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We exploit recent advances in active high-resolution imaging through scattering media with ballistic
photons. We derive the fundamental limits on the accuracy of the estimated parameters of a mathematical
model that describes such an imaging scenario and compare the performance of ballistic and conventional
imaging systems. This model is later used to derive optimal single-pixel statistical tests for detecting objects
hidden in turbid media. To improve the detection rate of the aforementioned single-pixel detectors, we
develop a multiscale algorithm based on the generalized likelihood ratio test framework. Moreover, con-
sidering the effect of diffraction, we derive a lower bound on the achievable spatial resolution of the proposed
imaging systems. Furthermore, we present the first experimental ballistic scanner that directly takes
advantage of novel adaptive sampling and reconstruction techniques. © 2007 Optical Society of America

OCIS codes:

1. Introduction

High-resolution imaging and detection of objects hid-
den in a turbid (scattering) medium have long been
challenging and important problems with many
industrial, military, and medical applications. Al-
though turbid media such as fog, smoke, haze, or
body tissue are virtually transparent to radar range
electromagnetic waves, the resolution of radar-based
imaging systems is often insufficient for many prac-
tical applications. Moreover, in some instances the
transparency characteristics of certain objects (tar-
gets) and the medium are very close in the radar
range spectrum, making them practically indistin-
guishable from each other. On the other hand, al-
though the resolution of imaging systems using
ultrashort wavelengths (e.g., x rays) is desirable,
there exist potential health hazards for imaging sub-
jects and technicians alike.

As an alternative, imaging systems working in the
optical-infrared spectrum range (laser scanners) are
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potentially able to produce high-resolution images
without the likely health hazards. Unfortunately,
even a very thin and powerful collimated laser beam
quickly diffuses as it travels in turbid media, similar
to a car’s headlights in fog. Therefore, a naive ap-
proach to optical imaging of objects hidden inside a
turbid medium results in blurry images where tar-
gets are often indistinguishable from each other or
the background.

Fortunately, the advent of the new tunable solid-
state lasers and ultrafast optical detectors has en-
abled us to acquire high-quality images through
turbid media where the resolution is only limited by
diffraction. Although many efficient imaging systems
for capturing high-resolution images through turbid
media have been proposed throughout the years [1],
in this paper we mainly focus on ultrafast time-gated
or coherent imaging systems [2]. We note that the
proposed methods and analysis are valid and appli-
cable for a great range of imaging systems including
optical coherence tomography [3] and x-ray imaging
systems.

Ultrafast time-gated imaging is based on scanning
the region of interest (ROI) point by point by sending

10 August 2007 / Vol. 46, No. 23 / APPLIED OPTICS 5805



fast bursts of optical energy (laser pulses) and detect-
ing the unscattered (coherent) photons that have
passed through the medium or reflected from the
object. Although most of the photons in a laser pulse
are either randomly scattered (losing their coher-
ence) or absorbed as they travel through turbid me-
dia, across short distances, a few photons keep their
coherence and pass through in straight lines without
being scattered. These coherent photons are com-
monly referred to as the ballistic photons. Aside from
the diffusive and ballistic photons, the photons that
are slightly scattered, retaining some degree of co-
herence, are referred to as snake photons.

In what follows in this paper, we focus on studying
and improving the performance of ballistic imaging
systems. In Section 2, we describe a statistical model
for the signal and noise in a typical ballistic imaging
scenario. Furthermore, we describe optimal methods
for characterizing the optical properties of the scat-
tering medium and the semitransparent objects in-
side it. In Section 3, we study the performance limits
of optimal single-pixel detection systems. Moreover,
we show that better detection rates are achievable
using a multipixel detection technique based on the
generalized likelihood ratio test (GLRT) principle.
The effect of diffraction on the detection rate is dis-
cussed in Section 4. In Section 5, we describe a lab-
oratory setup for detecting ballistic photons and
capturing high-resolution images through turbid me-
dia, where real experimental data are presented to
further clarify the concept of ballistic imaging. In
Subsection 5.B, we describe an adaptive sampling
scheme that effectively reduces the image acquisition
time, making ballistic imaging more suitable for
practical applications. A summary and future work
directions are given in Section 6, which concludes this

paper.
2. Statistical Model for Ballistic Imaging Systems

To have a better understanding of the practical issues
involved in photon-limited imaging via ballistic sys-
tems, let us consider the imaging system described by
Zevallos et al. [4] where the pumped Ti:sapphire laser
radiates 800 nm pulses at a repetition rate of 1 kHz
and an average power of 60 mW. It is easy to show
that the energy delivered by the laser during each
pulse is

60X 10 %X 1s

— =5
1000 =6X107"J,

epulse =

and the energy of each photon is computed as

he
e=hf= " =2.4830X 107 J,

where & = 6.626 X 103* is Planck’s constant, ¢ =
299, 792, 458 m/s is the speed of light, and A =
800 nm is the wavelength. Now the number of
photons in each packet of energy (pulse) is easily
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computed as

6x107°

= W =2.4164 X 1014 phOtOl’lS. (1)

I,

Because of the statistical nature of pulse propaga-
tion, as a laser beam travels through a diffusive me-
dium, it is possible that some of the photons emerge
without being scattered. By selecting these unscat-
tered ballistic photons and rejecting the scattered
(diffused) ones, it is possible to obtain nonblurred
images that are the sharp shadows of targets buried
in the diffusive medium.

Since the diffusive and ballistic photons have dif-
ferent path lengths, a femtosecond laser pulse gen-
erator and an ultrafast time gate can be paired to
separate the relatively slow (delayed) diffusive pho-
tons from the ballistic ones. We will say more on a
practical setup of a ballistic photon imaging system in
Section 5. In what follows in this section, we focus on
modeling the detected ballistic photons and noise
from a statistical point of view.

A. Modeling Received Signal Power

As expected, in relatively long distances, the number
of detected ballistic photons is extremely small. In-
deed, Beer’s law [5] dictates an exponential relation-
ship between the intensity of the transmitted light
and that of the ballistic component as

d
I,=1I, exp(—L>. (2)

In this expression, I, is the number of the generated
photons in one laser pulse before entering the turbid
medium, [, is the number of the ballistic photons that
survive traveling through the medium, d is the dis-
tance traveled through the medium, L = 1/, is the
mean free path (MFP) length (average distance pho-
tons travel before being scattered), and p, = p,
+ W, is the medium extinction factor (the summation
of scattering and absorptive coefficients, respec-
tively). From Egs. (1) and (2), it is clear that for the
laboratory imaging systems with laser power of the
order of the one described by Zevallos et al. [4], it is
fairly unlikely that any ballistic photon survives im-
aging scenarios where the ratio of d/L is larger than
~30 MFPs. In Appendix A, we have included a de-
tailed decision-theoretic study for defining the critical
distance after which the conventional (non-time-
gated) imaging systems are preferred to the time-
gated ballistic systems.

