂ := (2V + dδ)/(dδ). The upper bound L̂ plays an important role in the following

theorem.

Theorem 1. When drivers are abundant, the surpluses of all four market participants, as well as

social welfare, are quasi-concave in L, strictly increasing from zero at L = 0 to their maximum,

and strictly decreasing afterwards until they equal zero at L = L̂.

Hence, each market participant has an “optimal” stacking level that maximizes their surplus. These

are unconstrained optimizers in the sense that they do not necessarily satisfy L ≥ 1. We define the

constrained maximizers as follows: C and SC are maximized at LSC
, D and SD are maximized at

LSD
, SR is maximized at LSR

, SP is maximized at LSP
, and S is maximized at LS . Interestingly,

as the following theorem shows, these maximizers can be strictly ordered when customers highly

value the service.

Theorem 2. When drivers are abundant and the customer valuation V is sufficiently high, (2L̂)/3 ≥
LSC

> LSP
> LSR

> LSD
> 1 and L̂/2 ≥ LSP

. As the customer valuation V decreases, the strict

inequalities collapse into equality from right to left.

Figure 2 displays the platform’s profit and the payoffs of customers, drivers, and the restaurant in

a numerical example, in which one can see the ordering in Theorem 2.

To understand the intuition behind Theorem 2, let us first compare LSC
with LSD

. Theorem 2

states that customers’ optimal stacking level is higher than that of drivers (LSC
> LSD

). This is

because, by definition, when the platform stacks orders (L > 1), each driver delivers more than

one order, so raising L leads to stronger growth in the equilibrium customer mass (relative to the

equilibrium driver mass), which makes the marginal value of increasing L higher for SC (relative

to SD). To see this, first recall that in equilibrium, SC and SD are proportional to C2 and D2,

respectively. As L = C/D, we have C2 = D2L2. Thus, at the value of L maximizing SD, we know

that SC must be increasing. Consequently, SC is maximized at a higher value of L than SD.

The restaurant’s equilibrium surplus depends on the total revenue, which accounts for both

driver and customer incentives—the equilibrium value of SR is essentially a weighted average of

SC and SD, and hence, the restaurant’s optimal stacking level lies between those of customers

and drivers (LSC
> LSR

> LSD
). The restaurant does not have to pay drivers, but the platform
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Figure 2. Optimal stacking levels in the abundant driver regime. The figure displays the payoff functions
SC , SD, SR, and SP for different values of L. The plot starts at L = 1 and ends at L = L̂ = 141. The problem
parameters are V = 35, v = 10, D = 30, δ = 0.2, d = 2.5, and F = 0.3. The constraint D ≤ D does not bind

for any value of L with these problem parameters.

does. Because the platform has to bear this cost, its incentives are more closely aligned (relative

to the restaurant) with maximizing the customer surplus than with maximizing the driver surplus

(LSC
> LSP

> LSR
).

Because of these facts, the optimal stacking levels for each market participant follow the specific

ordering in Theorem 2. The quasi-concave shape of the surplus functions as well as the ordering

of their maximizers immediately implies several results. Based on the recent industry trends of

increasing order stacking in food delivery platforms (McKinsey & Company 2021), suppose that

the platform in our model starts out with a low value of L, and seeks to increase this value by

stacking more orders together. We deduce from Theorems 1 and 2 that, when drivers are abundant

and the customer valuation V is not too small, increasing L from a low value (e.g., its minimum,

L = 1) increases the surpluses of all market participants. In other words, a little bit of stacking is

beneficial to everyone in this case.

However, as L increases further, drivers are the first to experience a negative impact, followed by

the restaurant. This suggests that in practice, a platform’s order stacking may result in drivers and

restaurants becoming dissatisfied, even when the demand for the platform’s service is strong. This

puts the platform’s long-term viability into doubt, because a food delivery platform that cannot

recruit drivers and restaurants to participate cannot sustain itself.

Indeed, because the platform’s optimal stacking level is higher than those of drivers and the

restaurant, Theorem 2 indicates that drivers and the restaurant might feel that the platform’s

preferred stacking level is too high. In practice, restaurants have become increasingly wary of

participating in food delivery platforms. Many restaurants have noticed that their profitability

could suffer substantially when they join a platform, and have responded in several ways, most

notably by ending their relationship with delivery platforms or encouraging customers to order
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online and pick up at the restaurant (Rana and Haddon 2021b). Theorem 2 suggests that one

reason for this could be excessive stacking, which benefits the platform but, at the platform’s

preferred level, negatively impacts drivers and the restaurant.

Theorem 2 also shows that customers prefer the highest level of stacking, even greater than

the platform’s optimal stacking level. This is surprising because, in a non-equilibrium setting, i.e.,

when P is exogenous, (3) implies that C is decreasing in L. The definition of SC then implies

that an increase in L leads to a decrease in SC . In other words, with a fixed P , increasing L is

bad for customers because of the increase in waiting time. In equilibrium, however, the platform

responds to higher L by lowering the price, which increases the customer surplus in two ways: more

customers enter the market, and customers who are already in the market pay a lower price. At

the optimal stacking level for the platform, the price effect dominates the waiting time effect in the

customer utility, meaning that customers prefer a higher stacking level than the platform. Hence,

as long as the platform properly optimizes its price, customers can benefit from increased stacking

up to (and beyond) the platform’s optimal stacking level.

Lastly, we consider the scarce driver regime in the next result.

Theorem 3. (i) There exists an interval [L,L] such that if L ∈ [L,L], then D = D (i.e., drivers

are scarce), and therefore, SD is constant.6

(ii) For market participant i ∈ {C,R, P}, drivers are scarce if and only if LSi ∈ [L,L]. In that

case, the optimal stacking level for market participant i is given by a different quantity L′Si
. These

quantities satisfy L′SR
= L′SP

and L′SC
= L.

A simple verbal paraphrase of Theorem 3 is as follows. When there is a shortage of drivers,

quasi-concavity ofD as a function of L implies that there exists an interval [L,L] on whichD is equal

to D, i.e., the platform recruits all available drivers. On this interval, SD is clearly also constant, so

raising the stacking level in this interval does not affect the platform’s costs. Accordingly, on this

interval, both the platform and the restaurant prioritize increasing revenue as much as possible,

which suppresses the misalignment in their incentives. In fact, if this interval contains LSR
and LSP

from Theorem 1, then both the restaurant and the platform have the same optimal stacking level.

Another conclusion of Theorem 3 is that SC is maximized at the right endpoint of the interval

[L,L], provided that the interval contains LSC
. This is because C = LD in this interval, and so

is increasing in L therein. Because SC is proportional to C2 in equilibrium, this implies that SC

is strictly increasing in the stacking level when there is a shortage of drivers. Figure 3 gives a

graphical illustration of Theorem 3.

6This interval is precisely the interval for which the driver scarcity condition (16) holds.
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Figure 3. Optimal stacking levels in the scarce driver regime. The figure displays the payoff functions SC ,
SD, SR, and SP for different values of L. The problem parameters are V = 35, v = 10, δ = 0.2, d = 10, and

F = 0.3. In panel (a), D = 8, and in panel (b), D = 6.

5.2 Behavior of the Optimal Stacking Levels

We next investigate how the optimal stacking levels of different market participants depend on the

underlying market conditions. Using expressions for LSP
, LSC

, and LSD
derived in the proof of

Theorem 1, we obtain the next result, which characterizes how the optimal stacking levels of the

platform, customers, and drivers depend on the model parameters.7

Theorem 4. (i) When drivers are abundant, the optimal stacking levels for the platform, cus-

tomers, and drivers, namely, LSP
, LSC

, and LSD
, are strictly increasing in V and v and strictly

decreasing in δ, d, F , and D.

(ii) When drivers are scarce, the optimal stacking levels for the platform and the restaurant are

strictly increasing in V , strictly decreasing in δ and D, strictly decreasing in d if V > Dδ (strictly

increasing in d if V < Dδ), and independent of v and F . The optimal stacking level for customers

is strictly increasing in V and F and strictly decreasing in δ, D, v, and d, except on a set of

measure zero.

Theorem 4(i) states that, in the case of abundant drivers, all market participants prefer more

order stacking if customers have a higher valuation V or if the maximum outside option value of

drivers v is higher. All participants prefer less order stacking if customers are more impatient, the

7There is no closed-form expression for LSR , but we observe numerically that LSR appears to increase in V and
v and decrease in δ, d, F , and D, just like we show for the other optimal stacking levels.
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drop-off time is longer, the platform’s share of the revenue is higher, or there are more drivers.

Hence, subject to an exogenous change in the market conditions (e.g., an increase or decrease in a

parameter value), all market participants would prefer an adjustment in the stacking level that is

directionally the same.

The story in Theorem 4(ii) is more nuanced. We start with the optimal stacking levels for

the restaurant and platform, which are equal to one another. In the scarce driver regime, the

mass of participating drivers does not change in response to changes in the model parameters. As

mentioned in the preceding sections, this makes the platform’s objective to maximize its revenue,

irrespective of the cost of drivers, which is a constant in this regime. Because v and F specify the

relative importance of maximizing revenue and minimizing costs in the platform’s objective, they

do not affect the optimal stacking level for the platform. Another difference with Theorem 4(i) is

that the optimal stacking levels are increasing in the order drop-off time d when V < Dδ. Note

that this condition implies that customers are highly sensitive to their waiting time. An increase in

the order drop-off time, therefore, reduces their utility significantly. The platform finds it optimal

to respond by substantially dropping the price, thereby enticing more customers to participate.

In Theorem 4(ii), customers’ optimal stacking level increases in V and decreases in δ, d, and D,

as in the abundant driver regime. The main difference here is that customers’ optimal stacking level

increases in F and decreases in v in the scarce drive regime. The reason for this difference is that in

the abundant driver regime, the mass of participating drivers D is increasing in F and decreasing

in v (see Proposition 5). Thus, when F is raised or v is lowered, D gets larger, expanding the set

of all stacking levels for which the constraint D ≤ D is binding. Because customers’ payoff in the

scarce driver regime is strictly increasing in the stacking level, they prefer the highest stacking level

that is available to them. With the set of such stacking levels enlarged, their optimal stacking level

becomes larger.

While the preferences of the market participants are directionally aligned as in Theorem 4, we

observe that these preferences do not necessarily converge even under extreme market conditions.

Figure 4 provides an example, showing how the maximum outside option value of drivers v affects

the preferred stacking levels of each market participant. As v → ∞, LSC
converges to 2(2V +

dδ)/(3dδ), and LSD
and LSP

converge to (2V +dδ)/(2dδ). Hence, by Theorem 2, LSR
also converges

to (2V + dδ)/(2dδ) as v → ∞. In the example in Figure 4, 2(2V + dδ)/(3dδ) = 94 and (2V +

dδ)/(2dδ) = 70.5. Note that in Figure 4, convergence to these limits is not obvious despite the large

values of v plotted; numerically observing these limits requires extending the plot to v ≈ 100,000.

Hence, even for large v, customers prefer more stacking than all other market participants, and the

preferences of the restaurant, the platform, and drivers are not closely aligned.