The exponential drop in the number of received
photons is the main prohibitive factor for using such
high-resolution optical imaging systems across long
distances. In such imaging scenarios, we are forced to
rely on the less immediately informative (due to the
inherently severe blur) snake and diffusive photons.
In recent literature [6,7], an accurate yet computa-
tionally manageable mathematical model for diffu-



sive light propagation in turbid media is presented.
Cai et al. [8] analyzed and experimented on such an
imaging modality and Das et al. [9] and Gibson et al.
[10] presented some excellent literature surveys on
the subject of diffusive imaging systems. However,
imaging systems that are able to time resolve both
ballistic and diffusive photons are rather expensive
(e.g., a gated optical intensifier camera costs about
$100,000) and are not discussed in this paper. Here,
we focus on and derive fundamental performance lim-
its for imaging systems that detect ballistic photons
only. We exploit these statistical studies to improve the
performance of ballistic imaging systems even in long
distances where the signal power is weak.

It is important to note that because of the stochas-
tic nature of photon propagation, I,, calculated in Eq.
(2), is merely the expected value of a Poisson random
variable that estimates the number of surviving bal-
listic photons. Moreover, we assume that the received
signal at the detector is contaminated with some
amount of independent Poisson noise due to shot
noise and other degrading effects. Therefore, since
the received signal at the detector is the unweighted
summation of two Poisson random variables, it can be
modeled as a Poisson random process with the fol-
lowing expected value:

I=I,exp(—pd) + X, =X, + X,,

where X, and X, are the expected values of the noise
and signal, respectively. Note that weighted summa-
tion of Poisson random variables in general is not
Poissonian, which in some cases can be approximated
as a truncated Gaussian distribution [11]. However,
summation of Poisson random variables with integer
weights is yet another Poisson random variable.

B. Characterizing the Optical Properties of the Medium in
the Absence of Targets

Accurate characterization of the scattering medium’s
optical properties is essential for designing optimal
detectors. Since light propagation in ballistic imaging
systems is described by the single-parameter Beer’s
law model, we are mostly interested in measuring
(characterizing) the medium or semitransparent ob-
ject’s extinction factor.

In the imaging model of Subsection 2.A, the re-
ceived signal is modeled as a Poisson random vari-
able with probability density function

Ne (Xe,tXs,) (Xek + ng)yk
+X) = , 3
where y, is the kth measurement, y = [y}, s, ...,
Yies - - - 5yN]T7 }Q = [Xel> Xe27 st Xek7 st XeN]T7 and

X =[X,X,....X,, ... ,XSN]T. Note that the laser
emits thousands of pulses per second and in practical
implementation each spatial position is measured N
times to improve the quality of estimation, and there-
fore the model in Eq. (3) is presented in vector form.

Since the average power of the laser or the detector
(and medium) characteristics are assumed not to be
changing abruptly, to simplify notations, we assume
that X, =X, =... =X, =X, and X, =X, = ...
= X,, = X, (extension to the more general time-
varying signal and noise case is straight forward).
The maximum likelihood (ML) estimate of the

medium’s extinction factor is given by

NI,
Inf———5—
NXe - kglyk

9 log[f(y|X, + X)]
Iy =0=p= d

Study of the Fisher information matrix (FIM) de-
termines the accuracy of the above estimation
scheme. Each element of this matrix can be computed
[12] as

Ploglf(y|X+X)] n/ 1 X, iX,
[li'j - _E 8@@@1 - k=1 <Xe +Xsk 8@1 a®J )’
where E is the expected value operator and ®, is the
kth parameter of the model. For the case of charac-
terizing the extinction factor of the medium, the FIM
has only one element:

NId%
W) = X 3 NLe v

Note that an unbiased estimator can be found that
attains the Cramér—Rao bound (CRB), which defines
a lower bound on the covariance of any unbiased
estimator [13], if and only if the estimator is a linear
transformation of the gradient of the log-likelihood
(score) function [13,14]

a log[f(y|le ™™ +X,)] »
i i L - v

Now, since

] log[f(y [Zoe ¢ + Xe)]
O

= H(Mt) |:Iode_wd(Xe + Ioe_wd)

Ide " N
- N kzlyk ’

it is clear that no efficient estimate of the extinction
parameter can be found and such estimates will al-
ways be biased. This suggests that, in general, the
lower bound on the variance of such an estimator
cannot be computed by simply inverting the Fisher
matrix element. Fortunately, we can numerically
show that for the turbid media that are of most in-
terest to us [such as [15] heavy fog (n, = 12.57*
m 1Y), light fog (n, = 125"'m™'), and haze (n, =
505.05"' m )], the bias component relative to the
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(Color online) Optimal distance for calibrating the medium extinction factor for heavy fog, light fog, and haze. (a) Experimental

setup, where the detector is moved to different locations [marked by lighter (red) dots] inside the turbid medium. (b) Bias of estimation
that is calculated over 60,000 Monte Carlo simulations. (¢) Summation of squared bias and variance (solid curves) that is dominated by
the variance component and perfectly fits the predicted results from CRB formulation (dotted curves) in short distances.

variance is small and can be ignored. Therefore the
CRB on the variance can be expressed as

X, +Ie "

Var(Mz) > NIO2d2(e—,L,d)2'

(4)

Aside from theoretical analysis, in practice, this sim-
ple closed-form expression of the lower bound to the
variance of the estimate can help us design optimal
experiments to characterize the optical properties of
the medium and the target.

For example, the CRB analysis helps us find the
optimal distance between the laser and the detector
for estimating the medium extinction factor. Figure
1(a) shows the setup of this numerical experiment,
where the black dot represents the position of the
laser and the lighter (red) dots represent the possible
locations of the detector. The optimal distance mini-
mizing the lower bound on the estimator variance can
be easily calculated by differentiation of Eq. (4) with
respect to the distance (d). Figure 1(b) shows the
estimated bias for this experiment (via 60,000 Monte
Carlo experiments), which are small and negligible.
In Fig. 1(c), we have plotted the summation of the
numerically experimented bias (squared) and the
minimum variance (solid curves) and the CRB (dot-
ted curves) predicted from Eq. (4), which perfectly fit
the numerically experimented results in shorter dis-
tances. These plots suggest that, for calibrating
heavy fog, the optimal distance between the laser and
the detector is less than 100 m, whereas such a dis-
tance for light fog is of the order of a few hundred
meters and for haze is of the order of 1 km. Note that
the dotted curves (numerically experimented results)
in Figs. 1(b)-1(c) are discontinued after certain dis-
tances. The reason for such discontinuity is that in
long distances, where the signal power is about the
same as the noise level, the estimated bias is not
negligible and abruptly tends to infinity. Therefore,
the proposed CRB formulation (4), depending on the
scattering properties of the medium, is only valid up
to some distance as plotted in Fig. 1. Practically, this
is of no concern, since these distances are away from
the optimal calibration distance.
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C. Joint Characterization of the Medium and the Target’s
Optical Properties

A related and more practical problem, namely, char-
acterizing the optical properties of an object located
inside an unknown turbid medium, requires two in-
dependent sets of experiments. The first set of exper-
iments is performed in the absence of the object (and
repeated NV; times to improve the accuracy) and the
second set of experiments is performed in the pres-
ence of the presumed object (and repeated NV, times).
Figure 2 illustrates such an imaging scenario, for
which we can easily derive the ML estimates of the
medium and the object (inclusion) extinction factors as

N,
Inf———%—
NlXe - kZlyk
[ d ’
N,I, NI
dln[ -5\ = (d—dp)ln[ —— 5
NZ-Xe_kglyk NlXe_kglyk
lltm = dd,, P

respectively, where d,,. is the thickness of the ob-
ject.

The general FIM formulation of Eq. (4) can be ex-
ploited for both of these imaging scenarios. In this

Fig. 2. (Color online) Experimental setup for characterizing the
optical properties of the medium (p,) and a semitransparent object

(Hvtm) .



case, the CRBs are derived from the inverse of a
[2 X 2] FIM, the diagonal elements of which define
the variance bounds:

X, +Ie

Var(u,) > N1102d2(ewzd)2’

QQZ wed = 2pedine+ 20tinedine

IO2d2N1din02N2

Var(p“tinc) >

Q= ( N1d2 Xe + Nlee —ped + pedine = Pt dine Io
+ NZezl*tdine - 2Mtincdined2Xe
+ N2e —wd+2pndine—2 Mtincdincdzlo
-9 NZQZP«tdimr’QNz’ncdincddin X,
_ 2N2e —ed+2pine—2ptincdine d dmclo
+ N2€2 Wedine—2 MtincdincdinC2Xe
+ Nye™ utd+2wdincﬂwmcdincdinf IO) . (5)

As an illustrative example, we fixed N; and N, to 50
each, X, = 20, and assumed that semitransparent
objects with extinction factors of p, = 0.124, p,
=1.24,and p,, = 12.4 and 1 m thickness are present
inside heavy fog. In Fig. 3, we compared the numer-
ically experimented squared bias and variance (via
5000 Monte Carlo simulations) to the CRB limit, as-
suming that the distance between the laser and the
detector are variant between 50 and 300 m. The re-
sults basically show that the numerically experi-
mented and CRB values of the medium extinction
factor in all cases are indistinguishably close to
each other. On the other hand, as the inclusive
object becomes more opaque, the theoretic CRB and
numerically experimented variance diverge from
each other.

3. Performance Analysis of Pixelwise Optimal
Detectors

In this section, assuming that the laser, target, and
turbid medium are accurately calibrated, we study
the performance bounds of optimal detectors in the
presence of opaque or semitransparent objects.

A. Detecting Opaque Objects

In this subsection, we study the performance of the
Neyman—Pearson (NP) type statistical test [16] for
detecting opaque objects hidden in a turbid medium
versus distance. In this test, we basically compare the
likelihood of the following two scenarios:

® H,: An opaque object is hidden in the scattering
medium, blocking the laser pulse (i.e., measurements
contain only noise).

e [H;: No opaque object exists in the propagation
line of the laser pulse (i.e., measurements contain
noise plus an attenuated laser pulse).

The probability density function of these two sce-
narios when such tests are repeated N times are

given by

N ei (Xe) (Xe)yk

Ho - f(lee) B kl;[1 Vil

K

N e—(Xe+Xs) (Xe +Xs)yk
H, : f@/|XS +Xe) = kl;ll il

, (6

and therefore the NP test is derived by comparing the
log-likelihood ratio to a threshold as

e KD (X, + X e

!
o || e § N
k=1 e X (Xe)yk Ho

=z — = .
= [HT) 10g<Xe +Xs) K
Ye! X,

(7

Noting that >4y, is yet another Poisson process,
the probabilities of false alarm (Py,) and detection
(Pp) are computed as

N = e "(NX,)k
PFA:P{Eyk>'Y,|HO}: > TR
k=1 k=vy'+1 .

e M (NX )
_ o3 TR

34 =1-CDF(VX)), 8)

N © eiNXfNXS(NXE-i-NXS)k
Py=P{S >y} 3

k=vy'+1 k!
| e VNS (NX, + NX )
k=0 .
=1 - CDF(NX, + NX5), (9)

where CDF is the cumulative distribution function of
a Poisson random variable. Note that, in some scien-
tific communities, the false alarm is commonly re-
ferred to as a false positive and detection is referred
to as a true positive.

Figure 4(a) shows the receiver operating character-
istics (ROC) (P, versus Pp,) curves for detecting
opaque objects in heavy fog, considering a detector
with X, = 20 and a laser power as in Eq. (1). This
experiment shows that, by using only ballistic pho-
tons, it is possible to reliably detect the existence (or
absence) of opaque objects in this scattering me-
dium up to a distance of ~30 MFPs. Figure 4(b)
shows the system performance curves by fixing the
false alarm rate (Py,) at 0.0015, 0.015, and 0.15 val-
ues and plotting the detection rate versus distance
(Pp versus d).

B. Detecting Semitransparent Objects

Detection of semitransparent objects is based on dif-
ferentiating between the following two imaging sce-
narios:

® Hy: A semitransparent object is hidden in the
scattering medium, partially blocking the laser pulse

10 August 2007 / Vol. 46, No. 23 / APPLIED OPTICS 5809
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(Color online) Comparison of the bias and variance from 5000 Monte Carlo simulations (numerically experimented) and the

estimated CRB values of the medium and the semitransparent target’s optical properties versus distance. The bias, variance, and CRB
of the medium extinction factor are compared in (a), (b), and (c). The bias, variance, and CRB of the target’s extinction factor are compared

in (d), (e), and (f).

(i.e., the measurement is noise plus signal attenuated
by both the medium and the target).

e [H;: No semitransparent object exists in the
propagation line of the laser pulse in the scattering
(i.e., measurement is noise plus signal attenuated by
the medium).

The number of ballistic photons in the attenuated
signal that travel through both the medium and the
semitransparent object is calculated as
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X

- dine—pe(d—dine
s :Ioe Wty ine =t ( mc),

inc

where p, and d;,. are the extinction factor and the
thickness of the object, respectively. Based on this
model, a NP detection rule is derived as

N  H log('y) + N(Xsim — XS)
2 2 X +X. =

v, 10
Ho inc
1°g< X 1 X, )

k



0.2 0.4 0.6 0.8
PF

(a)

— 0.0015
«e 0015 |
w045

0.2
011

0 L L
340 360 380 400 420 440 460
Distance (m)

(b)

Fig. 4. (Color online) (a) ROC plots at different distances for detecting opaque objects in heavy fog (u, = 12.5' m™') and X, = 20. (b) By
fixing the Py, at different values, the detection rate (Pp) is plotted versus the distance.