Figure 5 displays how the optimal stacking levels depend on V , namely, customers’ valuation for

the service. As V →∞, LSC
and LSP

diverge to∞, whereas LSD
converges to a finite limit. Thus,

Theorem 2 does not provide guidance on whether LSR
tends to a finite limit or not. Nevertheless,
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Figure 4. Impact of the maximum outside option value of drivers on optimal stacking. The figure
displays LSC

, LSD
, LSR

, LSP
, and L̂ as functions of v for V = 35, D = 30, δ = 0.2, d = 2.5, and F = 0.3.

even if we extend the plot to V ≈ 1015, LSR
does not appear to converge to a finite limit. Thus, LSD

is the only optimal stacking level that provably converges to a finite limit as V →∞. This implies

that as customers value the service more, the tension between preferred stacking level of drivers and

of the other market participants increases: drivers always prefer the least amount of order stacking,

and their preferred level becomes increasingly far from the other market participants’ preferred

level as V increases. This suggests that drivers may become increasingly unhappy as customers’

valuation for the service increases and the platform responds by increasing the stacking level.
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6 Combining Order Stacking with Direct Deliveries

Our base model assumes that all customer orders are stacked by an identical amount. This provides

operational efficiency for the platform, but increases customer wait times, which negatively impacts

the customer utility. For the marginal customer located far from the restaurant, this increase in

wait time may cause them to forgo participation (all else equal, i.e., holding the price constant). A

natural question is then the following: can the platform do better by offering differentiated levels

of service, i.e., making stacked deliveries to some customers and direct deliveries to others?

In this section, we analyze this practice, which is followed by several food delivery platforms,

including Uber Eats (where it is called “priority delivery”) and DoorDash (“express” delivery).

Our main goals are to determine how differentiated service impacts the results in our base model,

and when offering differentiated levels of service is most valuable to the platform.

In practice, platforms typically allow customers to choose whether they want stacked or direct

deliveries, with the latter option involving an additional fee. Incorporating customer choice between

these options is complicated within the framework of our model.8 However, we can readily analyze

a variation of this practice in which the platform chooses one type of delivery—either stacked or

direct—to offer each customer based on their location. Clearly, the platform can do no worse

following this strategy than in our base model, and further this yields an upper bound on the

platform’s profit if it allows all customers to choose between the two types of delivery.

With two modes of delivery, the number of orders a given driver carries depends on whether it

is serving direct delivery customers or stacked delivery customers. Let C0 be the mass of stacked

delivery customers, and C1 be the mass of direct delivery customers; see Figure 6 for an illustration.

Because the stacking level of drivers assigned to direct delivery customers is always equal to 1,

we take L to be the stacking level of the stacked-delivery customers. This makes the mass of

participating drivers equal to (C0/L) +C1. Other modeling and analysis steps we have undertaken

are similar to those for the base model in Section 3; these details are provided in Appendix D.

0 C0 C0 + C1

Stacked Deliveries Direct Deliveries

Restaurant

Figure 6. Linear city model and participating masses of stacked and direct delivery customers.

Figure 7 plots the equilibrium payoff functions of all parties as a function of the stacking level.

The parameter values are the same as in Figure 2. In spite of the non-monotonic nature of some

of these functions, the optimal stacking levels can be calculated as LSC
= 43.49, LSP

= 8.84,

8In addition, in practice, customers might choose stacked or direct deliveries due to factors outside our model,
such as heterogeneous levels of impatience or heterogeneous valuations.
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LSR
= 8.26, and LSD

= 1.30, which satisfy LSC
> LSP

> LSR
> LSD

.
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Figure 7. Optimal stacking levels with direct deliveries. The figure displays the payoff functions SC , SD,
SR, and SP for different values of L when the platform can allow customers far away from the restaurant to

order direct deliveries. The problem parameters are the same as in Figure 2.

We further show in Appendix D.5 that, in comparison to the base model where all customer

orders are stacked, the platform is strictly better off letting at least some customers choose direct

delivery except in the following two cases: the first case is when the delay imposed by stacking

deliveries has a negligible effect on the customer utility—this can happen if the drop-off time d is

small or the stacking level L is low. In this case, order stacking does not have a significant negative

impact on the customer utility, even for customers who live far from the restaurant. The second

case is characterized by multiple conditions, and one key condition is that the driver pool D is

small, meaning that the platform has limited additional drivers to provide direct deliveries.

Figure 8 plots the platform’s profits in the base model (only stacked deliveries) and the extended

model of this section (direct deliveries may also be offered). Figure 8 shows that the value of offering

direct deliveries increases in L. One can see similar behavior by fixing the stacking level and plotting

the profits as functions of d, implying that offering direct deliveries is more valuable when the drop-

off time is long. Intuitively, increasing d or L causes customers to experience a greater delay in

receiving their food, which causes fewer customers to participate. It also leaves less customer utility

on the table for the platform to extract. The platform can partially offset this by offering direct

deliveries, which reduces the wait time for some customers.

7 Conclusion

Order stacking is increasingly used by on-demand delivery platforms to help reduce the cost per

delivery and increase operational efficiency. However, this practice does not merely reduce operating

costs of a platform. It also affects the utility of customers, drivers, and the service providers (e.g.,

restaurants) that use the platform. In this paper, we have analyzed these interactions and studied

which market participants benefit the most (and the least) from order stacking.
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Figure 8. Value of direct deliveries. The dashed curve displays the platform’s profit in the base model, and
the solid curve displays the platform’s profit in the extended model that allows for direct deliveries. The

parameter values are v = 20, V = 100, D = 20, δ = 1.5, d = 2.5, and F = 0.3.

We find that excessive order stacking can result in the market breaking down entirely, because

stacking generates delays even for customers who live close to the service origin. However, stacking

helps the platform in two ways: by reducing its operating costs, and by allowing it to operate

more efficiently when there are insufficient drivers in the market. Thus, as long as customers’

valuation for the service is not too small, the platform finds a positive stacking level optimal, and

the platform’s preferred stacking level increases if customer valuations or the maximum outside

option value of drivers increases, or if the customer impatience, the drop-off time, the platform’s

revenue share, or the number of drivers decreases.

Interestingly, customers prefer even more stacking than the platform does, despite the fact that

this practice increases their waiting time. This is because, if the platform properly optimizes (i.e.,

reduces) the price in response to stacking, more customers would participate in the market and all

would pay a lower price. Hence, at the platform’s optimal stacking level, customers are better off

than with direct deliveries.

On the other hand, drivers prefer the least amount of stacking of any market participant. While

the operating cost savings of order stacking benefit the platform, customers (via lower prices), and

the restaurant (via market expansion), these savings come directly at the expense of drivers. Hence,

at the platform’s preferred stacking level, there are fewer drivers, and they are paid a lower wage,

than at preferred stacking level of drivers.

The key downside of stacked deliveries is that they increase customer waits, which can cause

customers who are already located far from the restaurant (and thus experience a long transporta-

tion time) to exit the market. Direct deliveries reduce this effect, but are costly to implement.

Hence, we find that offering differentiated services—stacked deliveries to customers close to the
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restaurant, and direct deliveries to customers located far from the restaurant—can achieve the best

of both worlds, both reducing operating costs and expanding the customer market. This happens

under some mild conditions, specifically, if the drop-off time is non-negligible and the driver pool

is not too small.

Our results highlight the complex interactions that result from order stacking for on-demand

delivery platforms, particularly once market participants optimally respond to the stacking level.

We thus conclude that while this practice can help platforms increase their operational efficiency,

care should be taken to consider its impact on all market participants.
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Online Supplement to
“Order Stacking in On-Demand Delivery Platforms”

Appendix A: More on the Platform’s Optimization Problem

Recall that the platform’s optimization problem in Section 3 is as follows:

max F

(
V − d(L− 1)δ

2
− δC

)
C − v

DL2
C2

subject to: 0 ≤ C ≤ min

{
V

δ
− d(L− 1)

2
, DL

}
.

The unconstrained optimizer for this problem and its objective value are given by

C =
FDL2(2V − d(L− 1)δ)

4(v + FDL2δ)
and SP =

F 2DL2(2V − d(L− 1)δ)2

16(v + FDL2δ)
. (A.1)

Note that unconstrained optimizer is non-negative and always satisfies the following:

C ≤ V

δ
− d(L− 1)

2
.

In addition, for the unconstrained optimizer, we have C ≤ DL if and only if

D ≥ V

δ

(
1

2L

)
− d

(
L− 1

4L

)
− v

Fδ

(
1

L2

)
.

If the unconstrained optimizer does not satisfy the inequality C ≤ DL, then the optimal solution

and corresponding objective value are

C = DL and SP =
FDL(2V − d(L− 1)δ − 2DLδ)

2
−Dv. (A.2)

Table 2 displays a summary of the conditions characterizing the cases of constrained and uncon-

strained optimizers and the corresponding objective values.

condition optimal platform profit

D ≥ V
δ

(
1
2L

)
− d

(
L−1
4L

)
− v

Fδ

(
1
L2

)
SP = F 2DL2(2V−d(L−1)δ)2

16(v+FDL2δ)

D < V
δ

(
1
2L

)
− d

(
L−1
4L

)
− v

Fδ

(
1
L2

)
SP =

D(FL(2V−d(L−1)δ−2DLδ)−2v)
2

Table 2. Optimal platform profits when orders are stacked.
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Appendix B: Equilibrium Utility Expressions

B.1 Abundant Driver Regime

In the abundant driver regime, substituting the equilibrium value of C in (A.1) yields the following

expressions:

P =

(
2v + FDL2δ

)
(2V − d(L− 1)δ)

4(v + FDL2δ)
, (B.1)

C =
FDL2 (2V − d(L− 1)δ)

4(v + FDL2δ)
, (B.2)

D =
FDL (2V − d(L− 1)δ)

4(v + FDL2δ)
, (B.3)

SR =
(1− F )FDL2(2v + FDL2δ)(2V − d(L− 1)δ)2

16(v + FDL2δ)2
, (B.4)

SD =
F 2DvL2(2V − d(L− 1)δ)2

16(v + FDL2δ)2
, (B.5)

SC =
F 2D

2
L4δ(2V − d(L− 1)δ)2

32(v + FDL2δ)2
, (B.6)

SP =
F 2DL2(2V − d(L− 1)δ)2

16(v + FDL2δ)
, (B.7)

S =
FDL2(4v + 3FDL2δ)(2V − d(L− 1)δ)2

32(v + FDL2δ)2
, (B.8)

SD
D

=
FvL(2V − d(L− 1)δ)

4(v + FDL2δ)
, (B.9)

SC
C

=
FDL2δ(2V − d(L− 1)δ)

8(v + FDL2δ)
, (B.10)

V =
FLv(2V − d(L− 1)δ)

4(v + FDL2δ)
, (B.11)

U(x) = δ(C − x). (B.12)

B.2 Scarce Driver Regime

In the scarce drive regime, substituting C in (A.2) yields the following:

P =
(2V − d(L− 1)δ)− 2DLδ

2
, (B.13)

C = DL, (B.14)

D = D, (B.15)

SR =
(1− F )DL

(
(2V − d(L− 1)δ)− 2DLδ

)

2
, (B.16)

SD = Dv, (B.17)
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SC =
D

2
L2δ

2
, (B.18)

SP =
FDL

(
(2V − d(L− 1)δ)− 2DLδ

)
− 2Dv

2
, (B.19)

S =
DL

(
(2V − d(L− 1)δ)−DLδ

)

2
, (B.20)

SD
D

= v, (B.21)

SC
C

=
DLδ

2
, (B.22)

V = v, (B.23)

U(x) = δ(C − x). (B.24)

Appendix C: Proofs and Supporting Results for Sections 4 and 5

We first present the proofs of the results in Section 4.