The probabilities of false alarm and detection are
computed as

) ) e,NXfNXS(NXe + NX)*
PFA:P{Eyk>'y,|HO}: 2 g
P2 k=y'+1 '
) e,NXe—NXs NXe + NXs k
=1- i (k' )
f=i .
= 1- CDF(NX, + NXy), (11)
. . e—NXe*NXsm(]\U(E + NXSmc)k
PD:P{Eyk>’Y’|IH]1}: % &
P k=y'+1 )
| e NN (NX, + NX, Y
_ 1 ~ i ( lTlC)
P k!
= ]_ — CDF(NXe + NXsinc)' (12)

11—
=2 /
inc =3.1 r A

[ =5
0.8t /‘:_
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ut_/=4'
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g
— -1
" “tm‘12-5
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PF
(a)

Figure 5 shows the ROC curves for detecting a
semitransparent object in heavy fog. In this experi-
ment using a laser and detector similar to the ones in
Subsection 3.A, the distance was fixed at 300 m,
which according to Fig. 4 delivers almost perfect de-
tection for opaque objects. Figure 5(b) shows the sys-
tem performance curves by fixing the false alarm rate
(Pry) at 0.00015, 0.0015, and 0.015 values and plot-
ting the detection rate versus the object’s extinction
factor (P versus p,, ). As expected, this experiment
shows that the detection performance deteriorates as
the object becomes less opaque.

C. Multipixel GLRT Detection

As explained in Subsection 2.A, in ballistic imaging
the field of view is scanned at multiple points to cre-
ate a 2-D image of the objects in the ROI. In this
subsection, we propose an effective algorithm that

— 0.00015 |
cer 00015
o 0,015
[a]
o
S N T )
ut
inc
(b)

Fig. 5. (Color online) (a) ROC plots for detecting transilluminative objects at 300 m distance in heavy fog (p, = 12.5"'m) and
X, = 20. (b) By fixing the Pp, at different values, detection rate (Pp) is plotted versus the object’s transparency (., ).
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exploits the spatial correlation of the nearby samples
in a multipixel imaging scenario to improve on the
performance of the single-pixel optimal detectors de-
veloped in the previous section.

The proposed multipixel detection technique gen-
eralizes the single-pixel detection techniques and
performs tests on superpixels, which are the collec-
tive intensities of a set of neighboring pixels in size
and shape of the hidden objects. However, since in
general the size and shape of the hidden objects is not
known a priori, we develop a GLRT-based algorithm
that simultaneously tests the existence and also es-
timates the shape and size of the objects hidden in
turbid media.

The outline of the proposed GLRT algorithm is
illustrated by an example in Fig. 6. First, for a given
(fixed) false alarm rate the optimal detectors devel-
oped in the previous section are exploited to test the
existence or absence of objects at each individual
pixel. As an illustrative example, this test is applied
to the central pixel (shaded) of Fig. 6(a), where the
measured pixel value (0.4) is compared with the NP

o[ ofofo]o
o[ 1t [ 1 ]1]o
0 | 1 [4<s] 1] o 0.1
oo 1] 1]o
HEEERERE

(a) (b)
o[ ofofoTfo

0 0
0 7.4>4.5 0 1.9
% %
0 0
1 1 1 1 0
(© (d)
11.4<12.5 -1.1
(O] ()
Fig. 6. (Color online) Illustrative example showing the outline of

the proposed multiscale GLRT algorithm. The check-marked sec-
ond scale gives the highest confidence value for the central pixel.
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test threshold (0.5). Of course, the greater the dis-
tance of the measurement from the threshold, the
more confident we are in the accuracy of the test
result. Next, we integrate the gray-level values of all
immediate neighboring pixels, and in effect consider
them as one superpixel, as illustrated in Fig. 6(b).
Since the false alarm rate is fixed for all scales, the
decision threshold is different than the threshold cal-
culated in the previous step, which is recalculated
based on the gray-level value of the superpixel. In the
next steps, we repeat this process by fixing the false
alarm rate and considering larger neighborhoods.
The generalized NP test for these steps is formulated
as follows:

scale
m,l

[H;l IOg('Ysmle) + NscaleXs
=

X +X,\
Ho log( X )

(13)

scale

where y,,,; is the summation of the pixel values in
the N, = N(2 X scale — 1)* pixels neighborhood
around the pixel at position [m, []. Our confidence in
the decision made on each scale is simply defined as
the distance between the summation of measure-
ments in the superpixel and that of the threshold set
by the GLRT:

1o scale + Nsm eXs
Conﬁdencem’lscale — m’lscale _ g('Y )3 - X 1
ol
(14)

Finally, we decide on the presence or absence of the
object at a particular pixel based on the test result of
the scale that shows the highest confidence value.
Note that the optimal scale is not unique for all pix-
els, as finer scales are more suitable for pixels located
on the texture or edge areas, and coarser scales are
more suitable for the pixels located in flat areas. The
memory requirements of this technique are indepen-
dent of the maximum scale number, since we only
need to keep the original image, the last estimated
image, and the corresponding confidence values.

To have a better understanding of the proposed
multiscale GLRT technique and its performance, we
set up an illustrative controlled imaging scenario.
Figure 7(a) shows an ideal (noiseless and determin-
istic) image of objects of different sizes and shapes. To
depict an experiment at the limit distance where the
signal of interest is weak, we consider an imaging
scenario in which the average number of received
ballistic photons for each pixel is one photon. Figure
7(b) shows such Poisson random signals (free of ad-
ditive noise effect).

Detection of such signals becomes more difficult
when we consider the system noise as illustrated in
Figs. 8(a) and 9(a), where the Poisson noise variances
(mean) are 20 and 40, respectively. Figs. 8(b) and 9(b)
are images reconstructed by implementing the point-
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Fig. 7. (a)Ideal deterministic and noise-free image of four objects
of different sizes and shapes. (b) Corresponding image as a Pois-
sonian noise-free stochastic signal, with X, = 1.

by-point single-pixel detection techniques, consider-
ing a false alarm rate of 0.00125, where none of the
objects are correctly identified. On the other hand,
Figs. 8(c) and 9(c) are the results of exploiting the
multiscale GLRT techniques, showing a considerably
more accurate detection of such objects. Figures 8(d)
and 9(d) illustrate the scale from which each pixel in
the final images of Figs. 8(c) and 9(c), respectively,
are selected. Note that, as expected, the pixels in the
flat area are selected from the coarser scales, whereas
the pixels on the edge areas are selected from the
finer scales. Figures 8(e) and 9(e), show the confi-
dence in the detection result (14) with respect to the
corresponding pixels. These figures show higher con-
fidence levels in the flat and less confidence in the

edge areas. Also, in Fig. 9(e) we see that the area with
the lowest confidence is the place where most mis-
classifications happen. This is good news, since to
increase the detection rate, we may opt to do a second
(and faster) round of scans, sampling only on these
very low-confidence regions. In Figs. 8(f) and 9(f), we
plot the misclassification rates at each scale (curve),
and compare it with the overall multiscale rate (line).
These numerically experimented plots show that the
performance of the proposed pixelwise GLRT tech-
nique (depending on the noise level) is either very
close to [Fig. 8(f)] or even better than [Fig. 9(f)] the
best fixed-scale technique. In Figs. 10(a) and 10(b),
the performance of the single-pixel detection tech-
nique is compared with the multiscale ones via their
corresponding ROC curves. Once again, the multi-
scale technique shows the best or close to the best
performance.

4. Diffraction Effects

So far in this paper, all detection tests and related
performance analysis were derived based on a sim-
plified model of light propagation that ignores diffrac-
tion. Although such approximation works well for
many practical applications, it is not a suitable model
for detecting or imaging relatively small sized objects.
In this section, we present statistical analysis of the
resolution limits in ballistic imaging systems by de-
fining the smallest size of resolvable objects in a tur-
bid medium at given false alarm and detection rates.

(d) (e)
Fig. 8.
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(Color online) Application of the proposed multiscale GLRT technique for improving the detection rate. (a) Result of adding Poisson

noise (X, = 20) to Fig. 7(a). (b) Result of the single-pixel detection. (c) Result of the proposed multiscale detection technique. (d) Image that
corresponds to the selected scales for the image shown in (c¢). (e) Corresponding confidence values. (f) Misclassification probability in

different scales.
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(Color online) Application of the proposed multiscale GLRT technique for improving the detection rate. (a) Result of adding Poisson

noise (X, = 40) to Fig. 7(a). (b) Result of the single-pixel detection. (c) Result of the proposed multiscale detection technique. (d) Image that
corresponds to the selected scales for the image shown in (c). (e) Corresponding confidence values. (f) Misclassification probability in

different scales.

Our study is the continuation of previous work [17],
generalized by considering the effects of the turbid
medium and ballistic imaging setup.

Figure 11 is a 1-D illustration of the diffraction,
which is described as “any deviation of light rays from
rectilinear paths which can not be interpreted as re-
flection or refraction” [18]. In this figure, the dashed
(red) line represents the case in which light propa-
gates in a straight line creating a sharp-edged
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Fig. 10.

shadow of a hidden opaque object at the detector. The
solid (green) curve, on the other hand, illustrates a
more realistic case in which the object’s shadow ap-
pears blurry at the detector as a result of diffraction.

The blur induced by diffraction can be calculated
from the Helmholtz—Kirchhoff wave propagation
equations [19]. However, for the experimental setups
that are of most interest to us with respect to the
scope of this paper, the diffraction effect can be taken
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(Color online) Application of the proposed multiscale GLRT technique for enhancing the detection rate. ROC plots for the

proposed multiscale detection scenario in the imaging scenarios of Figs. 8 and 9 (with 25 Monte Carlo experiments) are shown in (a) and
(b), respectively. The numerical labels “1, 4, . . ., 23” correspond to the scale at which detection tests are performed, and the plot labeled
“Final” represents the performance of the proposed multiscale (fused) technique.
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Fig. 11. (Color online) Shadow of an opaque object illuminated by
a homogeneous widespread light beam. The dashed (red) curve
represents the intensity of the measured light ignoring diffraction.
The solid (green) curve represents the diffraction-induced PSF.

into account by convolving the expected signal value
with an appropriate point-spread function (PSF) that
describes the blurring effect of an object estimated
from the Fraunhofer approximation. For a circular
opaque object, such a PSF is given by

(15)

where & = 2m/A is the wavenumber, J;( ) is the order
1 Bessel function of the first kind, p is the radius of
the opaque object, r is the radius coordinate in the
detector plane, and z is the distance between the
object and the detector [20]. Note that the Fraunhofer
approximation is only valid when z > 4p*/A, and
therefore in this paper we only consider far-field im-
aging scenarios. Ignoring the effect of a turbid me-
dium and considering homogeneous illumination
with intensity I’ at the object plane, the radially sym-
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Fig. 12.

metric intensity of the detected signal at the radius
coordinate r is simply given by I = I'H(r). Figure
12(a) shows the diffraction pattern of a circular
opaque object with a distance of z = 100 m from the
detector, illuminated by unit-intensity (I' = 1) light
with 800 nm wavelength.

In the imaging scenarios considered in this paper,
the detected signal is further attenuated by the tur-
bid medium, and the expected value of the signal
intensity at the radius coordinate r and distance z
from the object plane can be approximated as

I=1T exp(—p2)H(r),

where we have ignored the fact that due to diffraction
some parts of the wavefront travel slightly longer
distances. Note that in practice, due to the far-field
imaging assumption, such variance in attenuation is
small. This effect is shown in Fig. 12(b), where the
path lengths L, and L, are practically equal if the
distance between the opaque object and the detector
(z) is significantly larger than the PSF spread. The
detection problem associated with the signal model
defined above is described in the following two imag-
ing scenarios:

e [Hj: An opaque object of unknown but small size
(p > 0) is hidden in the scattering medium, blocking
and blurring the laser pulse (i.e., measurements con-
tain noise plus attenuated and blurred laser pulse).

® [H;: No opaque object exists (p = 0) in the prop-
agation line of the laser pulse (i.e., measurements
contain noise plus attenuated laser pulse).

The above GLRT detector is different than the NP
detectors of Section 3 since the size of the object is
now assumed to be unknown. Following Eq. (2), the
expected value of the intensity in the absence of the
object (H,) is given by

I(k, O) = Ioeipdtd +Xe'

—
B I._p____________L_l _______ 'S
— beeel L
T - N j
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y 4
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d
(b)

(Color online) (a) 1-D slice of the diffraction pattern of a circular object of radius 3 mm at 100 m distance and 800 nm wavelength.