Proof of Proposition 1. Equations (B.1) to (B.7) show that the equilibrium price is positive and all

parties participate if and only if the market condition 2V − d(L− 1)δ > 0 holds.

Considering equation (B.3), the unconstrained optimal value of D exceeds D (i.e., there is a

shortage of drivers) if and only if condition (16) holds. If all parameters are positive and condition

(16) holds, then equations (B.13) to (B.19) are satisfied, implying that the equilibrium price is

positive and all parties participate in this case as well.

Proof of Proposition 2. Differentiate equations (B.4) to (B.7) with respect to V and use (15). Then,

do the same with respect to d.

Proof of Proposition 3. Differentiate equation (B.7) with respect to D and use (15). Repeat for F ,

δ, and v.

Proof of Proposition 4. For (i), differentiate equations (B.2) and (B.6) with respect to D, F , and

v and use (15).

For (ii), differentiate equation (B.2) with respect to δ, and observe that the derivatives of SC
and SC/C with respect to δ can be written as

∂δSC =
F 2D

2
L4(2V − d(L− 1)δ)

32(v + FDL2δ)3
gSC

(δ),

∂δ
SC
C

=
FDL2

8(v + FDL2δ)2
gSC/C(δ),

where

gSC
(δ) = 2V v − (3dv(L− 1) + 2FDV L2)δ − FDd(L− 1)L2δ2,

gSC/C(δ) = 2V v − 2dv(L− 1)δ − FDd(L− 1)L2δ2.

3



Descartes’ rule of signs implies that gSC
and gSC/C each have one positive real zero. Fur-

thermore, gSC
and gSC/C are both positive to the left of their respective positive zeros because

gSC
(0) = gSC/C = 2V v > 0, implying strict quasi-concavity of SC and SC/C. Their respective

positive zeros are

δSC
=

√(
9dv(L− 1) + 2FDV L2

) (
dv(L− 1) + 2FDV L2

)
− 3 (dv(L− 1))− 2

(
FDV L2

)

2dFD(L− 1)L2

δavgSC
=

√
v2

F 2D
2
L4

+
2V v

FDd(L− 1)L2
− v

FDL2
,

by the quadratic formula. We have

gSC
(δavgSC

) = 2V v − (3dv(L− 1) + 2FDV L2)δavgSC
− FDd(L− 1)L2δavgSC

2
,

= gSC/C(δavgSC
)−

(
dv(L− 1) + 2FDV L2

)
δavgSC

= 0−
(
dv(L− 1) + 2FDV L2

)
δavgSC

< 0,

and because gSC
(0) > 0, it must be that δavgSC

> δSC
.

The quantity δ̂ := (2V )/(d(L − 1)) is the largest δ for which (15) holds. Although not in the

statement of the proposition, one can show that δavgSC
< δ̂, by isolating the radical, squaring both

sides of the inequality, and simplifying.

Proof of Proposition 5. For (i), differentiate equations (B.3) and (B.5) with respect to F and δ and

use (15).

For (ii), differentiate equations (B.3) and (B.9) with respect to D and v and use (15). Observe

that the derivatives of SD with respect to v and D can be written as

∂vSD =
F 2DL2(2V − d(L− 1)δ)2

16(v + FDL2δ)3
(FDL2δ − v),

∂DSD =
F 2vL2(2V − d(L− 1)δ)2

16(v + FDL2δ)3
(v − FDL2δ).

Under condition (15), the preceding derivatives are positive for v < vSD
:= FDL2δ (D < DSD

:=

v/(FL2δ)) and negative for v > vSD
(D > DSD

).

Proof of Proposition 6. For (i), differentiate equation (B.4) with respect to D, v, and δ and use

(15).

For (ii), first note that equation (B.4) vanishes at F = 0 and F = 1, and is positive for F ∈ (0, 1).

Then, observe that the derivative of equation (B.4) with respect to F can be written as

∂FSR =
DL2(2V − d(L− 1)δ)2

16(v + FDL2δ)3
gSR

(F ),
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where

gSR
(F ) = 2v2 − 4Fv2 − 3F 2DvL2δ − F 3D

2
L4δ2.

By Descartes’ rule of signs, gSR
has one positive real zero. Note that gSR

(0) > 0 and gSR
(1) < 0,

implying that this zero lies in (0, 1), and that ∂FSR is positive to the left of it and negative to the

right of it. Multiplying gSR
by −DL2δ, we obtain the function

h(F ) = (DL2δ)3F 3 + 3v(DL2δ)2F 2 + 4v2(DL2δ)F − 2v2(DL2δ)

with the same zeros. We do the transformation DL2δF = z − v and simplify to obtain

i(z) = h

(
z − v
DL2δ

)
= z3 + v2z − 2v2(v +DL2δ),

which is a depressed cubic in z. If z0 is one of its zeros, then F0 = (z0 − v)/(DL2δ) is a zero of

h(F ). By Descartes’ rule of signs, i(z) has one positive real zero and no negative real zeros. This

zero can be expressed as

zSR
=

2√
3
v sinh

[
1

3
arcsinh

(
3
√

3

v3
(
v +DL2δ

)
)]

.

Setting FSR
= (zSR

− v)/(DL2δ), we obtain the following:

FSR
=

v

DL2δ

[
2√
3

sinh

[
1

3
arcsinh

(
3
√

3

v3
(
v +DL2δ

)
)]
− 1

]
.

This completes the proof.

Proof of Proposition 7. The proof follows from inspecting equations (B.16) to (B.19).

Proof of Proposition 8. The proof follows from inspecting equations (B.14), (B.18) and (B.22).

Proof of Proposition 9. The proof follows from inspecting equations (B.15), (B.17) and (B.21).

Proof of Proposition 10. First, differentiate equation (B.19) with respect to D, and then, use (16).

The rest of the proof follows from inspecting equation (B.19).

Proof of Proposition 11. First, differentiate equation (B.16) with respect to D, and then, use (16).

The rest follows from inspecting equation (B.16).

The following proposition is an auxiliary result for Section 4.

Proposition C.1. The quantities δSC
and δavgSC

in Proposition 4 are strictly decreasing in L.

Proof. By defining c = (2FDV )/(dv), we can write

2FD

v
δSC

=

√(
9

L2
+

c

L− 1

)(
1

L2
+

c

L− 1

)
−
[

3

L2
+

c

L− 1

]
,

5



FD

v
δavgSC

=

√
1

L4
+

c

(L− 1)L2
− 1

L2
.

By elementary analysis, we deduce that the derivative of the right-hand sides with respect to L are

negative for L > 1.

We now present the proofs of the results in Section 5.

Proof of Theorem 1. Differentiating equations (B.2) to (B.8) yields

∂LC =
FDL

4(v + FDL2δ)2
gSC

(L),

∂LSC =
F 2D

2
L3δ(2V − d(L− 1)δ)

16(v + FDL2δ)3
gSC

(L),

∂LD =
FD

4(v + FDL2δ)2
gSD

(L),

∂LSD =
F 2DvL(2V − d(L− 1)δ)

8(v + FDL2δ)3
gSD

(L),

∂LSR =
(1− F )FDL(2V − d(L− 1)δ)

8(v + FDL2δ)3
gSR

(L),

∂LSP =
F 2DL(2V − d(L− 1)δ)

8(v + FDL2δ)2
gSP

(L),

∂LS =
FDL(2V − d(L− 1)δ)

16(v + FDL2δ)3
gS(L),

where

gSC
(L) = 4V v + 2dvδ − 3dvLδ − FDdL3δ2,

gSD
(L) = 2V v + dvδ − 2dvLδ −

(
2FDV δ + FDdδ2

)
L2,

gSR
(L) = 4V v2 + 2dv2δ − 4dv2Lδ − 3FDdvL3δ2 − F 2D

2
dL5δ3,

gSP
(L) = 2V v + dvδ − 2dvLδ − FDdL3δ2,

gS(L) = 8V v2 + 4dv2δ − 8dv2Lδ + (4FDV vδ + 2FDdvδ2)L2 − 9FDdvL3δ2 − 3F 2D
2
dL5δ3.

All of the preceding g-functions are positive when L = 0 and negative when L is sufficiently

large, implying that each function has at least one positive real zero. By Descartes’ rule of signs,

gSC
, gSD

, gSR
, and gSP

each have one positive real zero, and gS has either one or three positive

real zeros. However, Descartes’ rule of signs implies that gS(−L) has no positive real roots (i.e.,

gS has no negative real roots), and because L = 0 is not a zero of gS , there are either one or three

real roots, all of which must be positive. The discriminant of gS can be written as follows:

∆S = 1728F 6D
6
d2δ11

(
d2vδ + 4FDV 2 + 4FDV dδ + FDd2δ2

)

·
(
128d2vδ + 12FDV 2 + 12FDV dδ + 3FDd2δ2

)

·
(
25d2vδ + 96FDV 2 + 96FDV dδ + 24FDd2δ2

)
> 0,
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which implies that gS has either four or zero nonreal zeros (i.e., gS has either one or five real zeros).

However, we showed that it cannot have five real zeros, leaving us to conclude that it must have

one real zero, which we noted must be positive.

In sum, each of the g-functions is positive at L = 0, crosses the abscissa at some L > 0, and

is thereafter negative. We respectively label the crossing points as LSC
, LSD

, LSR
, LSP

, and LS .

Formulas are available for expressing some of these zeros for the quadratic and cubic g-functions

in terms of radicals:

LSC
=

3

√√√√2V v + dvδ

FDdδ2
+

√(
2V v + dvδ

FDdδ2

)2

+

(
v

FDδ

)3

+
3

√√√√2V v + dvδ

FDdδ2
−

√(
2V v + dvδ

FDdδ2

)2

+

(
v

FDδ

)3

,

LSD
=

√[
dv

FD(2V + dδ)

]2
+

v

FDδ
− dv

FD(2V + dδ)
,

LSP
=

3

√√√√2V v + dvδ

2FDdδ2
+

√(
2V v + dvδ

2FDdδ2

)2

+

(
2v

3FDδ

)3

+
3

√√√√2V v + dvδ

2FDdδ2
−

√(
2V v + dvδ

2FDdδ2

)2

+

(
2v

3FDδ

)3

.

The zeros of gSC
and gSP

can also be expressed using hyperbolic trigonometric functions as

LSC
= 2

√
v

FDδ
sinh


1

3
arcsinh


2V + dδ

dδ

√
FDδ

v




 ,

LSP
= 2

√
2v

3FDδ
sinh


1

3
arcsinh


2V + dδ

dδ

√
27FDδ

32v




 ,

which are sometimes easier to analyze. Similarly, it is sometimes more convenient to use the identity

arcsinh(−x) = ln
(√

x2 + 1− x
)

for all x ∈ R,

and elementary algebra to write

lnLSD
= ln

(√
v

FDδ

)
− arcsinh

(
dδ

2V + dδ

√
v

FDδ

)
.

This completes the proof.