(b) 1-D slice of the imaging scenario, where z is the distance between the opaque circular object (radius p) and the detector. d is the distance
between the laser and the detector. The pass length L, = L, when z is very long.
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The intensity of the signal in the presence of the
object (H,) is estimated as

I(k, p)=1Ie "H(r)+X., (16)

where p is the estimate of the opaque object’s radius
and ry, is the radial distance of the kth pixel from the
axes passing through the center of the object. The
unknown radius of the opaque object is estimated as

A

x e 'Ok, p)p
p=argmax|| —— .

b k=1 Yi! an

The above ML estimate of the radius is solved by
numerical optimization, where we discretize p over
an assumed range of values p[gl,g = 1,..., G, and
compute the cost function,

ole]= % v log{I(k, ol)} - Ik, plg]).  (18)

The value of g for which p[g] takes on the largest
value is g,,.., and finally the GLRT detection statis-
tics is given by

N I(k7 p[gmax]) -
kglyk 10g{ I(k, 0) } = 'y. (19)

As an illustrative example, by fixing the false
alarm rate at P4 = 0.1, the noise level at X, = 20, and
assuming a large detector that detects all the light,
regardless of the distance or size of the object, we
used the above GLRT framework to search for the
smallest detectable object size at different distances
and detection rates in heavy fog (u, = 12.5'm™?).
Figure 13 illustrates the result of this experiment,
where as expected the size of detectable objects first
rises as the distance increases.

Object radius [mm]

200

Pd 0o Distance (m)

Fig. 13. (Color online) Detection rate versus the (unknown)
opaque circular target’s radius and the distance between the laser
and the detector considering the diffraction limit with Pz, = 0.1
and X, = 20 in heavy fog (pn, = 12.5 m™).
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Fig. 14. (Color online) Laser setup at the Ballistic Imaging Lab-
oratory at the University of California, Santa Cruz.

5. Laboratory Setup and Experiments

A. Conventional Ballistic Imaging Experimentation

In our experiments, to generate ultrashort optical
pulses we used a Coherent Mira 900 Ti:sapphire tun-
able femtosecond laser pumped by an 8 W pump
(Verdi V-8). At the output this laser generates an
average power of ~1 W with pulses of 200 fs duration,
13 ns repetition period, and 830 nm wavelength.

As shown in Fig. 14, each laser pulse passes
through a A\/2 plate and is incident on a polarizing
beam splitter that divides the pulse into two copies,
one used for triggering the ultrafast time gate while
the other passes through the scattering medium
(which is modeled by two sets of solid diffusers lo-
cated in front and back of the target). Rotation of the
\/2 plate determines the power ratio between the two
pulses, and we experimentally determined that the
best results are achieved in a near 50%/50% splitting
ratio. After passing through the diffusers and target,
the ballistic photons are incident on the gate at ex-
actly the same time as the triggering pulse and pass
through the ultrafast time gate, where due to the
phase and polarization difference the scattered pho-
tons are rejected. In practice, the triggering pulse
timing is controlled by a delay line, which increases
or decreases the optical path length, using a
computer-controlled translation stage.

The ultrafast time gate used is a nonlinear crystal,
B-barium borate (BBO) [21], which utilizes a two-
photon process such that the gating time can be as
short as the laser pulse width. Additionally, by
slightly changing the incident angles of the two
pulses on the nonlinear crystal, the time-gated result
can be spatially separated from the background sig-
nal, greatly increasing the signal-to-noise ratio. This
effect is sometimes referred to as background-free
cross correlation [22]. The energy of the ballistic pho-
tons are then measured by a silicon detector and a
lock-in amplifier. The entire setup implemented at
the ultrafast imaging laboratory at the University of
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Fig. 15. (Color online) Comparison of diffusive and ballistic im-

aging. (a), (b) Two diffusive (no time gating) scans. (c), (d) Two

corresponding ballistic (time-gated) scans through five solid

ground glass diffusers.

California, Santa Cruz, is controlled using LabView
and a general purpose interface bus (GPIB) bus.

Figure 15 shows the results of two imaging exper-
iments where the objective is to read the text written
on transparency sheets by a ballpoint pen, sur-
rounded by a total of five solid glass (Thorlabs ground
glass, DG10-220) diffusers. The thickness of these
diffusers is 2 mm each, with the MFP of 0.73 mm (7.3
MFP total). We also note that the dynamic range of
our system is approximately 100 dB. Figures 15(a)
and 15(b) show the result of scans in the absence and
Figs. 15(c) and 15(d) show the result of scans in the
presence of the ballistic time gate, without any post-
processing. To acquire the nongated images, the gate
was removed and the detector repositioned. Note that
Figs. 15(a) and 15(c) illustrate raw data (without any
postprocessing) from the imaging system, whereas
the results shown in Figs. 15(b) and 15(d) are each
upsampled by a factor of 3 via the bicubic interpola-
tion technique. These results show that, although
ballistic images are noisier than the non-time-gated
(diffusive) ones, they are preferable since they are
virtually blur free.

B. Adaptive Sampling Experimentation

As explained in the previous sections, in ballistic im-
aging, 2-D images of the objects in the scattering
media are created by a relatively time-consuming
point-by-point scanning scheme in which the field of
view (FOV) is sampled at regularly spaced locations.
For instance, in a typical laboratory setup with a
mechanical translation stage (Fig. 14), creating a
256 X 256 image (i.e., sampling at 65,536 points)

takes about 4 h, which might be prohibitively long for
many real-world applications. Although such exces-
sive time can be reduced if the mechanical transla-
tion stage is replaced by a more expensive optical one,
faster scans are always desired, and moreover, for
many applications, the total number of pulses deliv-
ered in a given time period is limited by the average
delivered energy due to health concerns.

By making some simplifying assumptions about
the objects of interest (e.g., piecewise constancy), ir-
regular scan strategies, such as sampling sparsely in
the low-frequency areas and densely in the high-
frequency (edge or textured) areas, are shown to be
useful in reducing the imaging time. Recently, two
related techniques, namely, compressive sensing
[23,24] and active learning [25] (adaptive sampling)
were proposed to reduce the number of samples re-
quired to achieve certain reconstruction accuracy
with respect to the regular (passive) scanning tech-
nique. We note that it is the sparsity of the signal of
interest (in a given overcomplete dictionary of bases)
that enables such techniques to gather sufficient in-
formation to achieve optimal (if not perfect) recon-
struction in the presence of noise, even when the
sampling rate is lower than the Nyquist rate [26]. In
the compressive sensing technique, random projec-
tions of the signal of interest onto an overcomplete set
of basis functions are sequentially recorded. Such
random projections in practical optical imaging sce-
narios can be implemented by passing a wide-field
beam through binary masks with a random pattern
[in practice, a digital micromirror device can be used
to generate the random basis patterns [27]]. Unfor-
tunately, in the ballistic imaging setup, creating a
wide-field beam is not easy. Moreover, diffraction lim-
its the resolution of the binary mask and therefore
implementing a compressive-sensing-based ballistic
imaging system is not trivial. On the other hand, in
the following we show that adaptive sampling tech-
niques can be readily exploited for ballistic imaging
purposes.

We have implemented adaptive sampling as a two-
step process [28]. In the first step, we regularly sam-
ple the FOV space at N/2 points, where N is the total
number of samples that we plan to collect. We use
these IV/2 measurements to create a pilot estimate of
the unknown FOV. In the next step, the remainder of
the N/2 points are used to sample the FOV on the
edge areas of the estimated image. It can be shown
that the decay rate of the mean square error for piece-
wise constant images is OV %) and O(N ) for the
passive and active sampling techniques, respectively
[28].

We also note that active learning relies on accurate
adaptive image reconstruction algorithms to recon-
struct the unknown images from the irregular sam-
ples of the FOV. In our implementation, we used an
image reconstruction method based on maximum
a posteriori (MAP) with bilateral total variation prior
(regularizer) [29]. The general formulation of this

10 August 2007 / Vol. 46, No. 23 / APPLIED OPTICS 5817



technique is presented as follows:

A A P
X(t) = arg minl JAX-Z)l,* + 4 o VIX

)_((t)

_leSym‘_)(Hl]a (20)

where X of size [ML X 1] is a vector representing the
reconstructed image of size [M X L] after lexico-
graphic ordering, and Z of size [ML X 1] is a vector
that stores the N < ML measurements. In this vector,
the elements that correspond to those pixels in X for
which no measurement is available are filled with
zeros. The matrices S,' and S,” are the operators
corresponding to shifting the image represented by X
by [ pixels in the horizontal direction and m pixels in
the vertical direction, respectively. The scalar weight,
0 <a =1,is applied to give a spatially decaying effect
to the summation of the regularization terms, which
in effect represent derivatives across multiple reso-
lution scales. Matrix A of size [ML X ML] is a diag-
onal matrix whose values are chosen in relation to
our confidence in the measurements that contributed

to make each element of Z (diagonal elements corre-
sponding to pixels for which no measurement is avail-
able are replaced with zeros). The regularization
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Fig. 16. Comparison of passive and active imaging. (a) Result of
scanning the turbid medium on a regular 128 X 128 grid (16,384
dense passive sampling). (b) Result of scanning the turbid medium
on a regular 32 X 32 grid (1024 sparse passive sampling) followed
by interpolation via bicubic interpolation to reconstruct the image
on a 256 X 256 grid. (c) Result of scanning the turbid medium on
an irregular grid (984 sparse adaptive sampling) followed by in-
terpolation via adaptive interpolation to reconstruct the image on
a 256 X 256 grid. (d) Distribution of the 984 irregular samples.
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parameter, {5, is a scalar for properly weighting the
first term (data fidelity cost) against the second term
(regularization cost).

To validate the applicability of this adaptive sam-
pling and reconstruction technique versus the com-
mon passive sampling technique, we performed the
following experiment. A metal washer was imaged
through a ground glass diffuser (Thorlabs ground
glass, DG10-220) via the ballistic imaging setup of
Fig. 14. Figure 16(a) shows the result of scanning the
medium on a 128 X 128 (16,384 total) regularly sam-
pled grid. Figure 16(b) shows the same image sam-
pled on a regular 32 X 32 (1024) grid and then
upsampled by the bicubic interpolation method to a
dense 256 X 256 grid. The alternative sampling
strategy was performed by exploiting the same ex-
perimental setup (distance, turbid medium, target),
where a total of 950 irregularly sampled data points
were collected in the said two-step adaptive process.
Figure 16(c) shows the result of such an adaptive
sampling scheme after upsampling to the 256 X
256 grid by the proposed adaptive MAP-based in-
terpolation method. The spatial position of the 984
adaptive samples are marked as white dots on a
256 X 256 grid in Fig. 16(d), which, as expected, is
considerably denser on the edge areas.

6. Conclusion and Future Work

In this paper, we have studied a technique for cap-
turing high-resolution images through turbid media.
This approach was based on separating the unscat-
tered (ballistic) photons from the diffused ones by
implementing an ultrafast time-gating system. The
novelty of this paper is in combining the recent ad-
vances in optical science with the novel image pro-
cessing and statistical signal processing techniques.
We studied the resolution limits of such a system that
were close to diffraction (Rayleigh) limits for longer
distances. We derived the fundamental limits on the
accuracy of the estimated extinction parameters of an
unknown turbid medium and the targets inside it.
This study also guided us toward the most efficient
experiments (with respect to both time and accuracy)
for calibrating the model parameters of the unknown
turbid medium as well as the optical properties of the
target (which can be used to identify and categorize
it). Our results showed that for a medium of practical
interest, namely, heavy fog, optical parameters can
be estimated with high accuracy. We used the said
model to derive optimal statistical tests for detecting
objects hidden in turbid media. Performance analysis
was carried out by computing ROC curves for the
proposed optimal tests, showing that, by considering
only the ballistic photons, we are able to detect
opaque objects hidden in heavy fog in the range of
approximately 380 m (i.e., 30 MFPs). The detection
rate of the semitransparent objects is shown to be
slightly less than this distance. Also, real experi-
ments attested to the fact that ballistic imaging, es-
pecially in longer distances, is difficult, and therefore
we developed a multiscale GLRT algorithm to im-
prove the detection rate in such scenarios. To reduce



the data acquisition time that is essential for many
real-world applications, we implemented an adaptive
sampling scheme that significantly reduced the data
acquisition time.

As for future work, one may exploit temporal, spa-
tial, and wavelength diversity and coding for ballistic
imaging. We can study the array imaging framework
where multiple emitters will transmit coordinated
pulses of light, and for their part, a collection of
photon-detecting elements will gather the received
data and compute a resultant image. Furthermore,
there is the possibility of analyzing various ways of
coding these pulses (e.g., transmitting sequences of
pulses as is done in ultrawideband communications).

Moreover, we believe that detection techniques
that exploit all ballistic, snake, and diffused photons
[30] (what we term holistic imaging and detection)
enable detection of larger objects at significantly
longer range. More theoretical and experimental
work needs to be done to design a (near) optimal yet
practical solution to this important problem.

Appendix A: Decision-Theoretic Resolution Bounds

As explained throughout this paper, the diffraction-
limited resolution of ballistic imaging systems [e.g.,
Figs. 15(c) and (d)] makes them appealing for imag-
ing in relatively short distances. However, in rela-
tively long distances the ballistic signal is too weak
and we are bound to rely on the blurry but higher
signal-to-noise ratio (SNR) images of conventional
imaging systems [e.g., Figs. 15(a) and (b)]. In this
Appendix, we adapt a decision-theoretic approach to
the resolution bounds and search for the critical dis-
tance after which the ballistic imaging systems are of
no practical advantage compared with the conven-
tional imaging systems.