Proof of Theorem 2. We continue to use the notation introduced in the proof of Theorem 1 as

appropriate. Let s = (V v)/(FDdδ2) and t = v/(FDδ) so that

LSC
=

3

√
(2s+ t) +

√
(2s+ t)2 + t3 +

3

√
(2s+ t)−

√
(2s+ t)2 + t3,

LSP
=

3

√√√√
(
s+

t

2

)
+

√(
s+

t

2

)2

+
8

27
t3 +

3

√√√√
(
s+

t

2

)
−

√(
s+

t

2

)2

+
8

27
t3,
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LSD
=

√(
t2

2s+ t

)2

+ t− t2

2s+ t
,

and L̂ = (2s + t)/t. All roots in this proof are principal value roots. Recall from the proof of

Theorem 1 that LSP
is the unique real root of the cubic equation

gSP
(L) = 2V v + dvδ − 2dvLδ − FDdL3δ2 = 0,

which after dividing by the leading coefficient, can be written as follows:

hSP
(L) := L3 + 2tL− (2s+ t) = 0.

We have

hSP
(LSC

)

= (2s+ t) +
√

(2s+ t)2 + t3 + 3
(

(2s+ t) +
√

(2s+ t)2 + t3
) 2

3
(

(2s+ t)−
√

(2s+ t)2 + t3
) 1

3

+ 3
(

(2s+ t) +
√

(2s+ t)2 + t3
) 1

3
(

(2s+ t)−
√

(2s+ t)2 + t3
) 2

3
+ (2s+ t)−

√
(2s+ t)2 + t3

+ 2tLSC
− (2s+ t)

= (2s+ t) + 2tLSC
+ 3

(
(2s+ t) +

√
(2s+ t)2 + t3

) 2
3
(

(2s+ t)−
√

(2s+ t)2 + t3
) 1

3

+ 3
(

(2s+ t) +
√

(2s+ t)2 + t3
) 1

3
(

(2s+ t)−
√

(2s+ t)2 + t3
) 2

3

= (2s+ t) + 2tLSC
+ 3

(
(2s+ t) +

√
(2s+ t)2 + t3

) 1
3 (

(2s+ t)2 − (2s+ t)2 − t3
) 1

3

+ 3
(
(2s+ t)2 − (2s+ t)2 − t3

) 1
3

(
(2s+ t)−

√
(2s+ t)2 + t3

) 1
3

= 2s+ 2tLSC
− 3t

(
(2s+ t) +

√
(2s+ t)2 + t3

) 1
3 − 3t

(
(2s+ t)−

√
(2s+ t)2 + t3

) 1
3

= (2s+ t) + 2tLSC
− 3tLSC

= (2s+ t)− tLSC
> 0 = hSP

(LSP
) ,

where the inequality follows by noting that (2s + t) − tLSC
is equivalent to LSC

< L̂, which is

established below. To finish this argument, note that h′SP
(L) = 3L2 + 2t > 0, so hSP

is strictly

increasing on R. So, hSP
(LSC

) > hSP
(LSP

) implies that LSC
> LSP

.

We now proceed indirectly to show that LSC
≤ 2

3 L̂. Recall that LSC
is the unique real root of

gSC
(L) = 4V v + 2dvδ − 3dvLδ − FDdL3δ2 = 0,

which, after dividing by the leading coefficient, can be written as the following:

hSC
(L) := L3 + 3tL− (4s+ 2t) = 0.
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The polynomial

hSC

(
L+

2

3
L̂

)
=

(
L+

2

3
L̂

)3

+ 3t

(
L+

2

3
L̂

)
− (4s+ 2t)

= L3 + 2L̂L2 +
4

3
L̂2L+

8

27
L̂3 + 3tL+ 2tL̂− (4s+ 2t)

= L3 + 2L̂L2 +

(
4

3
L̂2 + 3t

)
L+

8

27
L̂3 + 2t

(
2s

t
+ 1

)
− (4s+ 2t)

= L3 + 2L̂L2 +

(
4

3
L̂2 + 3t

)
L+

8

27
L̂3

has no positive zeros. But, LSC
− 2

3 L̂ is a real root of it, so we must have LSC
≤ 2

3 L̂.

We now show that LSP
≤ 1

2 L̂. Note that the polynomial

hSP

(
L+

1

2
L̂

)
=

(
L+

1

2
L̂

)3

+ 2t

(
L+

1

2
L̂

)
− (2s+ t)

= L3 +
3

2
L̂L2 +

3

4
L̂2L+

1

8
L̂3 + 2tL+ tL̂− (2s+ t)

= L3 +
3

2
L̂L2 +

(
3

4
L̂2 + 2t

)
L+

1

8
L̂3 + t

(
2s

t
+ 1

)
− (2s+ t)

= L3 +
3

2
L̂L2 +

(
3

4
L̂2 + 2t

)
L+

1

8
L̂3

has no positive roots. However, LSP
− 1

2 L̂ is a real root of hSP

(
L+ 1

2 L̂
)

, and therefore must be

non-positive. Hence, LSP
≤ 1

2 L̂.

To show that LSP
> LSD

, we first note that algebraically manipulating the expression for LSD

allows us to write

(2s+ t) =

√
t4 + (2s+ t)2t− t2

LSD

.

Therefore, we have

hSP
(LSD

) = L3
SD

+ 2tLSD
− (2s+ t)

= L3
SD

+ 2tLSD
−
√
t4 + (2s+ t)2t− t2

LSD

= L3
SD

+ 2tLSD
+
t2 −

√
t4 + (2s+ t)2t

LSD

,

which, because LSD
> 0, is positive if and only if

LSD
hSP

(LSD
) = L4

SD
+ 2tL2

SD
+ t2 −

√
t4 + (2s+ t)2t > 0.

The equation LSD
hSP

(LSD
) = 0 has a lone positive real root by Descartes’ rule of signs, which can

be expressed as √
4
√
t4 + (2s+ t)2t− t.
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Because hSP
is strictly increasing on R, we have that

hSP
(LSD

) > 0 ⇐⇒ LSD
=

√(
t2

2s+ t

)2

+ t− t2

2s+ t
>

√
4
√
t4 + (2s+ t)2t− t,

and the same with both inequalities reversed. Accordingly, we have the following

√(
t2

2s+ t

)2

+ t− t2

2s+ t
>

√
4
√
t4 + (2s+ t)2t− t

⇐⇒
√
t4 + (2s+ t)2t− t2 > (2s+ t)

√
4
√
t4 + (2s+ t)2t− t

⇐⇒
(

4
√
t4 + (2s+ t)2t− t

)(
4
√
t4 + (2s+ t)2t+ t

)
> (2s+ t)

√
4
√
t4 + (2s+ t)2t− t

⇐⇒
(

4
√
t4 + (2s+ t)2t− t

)(
4
√
t4 + (2s+ t)2t+ t

)2
> (2s+ t)2

⇐⇒

(
4

√
1 +

(2s+ t)2

t3
− 1

)(
4

√
1 +

(2s+ t)2

t3
+ 1

)2

>
(2s+ t)2

t3
.

We show that this condition never holds and conclude that hSP
(LSD

) is always negative. To do

so, we show that the function

x 7→
(

4
√

1 + x− 1
) (

4
√

1 + x+ 1
)2 − x

is negative on R++. We can make the variable substitution y = 4
√

1 + x. With regard to this new

variable, we note that

f(y) = (y − 1)(y + 1)2 − y4 + 1 = −y(y + 1)(y − 1)2

is negative for y > 1. Hence, hSP
(LSD

) < 0 = hSP
(LSP

). Because hSP
is strictly increasing on R,

this implies that LSP
> LSD

.

Recall from the proof of Theorem 1 that LSR
is the unique positive real zero of the function

gSR
(L) = 4V v2 + 2dv2δ − 4dv2Lδ − 3FDdvL3δ2 − F 2D

2
dL5δ3,

and is therefore the unique positive real zero of the function

hSR
(L) = L5 + 3tL3 + 4t2L− 2t(2s+ t),

which is obtained by dividing gSR
by its leading coefficient. Recall also that LSP

is the unique

positive real zero of hSP
(L), whence

L3
SP

+ 2tLSP
− (2s+ t) = 0.

Therefore, we have

hSR
(LSP

) = L5
SP

+ 3tL3
SP

+ 2t (2tLSP
− (2s+ t))
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= L5
SP

+ 3tL3
SP
− 2tL3

SP

= L5
SP

+ tL3
SP

> 0 = hSR
(LSR

) .

Because hSR
is increasing on R, this implies that LSP

> LSR
.

We now show that LSR
> LSD

. Recall that LSD
is the unique positive real zero of the function

gSD
(L) = 2V v + dvδ − 2dvLδ −

(
2FDV δ + FDdδ2

)
L2,

which, after dividing by the leading coefficient, can be written

hSD
(L) = L2 +

2t2

2s+ t
L− t.

Algebraically manipulating the expression hSD
(LSD

) = 0 yields

−2(2s+ t)L2
SD

= 4t2LSD
− 2t(2s+ t).

Therefore, we have

hSR
(LSD

) = L5
SD

+ 3tL3
SD

+
(
4t2LSD

− 2t(2s+ t)
)

= L5
SD

+ 3tL3
SD
− 2(2s+ t)L2

SD

= L2
SD
hSC

(LSD
) .

As a result, we have that LSC
> LSP

> LSD
, which implies that hSC

(LSD
) < 0 (because hSC

is

increasing on R). However, we also have that hSR
(LSD

) < 0 = hSR
(LSR

), and because hSR
is

increasing on R, we deduce that LSR
> LSD

.

For the second sentence of the theorem, note that if LSC
, LSD

, LSR
, and LSP

are at least 1,

then they are the maximizers of their respective payoffs; otherwise, L = 1 is the maximizer. The

condition that LS· ≥ 1 is equivalent to gS· being non-negative at LS· (i.e., the maximum is to the

right of 1 if the derivative is increasing at 1). We have

gSC
(1)

dvδ
=

4V

dδ
− 1− FDδ

v
,

gSD
(1)

v
= 2V − dδ − FDδ (2V + dδ)

v
,

gSR
(1)

dv2δ
= 2

(
2V

dδ
− 1

)
− FDδ

v

(
3 +

(
FDδ

v

))
,

gSP
(1)

dvδ
=

2V

dδ
− 1− FDδ

v
,

whence

LSC
≥ 1 ⇐⇒ 2V

dδ
≥ 1

2
+
FDδ

2v
,

LSD
≥ 1 ⇐⇒ 2V − dδ

2V + dδ
≥ FDδ

v
,

11



LSR
≥ 1 ⇐⇒ 2V

dδ
≥ 1 +

FDδ

2v

(
3 +

(
FDδ

v

))
,

LSP
≥ 1 ⇐⇒ 2V

dδ
≥ 1 +

FDδ

v
.

The left-hand sides are strictly increasing in V , implying that the inequalities become violated as

V decreases. The chain of implications

LSC
≤ 1 =⇒ LSP

≤ 1 =⇒ LSR
≤ 1 =⇒ LSD

≤ 1,

which implies the second sentence of the theorem, is trivial to establish, with the exception of the

final implication. To prove that one, note that LSD
≤ 1 is equivalent to

2V

dδ
≤ 1 +

FDδ

v

(
1 +

2V

dδ

)
,

which is implied by LSR
≤ 1 if

3

2
+
FDδ

2v
≤ 1 +

2V

dδ
.

But this last inequality is equivalent to LSC
≥ 1, so the final implication holds if LSC

≥ 1. This is

all we need since LSC
≤ 1 implies LSD

< 1 by the first part of the theorem.

Proof of Theorem 3. For part (i), note that the driver scarcity condition (16) can be rewritten as

L ∈ [L,L] for some L and L. By elementary algebra, we can express L as

L =
2V + dδ +

√
(2V + dδ)2 − 16v(dδ + 4Dδ)/F

2(dδ + 4Dδ)
, (C.1)

observing that the interval [L,L] exists only if the expression in the radical in equation (C.1) is

non-negative. (If the expression in the radical is negative, then for all values of L, the unconstrained

optimal solution satisfies the constraint D ≤ D, meaning that there is no scarce driver regime.)

Differentiating equations (B.13) to (B.20) yields

∂LP = −dδ + 2Dδ

2
,

∂LC = D,

∂LSC = D
2
Lδ,

∂LD = 0,

∂LSD = 0,

∂LSR =
(1− F )D

2
gSR

(L),

∂LSP =
FD

2
gSP

(L),

∂LS =
D

2
gS(L),
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where

gSR
(L) = 2V − d(L− 1)δ − dLδ − 4DLδ,

gSP
(L) = gSR

(L),

gS(L) = 2V − d(L− 1)δ − dLδ − 2DLδ.

The respective zeros of these linear functions are

L′SR
=

2V + dδ

2dδ + 4Dδ
,

L′SP
=

2V + dδ

2dδ + 4Dδ
,

L′S =
2V + dδ

2dδ + 2Dδ
.

All the g-functions above are positive at L = 0, so ∂LSR, ∂LSP , and ∂LS are strictly positive

before L′SR
, L′SP

, and L′S , respectively, and strictly negative thereafter. Furthermore, because SC
is increasing on the interval as a function of L, it is maximized over [L,L] at its right endpoint,

implying that L′SC
= L is its maximizer. Then L′Si

is the constrained optimal solution if LSi satisfies

the driver scarcity condition (16); otherwise, the unconstrained optimizer LSi is feasible.

Proof of Theorem 4. We first prove part (i), beginning with the analysis of LSP
and LSC

. Recalling

the expressions of LSP
and LSC

in the proof of Theorem 2, and noting that sinh and arcsinh are

strictly increasing on R++, we observe that LSP
and LSC

are strictly increasing in V and strictly

decreasing in d. To study the dependence on other model parameters, we define

f(x) =
sinh

(
1
3 arcsinhx

)

x
,

and note that

f ′(x) =
cosh

(
1
3 arcsinhx

)

3x
√

1 + x2
−

sinh
(
1
3 arcsinhx

)

x2
< 0 ⇐⇒ x

3
√

1 + x2
< tanh

(
1

3
arcsinhx

)

⇐⇒ arctanh

(
x

3
√

1 + x2

)
<

1

3
arcsinhx.

However, arctanh y = 1
2 ln ((1 + y)/(1− y)) for y ∈ [−1, 1]; thus, by elementary algebra, we have

arctanh

(
x

3
√

1 + x2

)
=

1

2
ln

(
3
√

1 + x2 + x

3
√

1 + x2 − x

)
.

In addition, arcsinhx = ln
(√

x2 + 1 + x
)

; hence,

f ′(x) < 0 ⇐⇒ 1

2
ln

(
3
√

1 + x2 + x

3
√

1 + x2 − x

)
<

1

3
ln
(√

x2 + 1 + x
)

⇐⇒
(

3
√

1 + x2 + x
)3
−
(

3
√

1 + x2 − x
)3 (√

x2 + 1 + x
)2

< 0.
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By elementary algebra, we deduce that for x > 0,

(
3
√

1 + x2 + x
)3
−
(

3
√

1 + x2 − x
)3 (√

x2 + 1 + x
)2

= −16x3
(

1 + x2 + x
√

1 + x2
)
< 0.

Hence, f is decreasing on R++. This implies that a sinh
(
1
3 arcsinh

(
b
a

))
is increasing in a for any

b > 0. Based on the expressions of LSP
and LSC

in the proof of Theorem 2, we have that LSP
and

LSC
are strictly increasing in v and strictly decreasing in F and D.

With regard to LSD
, we deduce by inspection that LSD

strictly increases in v and strictly

decreases in F and D. From the expression for ln(LSD
) in the proof of Theorem 1, it is clear that

LSD
is strictly increasing in V and strictly decreasing in d.

To analyze the dependence of LSC
, LSP

, and LSD
on δ, we note that

∂δ

[
2V + dδ

dδ

√
v

FDδ

]
= −6V + dδ

2dδ2

√
v

FDδ
< 0,

so the bracketed quantity is strictly decreasing in δ. From the hyperbolic trigonometric expressions

for LSC
, LSP

, and lnLSD
in the proof of Theorem 1, along with the fact that arcsinh is strictly

positive and increasing on R+, this implies that LSC
, LSP

, and LSD
are strictly decreasing in δ.

To prove part (ii), we differentiate the expression for L′SP
(which is equal to L′SR

) in the proof

of Theorem 3 to find that it is strictly increasing in V , strictly decreasing in δ and D, and strictly

decreasing in d if and only if V > Dδ. The expression is independent of v and F . Recall from

the same proof that L′SC
is given by equation (C.1), which is clearly increasing in V and F and

decreasing in v and D.

For the dependence of L′SC
on δ, we use equation (C.1) to get that L′SC

is (strictly) increasing

(decreasing) in δ if and only if

(d+ 4D)L′SC
− d

2
=
V

δ
+

√
V 2

δ2
+
V d− 4v(d+ 4D)/F

δ
+
d2

4

is (strictly) increasing (decreasing) in δ. For exposition, define

g(δ) =
a

δ
+

√
a2

δ2
+
b

δ
+ c,

where a = V , b = V d− 4v(d+ 4D)/F , and c = d2/4. From the discussion around equation (C.1),

we deduce that L′SC
exists only if the expression in the radical is non-negative. Using algebra, we

express the condition under which L′SC
does not exist as follows:

b2 > 4a2c and δ−
L′SC

< δ < δ+
L′SC

,

where

δ−
L′SC

:=
−b−

√
b2 − 4a2c

2c
and δ+

L′SC

:=
−b+

√
b2 − 4a2c

2c
.
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Differentiating and using elementary algebra, we find that

g′(δ) < 0 ⇐⇒ b ≥ 0 or b2 < 4a2c or δ < δ−
L′SC

,

g′(δ) = 0 ⇐⇒ b < 0 and b2 = 4a2c and δ > δ+
L′SC

= δ−
L′SC

,

g′(δ) > 0 ⇐⇒ b < 0 and b2 > 4a2c and δ > δ+
L′SC

.

By substituting the original variables, we note that the constraint L′SC
≥ 1 rules out the latter two

cases; hence, L′SC
is strictly decreasing in δ where it is defined.

For the dependence of L′SC
on d, we use equation (C.1) to deduce that L′SC

is (strictly) increasing

(decreasing) in d if and only if

2L′SC
= g̃(d) :=

ã+ d

b̃+ d
+

√(
ã+ d

b̃+ d

)2

− c̃

b̃+ d

is (strictly) increasing (decreasing) in d, where ã = 2V/δ, b̃ = 4D, and c̃ = 16v/(Fδ). As before,

L′SC
exists only if the radical in the preceding equation is non-negative, and we express the condition

under which L′SC
does not exist as follows:

ã− b̃ < c̃

4
and d−

L′SC

< d < d+
L′SC

,

where

d−
L′SC

:=
c̃

2
− ã−

√
c̃

(
b̃− ã+

c̃

4

)
and d+

L′SC

:=
c̃

2
− ã+

√
c̃

(
b̃− ã+

c̃

4

)
.

We differentiate g̃(d) and use elementary algebra to find that g̃′(d) < 0 if and only if any of the

following conditions hold:

(case 1) ã− b̃ > c̃

4
,

(case 2) ã− b̃ > 0 and d < d−
L′SC

,

(case 3) ã− b̃ < 0 and d < d−
L′SC

.

In addition, g̃′(d) > 0 if and only if

(case 4) ã− b̃ < c̃

4
and d > d+

L′SC

.

For completeness, we note that g̃′(d) = 0 if and only if

(case 5) ã− b̃ =
c̃

4
and d > d−

L′SC

= d+
L′SC

.
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(If ã− b̃ = c̃/4 and d < d−
L′SC

, then case 2 holds, implying that g̃(d) is strictly decreasing on (0, d−
L′SC

)

and constant on (d−
L′SC

,∞).) Moreover, the constraint L′SC
≥ 1 (i.e., g̃(d) ≥ 2) holds if and only if

either

ã− b̃ ≥ c̃

4
, or

ã− b̃ > 0 and d ≤ d−
L′SC

,

which eliminates cases 3 and 4. Hence, as a function of d, L′SC
is decreasing where it is defined.

Appendix D: Analysis of the Extension to Direct Deliveries

D.1 Details of the Extended Model

This subsection provides further details of the extended model in Section 6. In this extended model,

if a customer at location x > 0 experiences a stacked delivery, then their wait time is the same as

in the base model, which is

W0(x) = x+
d(L− 1)

2
. (D.1)

If, instead, this customer experiences a direct delivery, their wait time is simply

W1(x) = x. (D.2)

The platform can set different prices for customers receiving stacked and direct deliveries. Because

all deliveries are stacked in the base model, we also refer to stacked deliveries as regular deliveries.

Let P0 and P1 be the prices charged to a customer for regular and direct delivery, respectively.

Customers continue to experience a disutility of δ > 0 per unit of waiting time. Thus, if regular

delivery is offered at location x, then a customer at location x receives the following utility:

U0(x) = V − P0 − δW0(x). (D.3)

Similarly, if direct delivery is offered at location x, then a customer at location x receives the

following utility:

U1(x) = V − P1 − δW1(x). (D.4)

As in the base model, a customer at location x orders if and only if Ui(x) = V −Pi−δWi(x) ≥ 0,

or equivalently, if and only if Wi(x) ≤ (V − Pi)/δ, where i is type of delivery offered at location x

(i.e., i equals 1 for regular delivery and 0 for direct delivery). Because W0(x) is increasing in x, there

exists a positive real number C0 such that W0(x) ≤ (V − P0)/δ if and only if x ≤ C0. Therefore,

in equilibrium, only the customers located in [0, C0] live close enough to the restaurant to benefit

from ordering with regular delivery through the platform.

Therefore, it follows that the platform only has an incentive to offer direct deliveries to customers
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who do not find ordering regular deliveries optimal, i.e., to customers with x > C0. In other words,

the platform should offer stacked deliveries to customers who live close to the restaurant (and who

receive positive utility from stacked orders), and direct deliveries to customers who live far from

the restaurant (who would receive negative utility from stacked orders). Thus, letting C1 be the

number for which W1(x) ≤ (V −P1)/δ if and only if x ≤ C0 +C1, we note that only the customers

on (C0, C0+C1] benefit from ordering direct delivery (this interval is empty if C1 = 0); see Figure 6.

Under the wait times given in (D.1) and (D.2), C0 and C1 are given by the following system of

equations:

C0 =
V − P0

δ
− d(LC − 1)

2
, (D.5)

C1 + C0 =
V − P1

δ
. (D.6)

Customers who receive regular delivery live on [0, C0], and those who receive direct delivery

live on (C0, C0 + C1], either of which may be empty. We denote the mass of drivers that serve the

regular- and direct-delivery customers by D0 and D1, respectively. Direct-delivery customers each

have a dedicated driver; thus, D1 = C1. Because drivers are randomly assigned to orders, a driver’s

expected utility from participating is as follows:

V =
D0

D0 +D1

[
ρd

(
C0 + L

2

)
+ ρt

(
C0 + L

2
+ dL

)]
+

D1

D0 +D1
(ρd + ρt)

(
C0 +

C1

2

)
. (D.7)

Similar to the base model, we take V ≥ 0 as a decision variable for the platform.

In what follows, when discussing the stacking level L, we mean the stacking level among the cus-

tomers who have stacked orders—this is not the average stacking level because the direct deliveries

are not taken into account. As in the base model, we have the following in equilibrium:

L =
C0

D0
. (D.8)

The restaurant’s profit with direct deliveries is SR = (1 − F )(C0P0 + C1P1), and the platform’s

profit is SP = F (C0P0 +C1P1)−SD. From our previous analysis, the equilibrium aggregate driver

pay is SD = (DV2)/v under the constraint that V ∈ [0, v]. The aggregate consumer surplus SC is

SC =

∫ C0

0
U0(x)dx+

∫ C0+C1

C0

U1(x)dx =
δ

2
C2
0 +

δ

2
C2
1 +

d(L− 1)δ

2
C1.

Using (5) and (7), we deduce that when V ∈ [0, v],

v

DL
C0 +

v

D
C1 = V. (D.9)

Because the left-hand side is a function of the prices P0 and P1 only, (D.9) implies that we can
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eliminate V from the model, provided that we add the following constraint:

C0

L
+ C1 ≤ D, (D.10)

which is equivalent to V ≤ v (the other constraints imply that C0 and C1 are non-negative).

The platform’s optimization problem in this case is

max
C0,C1,P1,P0≥0

F (P0C0 +P1C1)−
v

D

(
C0

L
+ C1

)2

(D.11)

subject to: C0 =
V − P0

δ
− d(L− 1)

2
, (D.12)

C1 + C0 =
V − P1

δ
, (D.13)

C0

L
+ C1 ≤ D. (D.14)

Similar to the base model, we can solve (D.12) and (D.13) for P0 and P1, obtaining the following:

P0 = V − d(L− 1)δ

2
− δC0, (D.15)

P1 = V − δ (C0 + C1) . (D.16)

We use these expressions to eliminate the decision variables P0 and P1, leaving only C0 and C1 as

decision variables. The resulting problem can be written as follows:

max
C1,C0≥0

F

(
V − d(L− 1)δ

2
− δC0

)
C0 + F (V − δ (C0 + C1))C1 −

v

D

(
C0

L
+ C1

)2

(D.17)

subject to: C0 + C1 ≤
V

δ
, (D.18)

C0

L
+ C1 ≤ D, (D.19)

C0 ≤
2V − d(L− 1)δ

2δ
. (D.20)

Akin to the base model, the platform sets the prices so as to choose the optimal masses of customers

that order regular and direct delivery, subject to the preceding three constraints. Constraints

(D.18) and (D.20) ensure that the prices that induce these customer masses are non-negative, and

constraint (D.19) ensures that the customer masses do not require more drivers than are available.

Once these masses are determined, the prices that induce them are given by (D.15) and (D.16).

D.2 The Unconstrained Optimal Solution

In this subsection, we characterize the optimal solutions of the platform’s decision problem in

(D.17)-(D.20). Clearly, this problem is feasible if and only if 2V − d(L − 1)δ ≥ 0, and is strictly

feasible if and only if this inequality holds strictly. Furthermore, by examining the Hessian matrix,
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we see that the objective function in (D.17) is strictly concave on R2
+; hence, its optimizer is unique.

The unique unconstrained optimizers and objective values are the following:

C0 =
L
(
FDLδ(V − d(L− 1)δ) + v(L− 1)(2V − dLδ)

)

δ
(
4(L2 − L+ 1)v + 3FDL2δ

) ,

C1 =
FDL2δ(2V + d(L− 1)δ)− 2v(L− 1)(2V − dLδ)

2δ
(
4(L2 − L+ 1)v + 3FDL2δ

) ,

SP =
F
(
FDL2δ(4V 2 − 2V d(L− 1)δ + d2(L− 1)2δ2) + v(L− 1)2(2V − dLδ)2

)

4δ
(
4(L2 − L+ 1)v + 3FDL2δ

) .

This solution satisfies

(D.18) always,

(D.19) if and only if D ≥ 2V (L+ 1)

δL
+
d(L2 − 3L+ 2)

L
− 8v(L2 − L+ 1)

FδL2
,

(D.20) always,

C0 ≥ 0 if and only if
d

V
≤ 2v(L− 1) + FDLδ

(L− 1)Lδ(v + FDδ)
,

C1 ≥ 0 if and only if
d

V
≥ 2(2v(L− 1)− FDL2δ)

(L− 1)Lδ(2v + FDLδ)
,

and therefore is the constrained optimal solution if and only if

D ≥ 2V (L+ 1)

δL
+
d(L2 − 3L+ 2)

L
− 8v(L2 − L+ 1)

FδL2
,

2v(L− 1) + FDLδ

(L− 1)Lδ(v + FDδ)
≥ d

V
≥ 2(2v(L− 1)− FDL2δ)

(L− 1)Lδ(2v + FDLδ)
.

In the subsequent subsections, we study the optimal solution in different cases.

D.3 The Case Where the Unconstrained Optimizer Violates (D.19)

Suppose that the unconstrained optimizer violates (D.19); i.e.,

D <
2V (L+ 1)

δL
+
d(L2 − 3L+ 2)

L
− 8v(L2 − L+ 1)

FδL2
.

Because this solution always satisfies (D.18) and (D.20), constraint (D.19) must bind at optimal-

ity. Consequently, noting that C1 = D − (C0/L), we eliminate the variable C1 and reduce the

optimization problem to the following:

max
C0

F

(
V − d(L− 1)δ

2
− δC0

)
C0 + F

(
V − δ

(
C0 +D − C0

L

))(
D − C0

L

)
−Dv

subject to: 0 ≤ C0 ≤ a,
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where

a =





L
L−1

(
V
δ −D

)
if D ≥ V

δL + d(L−1)2
2L ,

V
δ −

d(L−1)
2 if V

δL + d(L−1)
2L ≤ D < V

δL + d(L−1)2
2L ,

DL if D < V
δL + d(L−1)

2L .

For the preceding problem, the unconstrained optimal solution and the corresponding values of C1

and SP are as follows:

C0 =
L
(
(L− 1)(2V − dLδ)− 2D(L− 2)δ

)

4(L2 − L+ 1)δ
,

C1 =
2D(2L− 1)Lδ − (L− 1)(2V − dLδ)

4(L2 − L+ 1)δ
,

SP =
F
(
4V 2(L− 1)2 − 4V L(d(L− 1)2 − 2D(L+ 1))δ + L(4Dd(L2 − 3L+ 2) + d2(L− 1)2 − 12D

2
L)δ2

)

16(L2 − L+ 1)δ
.

This solution satisfies

C0 ≤
L

L− 1

(
V

δ
−D

)
⇐⇒ D ≤ V (L2 + 1)

δ(L+ 1)L
+
d(L− 1)

2
, (D.21)

C0 ≤
V

δ
− d(L− 1)

2
⇐⇒ D(L− 2)L ≥ d(L3 − 3L2 + 4L− 2)

2
− V (L2 − L+ 2)

δ
, (D.22)

C0 ≤ DL ⇐⇒ D ≥ 4V (L− 1)

δ(2L− 1)L
− d(L− 1)

2(2L− 1)
, (D.23)

C0 ≥ 0 ⇐⇒ D(L− 2) ≤ V (L− 1)

δ
− d(L− 1)L

2
. (D.24)

This is the constrained optimal solution if and only if the relevant inequalities hold to make it

feasible. If the unconstrained solution is negative, then the optimal solution and objective value

are given by

C0 = 0, C1 = D, SP = D(FV − (v + FDδ)).

If instead C0 ≥ 0, then we consider the preceding conditions on C0 and the corresponding in-

equalities. If the inequality that corresponds to a given condition is not satisfied, then the upper

bound on C0 is the optimal solution. The solutions and objective values can be calculated for each

respective case as follows: in the case of the first condition, if (D.21) is not satisfied, then

C0 =
L

L− 1

(
V

δ
−D

)
, C1 =

DLδ − V
(L− 1)δ

, SP =
FL(Dδ − V )(2V + (d(L− 1)2 − 2DL)δ)

2(L− 1)2δ
−Dv.

Regarding the case of the second condition, if (D.22) is not satisfied, then

C0 =
V

δ
− d(L− 1)

2
, C1 = D − 1

L

(
V

δ
− d(L− 1)

2

)
,
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SP =
F
(
− 4V 2 +

(
d2(L− 1)3 − 4D

2
L2 + 2Dd(L2 − 3L+ 2)L

)
δ2 + V

(
8DLδ − 2d(L2 − 3L+ 2)δ

) )

4L2δ
−Dv.

Finally, in the case of the third condition, if (D.23) is not satisfied, then

C0 = DL, C1 = 0, SP =
FDL(2V − d(L− 1)δ − 2DLδ)

2
−Dv.

D.4 The Case Where the Unconstrained Optimizer is Negative

Suppose that the unconstrained optimal solution is such that C0 < 0 or C1 < 0.9 Then, the optimal

solution to the constrained problem lies on one or both of the lines defined by C0 = 0 and C1 = 0.

D.4.1 The Case Where C0 < 0

If the unconstrained optimal solution is such that C0 < 0, then the constraint C0 ≥ 0 binds at

optimality. This happens when

D ≥ 2V (L+ 1)

δL
+
d(L2 − 3L+ 2)

L
− 8v(L2 − L+ 1)

FδL2
and

d

V
>

2v(L− 1) + FDLδ

(L− 1)Lδ(v + FDδ)
.

Note that, in this case, the optimization problem reduces to the following:

max
C1

F (V − δC1)C1 −
v

D
C2
1

subject to: 0 ≤ C1 ≤ a,

where

a =




V
δ if D ≥ V

δ ,

D if D < V
δ .

The unconstrained optimizer and its objective value are given by

C0 = 0, C1 =
FDV

2(v + FDδ)
, SP =

F 2DV 2

4(v + FDδ)
.

This solution is non-negative and satisfies

C1 ≤
V

δ
always,

C1 ≤ D if and only if D ≥ V

2δ
− v

Fδ
.

9Based on Appendix D.2, the unconstrained optimizer cannot be such that C0 < 0 and C1 < 0 simultaneously.
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If the unconstrained optimizer does not satisfy C1 ≤ D, then the optimal solution and objective

value are

C0 = 0, C1 = D, SP = D(FV − (v + FDδ)).

D.4.2 The Case Where C1 < 0

If the unconstrained optimizer is such that C1 < 0, then the constraint C1 ≥ 0 binds at optimality,

which happens when

D ≥ 2V (L+ 1)

δL
+
d(L2 − 3L+ 2)

L
− 8v(L2 − L+ 1)

FδL2
,

2(2v(L− 1)− FDL2δ)

(L− 1)Lδ(2v + FDLδ)
>

d

V
.

In this case, the optimization problem reduces to the following:

max
C0

F

(
V − d(L− 1)δ

2
− δC0

)
C0 −

v

DL2
C2
0

subject to: 0 ≤ C0 ≤ a,

where

a =




V
δ −

d(L−1)
2 if D ≥ V

δL −
d(L−1)

2L ,

DL if D < V
δL −

d(L−1)
2L .

Accordingly, the unconstrained optimizer and its objective value are given by

C0 =
FDL2(2V − d(L− 1)δ)

4(v + FDL2δ)
, C1 = 0, SP =

F 2DL2(2V − d(L− 1)δ)2

16(v + FDL2δ)
.

This solution is always non-negative. It satisfies

C0 ≤
V

δ
− d(L− 1)

2
always,

C0 ≤ DL if and only if D ≥ V

2δL
− d(L− 1)

4L
− v

FδL2
.

If this unconstrained optimizer does not satisfy C0 ≤ DL, then the optimal solution and objective

value are

C0 = DL, C1 = 0, SP =
FDL(2V − d(L− 1)δ − 2DLδ)

2
−Dv.

D.5 Comparison of Platform Profits Between the Two Models

In the extended model, setting C1 = 0 is always feasible. Thus, the objectives of the extended and

base models are equal only when C1 = 0 in the extended model; otherwise, the optimal objective
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value of the extended model is strictly greater than that of the base model. Based on the analysis

in the preceding subsections, we note that their optimal objective values match only when the

problem parameters satisfy one of the following two systems of inequalities:

(I)




D ≥ 2V (L+1)

δL + d(L2−3L+2)
L − 8v(L2−L+1)

FδL2 ,

2V
δ

(
2v(L−1)
Fδ −DL2

)
≥ d
(
2v(L−1)L

Fδ +D(L− 1)L2
)
,

(II)





D ≤ 2V (L+1)
δL + d(L2−3L+2)

L − 8v(L2−L+1)
FδL2 ,

D(L− 2) ≤ V (L−1)
δ − d(L−1)L

2 ,

D ≤ V
δL + d(L−1)

2L ,

D ≤ 4V (L−1)
δ(2L−1)L −

d(L−1)
2(2L−1) .

To obtain the preceding conclusion, we use the fact that

2(2v(L− 1)− FDL2δ)

(L− 1)Lδ(2v + FDLδ)
≥ d

V

if and only if
2V

δ

(
2v(L− 1)

Fδ
−DL2

)
≥ d

(
2v(L− 1)L

Fδ
+D(L− 1)L2

)
.

Using the analysis in the preceding subsections, we observe that the first system corresponds to

when the drop-off time d and stacking level L are so small that the extra time imposed by stacking

orders is negligible. For the second system, recall that the scarce driver regime holds when

D ≤ V

2δL
− d(L− 1)

4L
− v

FδL2
,

and this inequality implies the third inequality of the system.

Appendix E: Further Extensions of the Base Model

E.1 A Service Radius

The contract between the restaurant and the platform typically specifies a service radius (DoorDash

2020), which is the maximum distance from the restaurant that the platform delivers to. In our

model, a service radius of C limits the extent of the interval of participating customers to [0, C].

We analyze the base model with the addition of a service radius constraint in Appendix F. From

that analysis, we obtain the following proposition.

Proposition E.1. As in the base model, there is a market if and only if (15) holds. Drivers are

scarce if and only if C ≥ DL and (16) holds, while the service radius binds if and only if C ≤ DL
and

2V − d(L− 1)δ ≥ 4

(
v

FL2
+ δC

)
. (E.1)
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Recall that C is strictly increasing in L for L < LSC
. Thus, if the service-radius constraint

(C ≤ C) binds, then there exists L such that, as L starts to exceed L, the constraint starts to

bind. Because C is continuous and strictly increases from 0 to its maximum, we deduce that L can

lie anywhere in (0, LSC
). Where it falls dictates the effect that adding the constraint has on each

platform participant’s payoff, as explained in the following result.

Proposition E.2. The constraint C ≤ C binds for L in a subinterval of (0, L̂). Define L̂SP
=

3

√
(4vC)/(dFDδ). Then, as functions of L on (L,LSC

), C and SC are constant; D, SD, SD/D,

and PC are strictly decreasing; SP is quasiconcave with a maximizer L̂SP
. Furthermore, there

exists a constant C
? ∈ (0,maxL{C}] such that

if C > C
?
, then L̂SP

> LSP
;

if C < C
?
, then L̂SP

< LSP
.

Figure 9 illustrates the effects characterized in Proposition E.2. Intuitively, if the driver or

customer surplus peaks after L, then adding the constraint C ≤ C causes it to peak at L. The

effect on the platform is more complicated, because, as Proposition E.2 states, the platform’s profit

is still quasiconcave after the constraint is added, and the imposition of the constraint can cause

its peak to occur before or after its original peak of LSP
. In Figure 9, the peaks lower as the radius

tightens. Hence, a service radius appears to hurt all market participants if the radius is smaller

than the equilibrium radius without the constraint.

Suppose that we temporarily fix all equilibrium quantities and impose a binding service radius

of C. Then, the marginal customer (on the boundary at C) has excess utility. The platform can

take two actions to claw away some of this excess utility from the customer. It can raise the price

P to increase its revenue, or it can increase the stacking level L, which is equivalent to hiring

fewer drivers, to reduce its expenses. In equilibrium, both of these happen. As Proposition E.2

indicates, if the service radius is sufficiently large (i.e., not very restrictive), then the platform

focuses on cutting costs by hiring fewer drivers (increasing the stacking level). When the service

radius is smaller (i.e., more restrictive), the platform focuses on increasing revenue by hiring more

drivers (which increases the available customer utility) and raising the price to extract more of

their surplus.

Observe that in Figure 9, the ordering of LSC
and LSP

switch for sufficiently small C. It is

interesting to note that in this case, the platform wants to stack orders at a higher level than any

other market participant.
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Figure 9. Impact of a service radius. The figure displays the payoff functions SC , SD, SR, and SP for
different values of L in the case of a service radius C. From (a) to (e), C = 0.19, 0.181, 0.17, 0.15, and 0.09,
respectively. The problem parameters are V = v = D = δ = 10, d = 2. The maximizer of each colored curve is
shown as a vertical dashed line of the same color. If no matching dashed line is present for a colored curve, the

maximizer of that curve is L.
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There are benefits to using service radii for restaurants that are not captured in our model. For

example, Auad et al. (2024) study how a dynamic service radius could be used by the platform to

control demand. Furthermore, service radii localize certain aspects of the driver pricing problem,

apparently rendering the pricing problem more tractable. For these and other reasons, we hesitate

to conclude that service radii hurt all or almost all market participants. In any case, most of the

original results hold, with slight modification. For example, the ordering of the optimal stacking

levels for the market participants is preserved with the exception of LSP
, which switches places

with LSC
as the service radius becomes more restrictive. However, for moderate values of C, the

original result appears to hold with weak inequalities.

E.2 Positive Meal Preparation Time

The analysis in Sections 3 and 5 assumes that orders become ready immediately. We now relax

this assumption and suppose that each order takes time t > 0 to prepare. Once all the orders are

placed at the beginning, the only effect this has is to add t time units on to each customer’s wait

time W (x). Let V ′ = V − δt, and note that it is a function of δ and t. Then, following our original

arguments, we obtain

C =
V − P
δ
− d(L− 1)

2
− t =

V ′ − P
δ

− d(L− 1)

2
.

Propagating the change through, we can obtain versions of all propositions and theorems of Sec-

tions 4 and 5.10

Because V ′ = V − δt, it is clear that any quantity that is decreasing (increasing) in V in the

original model is increasing (decreasing) in t in the extended model. Combining this with the

results in Section 5, we obtain the following proposition.

Proposition E.3. P , C, D, SC , SD, SR, SP , and S are all strictly decreasing in t.

Proposition E.3 embodies the intuitive notion that the longer it takes the restaurant to fill

orders, the worse off are all other market participants. An increase in the meal preparation time

makes customers receive their meals later, which hurts their utility. In response, the platform must

lower the price, but the combination of lower prices and fewer customers leaves the platform with

less money to pay itself and drivers. It also leaves less money for the restaurant.

The upshot is that all market participants prefer a faster restaurant. This preference is man-

ifested in practice in the advent of virtual restaurants and ghost kitchens—both of which prepare

meals for delivery only. A ghost kitchen is a restaurant that has no storefront or seating area. A

virtual restaurant can be either a ghost kitchen or a delivery-only restaurant operated out of an ex-

isting restaurant’s kitchen. Virtual restaurants may prepare orders for several different restaurants

10The constants such as δSC and δ̂ that appear in the proofs of some of these results are modified.
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listed on the platform. Such restaurants exist to decrease meal preparation times for online-order

customers without degrading dine-in service times.

E.3 General Convex Cost of Waiting

Suppose that the customers incur a disutility of g(W (x)) from experiencing wait time W (x) (the

base model has g(y) = δy). Suppose g is convex and strictly increasing with g(0) = 0. Then, a

customer at location x receives the following utility from ordering:

U(x) = V − P − g(W (x)), (E.2)

and this customer places an order if and only if g(W (x)) ≤ V − P . Similar to the base model,

g(W (x)) is increasing in x, so there exists a positive real number C such that g(W (x)) ≤ V − P if

and only if x ≤ C. Thus, in equilibrium only the customers living in [0, C] are close enough to the

restaurant to participate. In this case, C is defined as the solution to the indifference condition

V − P = g

(
C +

d(L− 1)

2

)
. (E.3)

Based on the arguments used in the analysis of the base model, we write the platform’s decision

problem as the following:

max F

(
V − g

(
C +

d(L− 1)

2

))
C − v

DL2
C2

subject to: 0 ≤ C ≤ DL,

V − g
(
C +

d(L− 1)

2

)
≥ 0.

The corresponding market condition is

g

(
d(L− 1)

2

)
< V,

and the problem is strictly feasible when this holds.

We show in Appendix G that in the case that there are abundant drivers for all values of L

and g has a non-negative third derivative, SC and SD are strictly quasiconcave as functions of L.

Suppose that SR and SP are as well. Because SD + SP = (FSR)/(1 − F ), taking derivatives and

evaluating at L = LSR
reveals that SD(L) and SR(L) have slopes of opposite sign at L = LSR

.

By the strict quasiconcavity of these functions, this implies that either LSD
> LSR

> LSP
or else

LSP
> LSR

> LSD
. We also show in Appendix G that LSC

is greater than both LSD
and LSP

, so

in either case, LSC
is greater than all other optimal stacking levels. Figure 10 demonstrates that

the ordering of Theorem 2 prevails in a selection of g that satisfies these assumptions.
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Figure 10. Impact of convex waiting costs. The figure displays the (unconstrained) payoff functions SC , SD,
SR, and SP in the case of convex waiting costs, with g(y) = yn for n ∈ {2, 3, 4}. The problem parameters are

V = 100, v = 30, d = 2, F = 0.3, and D = 4. Note that L̂ ≈ 4.16 for panel (c).
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Appendix F: Analysis for the Case of a Service Radius

When there is a service radius of C, the platform’s optimization problem can be written as follows:

max F

(
V − d(L− 1)δ

2
− δC

)
C − v

DL2
C2

subject to: 0 ≤ C ≤ min

{
V

δ
− d(L− 1)

2
, DL, C

}
.

In Appendix A, we show that the unconstrained optimizer (A.1) is non-negative and satisfies the

following constraint:

C ≤ V

δ
− d(L− 1)

2
.

Proof of Proposition E.1. Because the unconstrained optimal solution is the same as that of the

base model, the market condition is the same, namely (15). Note that the optimal solution is

constrained to simultaneously lie in both [0, DL] and [0, C]. The interval that is smaller dictates

the possible type(s) of equilibria; drivers can only be scarce if DL ≤ C and the service radius can

only bind if C ≤ DL.

From the expression for the unconstrained optimizer given in (A.1), we deduce that it violates

the constraint C ≤ DL if and only if

D <
V

2δL
− d(L− 1)

4L
− v

FδL2
. (F.1)

Moreover, the same unconstrained optimizer violates the constraint C ≤ C if and only if

D <
V

2δL∗
− d(L− 1)

4L∗
− v

FδL2
. (F.2)

Note that the driver scarcity condition given in (F.1) is the same as that of the base model, (16).

We now see that drivers are scarce if and only if C ≥ DL and (F.1) holds, and that the service

radius binds if and only if C ≤ DL and (F.2) holds.

Proof of Proposition E.2. If the service radius binds, then SP = [FL2(2V − d(L− 1)δ − 2Cδ)C −
2CvL∗]/(2L2), which is strictly concave in L. Its unconstrained maximizer is therefore the unique

solution L̂SP
to the following first-order condition:

0 = −FCdδ
2

+
2C

2
v

D

1

L3
,

which can be written as

L̂SP
=

3

√
4Cv

FDdδ
.

Furthermore, we have the following:

SC =
δ

2
C

2
,
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SD =
v

DL2
C

2
,

SP = V FC − FδC2 − dFδC

2
L− vC

2

D

1

L2
,

SR = (1− F )PC = (1− F )C

(
V − δ

(
C +

d

2
L

))
= (1− F )

(
CV − δC2 − dδC

2
L

)
,

C = C,

D =
C

L
,

SD
D

=
v

DL
C.

The remainder of the proof, with the exception of showing the existence of C
?

satisfying the

properties in the proposition, follows from examining the preceding expressions.

We now prove the existence of C
?

with the desired properties. As in the proof of Theorem 2,

define s = (V v)/(FDdδ2) and t = v/(FDδ). Then, we can write

L̂SP
=

3

√
4C

d
t,

LSP
=

3

√√√√
(
s+

t

2

)
+

√(
s+

t

2

)2

+
8

27
t3 +

3

√√√√
(
s+

t

2

)
−

√(
s+

t

2

)2

+
8

27
t3.

By elementary algebra, we deduce that

L̂SP
< LSP

⇐⇒ C < C
?

:=
dL̂

4
− dLSP

2
.

Note that the right-hand side of the preceding inequality is independent of C.

Finally, we prove that C
? ≤ maxL{C} by contradiction. Recall that LSC

is the maximizer of C

as a function of L. By equation (B.2), we have that

C
?
> max

L
{C} ⇐⇒ dL̂

4
− dLSP

2
>
FDL2

SC

(
2V − d(LSC

− 1)δ
)

4
(
v + FDL2

SC
δ
)

⇐⇒ t
(
L̂− 2LSP

)
>
FDL2

SC

(
2V − d(LSC

− 1)δ
)
t

d
(
v + FDL2

SC
δ
)

⇐⇒ L3
SP

>
FDL2

SC

(
2V − d(LSC

− 1)δ
)
t

d
(
v + FDL2

SC
δ
) ,

where the last line follows because, as shown in the proof of Theorem 2, LSP
is a root of

L3 + 2tL− (2s+ t) = L3 + t
(
2L− L̂

)
.
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Because C is strictly maximized at LSC
(Theorem 1) and LSP

6= LSC
(Theorem 2), we deduce that

FDL2
SC

(
2V − d(LSC

− 1)δ
)

4
(
v + FDL2

SC
δ
) >

FDL2
SP

(
2V − d(LSP

− 1)δ
)

4
(
v + FDL2

SP
δ
) ,

which after multiplying by (4t)/d, yields the following:

FDL2
SC

(
2V − d(LSC

− 1)δ
)
t

d
(
v + FDL2

SC
δ
) >

FDL2
SP

(
2V − d(LSP

− 1)δ
)
t

d
(
v + FDL2

SP
δ
) .

Therefore, a necessary condition for C
?
> maxL{C} is that

L3
SP

>
FDL2

SP

(
2V − d(LSP

− 1)δ
)
t

d
(
v + FDL2

SP
δ
) .

This holds if and only if

LSP
>
FD

(
2V − d(LSP

− 1)δ
)
t

d
(
v + FDL2

SP
δ
) ⇐⇒ LSP

>
v
(
2V − d(LSP

− 1)δ
)

dδ
(
v + FDL2

SP
δ
)

⇐⇒ 0 > 2V v + dvδ − 2dvLSP
δ − FDL3

SP
dδ2 = gSP

(LSP
) ,

where gSP
is as in the proof of Theorem 1. However, gSP

(LSP
) = 0; hence, the aforementioned

necessary condition for C
?
> maxL{C} cannot hold, and it must be that C

? ≤ maxL{C}.

Appendix G: Analysis for General Convex Cost of Waiting

We note that the derivative of the objective function with respect to C is positive at C = 0 by the

market condition, and because g is convex, that this derivative is strictly decreasing on R+. The

objective function is therefore quasiconcave in C on R+, so the unconstrained maximizer is given

by the first-order condition, which can be written as follows:

V − g
(
C +

d(L− 1)

2

)
= g′

(
C +

d(L− 1)

2

)
C +

2v

FDL2
C.

The right-hand side of this equation is non-negative for C ≥ 0; thus, the second constraint is always

satisfied and can therefore be dropped. Furthermore, evaluating the first-order condition at C = 0

and using the market condition, we see that C 6= 0 at optimality. Consequently, the only constraint

that the unconstrained optimal solution can violate when the market condition holds is C ≤ DL.

The constrained optimal solution is therefore

C = min{C∗, DL},

where C∗ is the unconstrained optimal solution given by the first-order condition.

We now argue that C∗ is strictly quasiconcave as a function of L. To this end, we state the
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following lemma.

Lemma G.1. Suppose that for every t ∈ T , f(x, t) is quasiconcave in x ∈ X. Moreover, suppose

that for each x ∈ X, ∂xf(x, t) is non-negative on a connected strictly convex set Tx (which may be

the empty set). Then, the unique optimal selection x∗(t) is strictly quasiconcave.

Proof. Let α ∈ X. Then, ∂xf(α, t) ≥ 0 for t ∈ Tα, and the quasiconcavity of f(x, t) in x implies

that x∗(t) ≥ α for all t ∈ Tα. Suppose that there exists t∗ /∈ Tα such that x∗(t∗) ≥ α. Then,

by the quasiconcavity of f(x, t) in x, ∂xf(α, t∗) ≥ 0, which is a contradiction. Therefore, Tα =

{t ∈ T : x∗(t) ≥ α}, and this is strictly convex by assumption, implying that x∗(t) is strictly

quasiconcave.

Note that SP is quasiconcave in C on R+, and suppose that g′′′ ≥ 0. Then,

φ(L) := ∂CLSP =
4v

DL3
C − Fd

2

[
g′′
(
C +

d(L− 1)

2

)
C + g′

(
C +

d(L− 1)

2

)]

is a strictly decreasing function, so ∂CSP is strictly concave as a function of L; consequently,

{L : ∂CSP (L) ≥ 0} is strictly convex, and Lemma G.1 implies that C∗(L) is strictly quasiconcave.

Using C = DL to reexpress the platform’s decision problem with decision variable D and following

the same argument shows that D∗(L) is also strictly quasiconcave.

Since C∗(L) = D∗(L)L, we have that C∗′(L) = D∗′(L)L+D∗(L). Let LC and LD be maximizers

of C∗(L) and D∗(L), respectively. Then, C∗′(LD) = D∗′(LD)LD+D∗(LD) = D∗(LD) > 0, implying

that LC > LD. Note that SD = (v/D)D2 is a strictly monotone function of D, so LSD
= LD.

Furthermore,

SC(C) =

∫ C

0
U(x)dx =

∫ C

0
V − P − g

(
x+

d(L− 1)

2

)
dx

=

∫ C

0
g

(
C +

d(L− 1)

2

)
− g

(
x+

d(L− 1)

2

)
dx,

which is strictly monotone in C. Because g is convex, as L gets larger, so does the integrand (for

each fixed x). Consequently, SC is increasing as a function of L whenever C∗ is, implying that

LSC
≥ LC . Hence, LSC

> LSD
.

Suppose that SC , SD, SR, SP , and C are strictly quasiconcave in L and are maximized at an

interior point of [1, L̂]. Then,

SC(L) =

∫ C(L)

0
g

(
C(L) +

d(L− 1)

2

)
− g

(
x+

d(L− 1)

2

)
dx

= g

(
C(L) +

d(L− 1)

2

)
C(L)−

∫ C(L)

0
g

(
x+

d(L− 1)

2

)
dx

= V C(L)− 1

F
SP (L)− 1

F
SD(L)−

∫ C(L)

0
g

(
x+

d(L− 1)

2

)
dx.
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Therefore, using Leibniz’ integral rule, we deduce that

S′C(L) = V C ′(L)− 1

F
S′P (L)− 1

F
S′D(L)− g

(
C(L) +

d(L− 1)

2

)
C ′(L)

− d

2

∫ C(L)

0
g′
(
x+

d(L− 1)

2

)
dx

=

[
V − g

(
C(L) +

d(L− 1)

2

)]
C ′(L)− 1

F
S′P (L)− 1

F
S′D(L)

− d

2

[
g

(
C(L) +

d(L− 1)

2

)
− g

(
d(L− 1)

2

)]
.

Evaluating both sides at L = LSC
, noting that S′C(LSC

) = 0, and rearranging yields the following:

1

F
S′P (LSC

) =

[
V − g

(
C(LSC

) +
d(LSC

− 1)

2

)]
C ′(LSC

)− 1

F
S′D(LSC

)

− d

2

[
g

(
C(LSC

) +
d(LSC

− 1)

2

)
− g

(
d(LSC

− 1)

2

)]
.

On the right-hand side, the first and third terms are non-positive and the second term is negative.

To see this, we note the following: because LSC
∈ (1, L̂) by assumption, the market condition

implies that the bracketed part of the first term is positive. Since C(L) is strictly quasiconcave

and LC ≤ LSC
, we have that C ′(LSC

) ≤ 0, so the first term is non-positive. Similarly, because

SD(L) is strictly quasiconcave and LSD
< LSC

, S′D(LSC
) > 0, implying that the second term is

negative. Since g is strictly increasing and C(LSC
) ≥ 0, the third term is non-positive. Hence, the

right-hand side of the equation is negative, implying that S′P (LSC
) < 0. Because SP (L) is strictly

quasiconcave with an interior extremum, this implies that LSC
> LSP

.
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