1. Ballistic Imaging—Single Point

The problem of determining whether an object lies
along the line of sight can be cast as a statistical
hypothesis test as follows. Given a received photon
count X at the sensor, one must choose between two
possible situations. The first situation is that no oc-
cluding object exists in the path between the laser
and the sensor (H,). The alternative is that there is an
occluding object along the line of sight between the
laser and the detector (H,). Semitransparent objects
can be considered to be significantly more scattering
than the medium [31], and therefore the detector will
collect an attenuated number of ballistic photons
(compared with H,) along with the noise photons.
Following the notation of Subsection 3.B, we define
the number of noise photons that will arrive at the
detector as P(NX,), where X ~ P(x) is a Poisson-
distributed random variable with mean x. Then, the
hypothesis test is given by the null hypothesis de-
fined as H,: X ~ ?(NX, + NX,) and the alternate
hypothesis (object exists) defined as H; : X ~ P(INVX,
+ NX, ). As the mean of the Poisson distribution
grows, the probability distribution tends to a Gauss-
ian, e.g., averaging many repeated Poissonian trials
(i.e., N large) results in a Gaussian-distributed sta-

tistic. Using the Anscombe transformation [31], we
obtain the following relationship:

| 3 _
X~P(x) =2 X + g~ N2 1),

where N({, o) represents Gaussian distribution with
mean { and variance o®. Defining a new variable
representing the Anscombe-transformed statistic X'
= 2,X + 3/8 the hypothesis test becomes

Hp : X' ~N(2/NX, + NX,, 1),

H, : X' ~N(@2NX, +NX, , 1).  (AD

The decision test is now defined as (X' = ! y'),
where a user-specified false alarm rate (Py,) deter-
mines the value of the threshold (y') such that P(X’

< v'|Ho) = Ppa.

2. Ballistic Imaging—K Points

The problem now is modified to describe an imaging
scenario of scanning the FOV at a fixed square array
of (JK x |K) points. This results in a multiple hypoth-
esis testing problem (K tests), where for large K it
puts a lower bound on the SNR of the observation. To
boost the SNR, one could use spatial aggregation by
averaging over a number of observation points. This
modifies the problem to averaging neighborhoods of
points in an area measuring W X (W, W < K, effec-
tively reducing the spatial resolution of the detection
map (image). By decreasing the spatial resolution,
this also decreases the variance at each point, modi-
fying the decision test to

1
H : X' ~N<2\NX6+NXS, W)

H, : X'~ N(Z\NXE +NX, (A2)

1
inc’ W) .

This test is under the assumption that the averag-
ing window will contain either no occluder points or
all occluder points. In reality, the averaging filter will
result in an observed point, X" ~ N(eE[X'|H,] +
(1 — ¢)E[X"|H,], 1/W), where ¢ is the fraction of the
window containing nonoccluders, and E is the ex-
pected value operator. Our goal is to find the lower
bound on the value of W that will guarantee an over-
all false alarm rate of less than Py, and we only
consider the ideal case (all occluders or nonoccluders)
in our calculations in order to obtain closed-form so-
lutions.

The Bonferroni correction approach is a con-
servative method of controlling the false alarm rate
for a detection problem under multiple independent
and identically distributed tests [33]. The correc-
tion adjusts the threshold for each individual test in
order to satisfy a lower (per test) false alarm rate

10 August 2007 / Vol. 46, No. 23 / APPLIED OPTICS 5819



value (Py4/K) such that each of the fixed number K
points in the array (and W-point averaging filter)
satisfies [P(X < v'|Hy) = Pg/K]. With ®(x) as the
cumulative distribution function of the N(0,1)
density at the point x, this results in [y =
(1/\W)® (Pps/K) + 2(NX, + NX,]. To give a satis-
factory observation, we also bound the miss probabil-
ity for detecting a ballistic photon by the same
modified value (Pg/K) such that [P(X > ~v'|H,)
= Py, /K]. Using the miss bounds, we determine the
lower bound on the necessary averaging window size
(W) to image a fixed K-point array as

Py Ppy\ T
-1 _ _ -1
. 1 ) (1 K) P (K)
=5 —

\NX, + NX, — \NX, + NX,

(A3)

(XXX NS R ERAERER N AR B J

(@
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(h)

The minimum width of the occluding object (w,)
that can be reliably resolved for a given parameter-
ized turbid medium can now be derived. Using the
lower bound for W found in Eq. (A3), we can solve
for the lower bound on the width using w, =

((FOV x W)/K.

3. Conventional Imaging Analysis

In the conventional imaging regime, there is no time-
gating mechanism and all the photons that reach the
detector over a long acquisition time will be observed
[acquisition time >> (d/c) = direct line-of-sight flight
time]. Therefore, a large number of photons sent
through the medium will be collected by the detector.
A problem occurs here, too—although the SNR is high
due to the large number of photons, the average num-
ber of scattering events on each photon collected will

(©)

()

Fig. 17. Simulation experiments with FOV = 50 m X 50 m, d;,, = 0.3m, and w, = 12,5 'm™'. (a)~(c) Ballistic, Bonferroni, and
conventional observations at d = 350 m, respectively. (d)—(f) Ballistic, Bonferroni, and conventional observations at d = 400 m, respec-
tively. (g)—(i) Ballistic, Bonferroni, and conventional observations at the critical distane d = d_,j;.; = 417 m, respectively.



also be high. As the number of scattering events in-
creases for a photon, the spatial resolution of the
occluding object will degrade. The lack of spatial in-
formation results in a blurred observation. Using
random-walk theory [34,35], it is possible to solve for
the minimum width of an occluding object that is re-
liably resolved using a conventional imaging system.
The width [36] is found using the photon mean time of
flight (At), which can be numerically computed as a
function of the parameters of the medium (u,, w,).
The modified minimum full width at half-maximum
(FWHM) is equal to w,,,, = 0.94((At)c/ )" 2.

4. Optimal Resolution Trade-Offs

Ideally, one should choose the imaging system (bal-
listic or conventional) that reliably resolves the
smallest possible object [w = min(w,,,,, w;)]. The de-
cision test using the minimum resolvable sizes de-
rived above becomes

e

conventional <At >C‘ Y Zconventional QFOV X W

Wene S w, = 0.94 ="
ballistic S ballistic

(A4)

Using the lower bound of W from Eq. (A3), one can
solve for the critical distance (d = d,;ca), the maxi-
mum distance at which ballistic still offers superior
resolution relative to conventional imaging.

As an illustrative example, we considered a ballis-
tic scanning experiment at (K = 256) points, imaging
a 50 m X 50 m FOV. The occluding objects were as-
sumed to be circular of diameter 1.0, 2.0, 4.0, 10.0,
and 20.0 m each of thickness d;,, = 0.3 m and p;,
= 12.5 m . We used false alarm rate Py, = 0.05 and
considered a heavy fog turbid medium with p, =
12.5"' m™'. Using the analysis from above, d, i =
417 m, which is consistent with earlier results we
showed in Section 3. Figure 17 shows the effect of
distance on the ballistic resolution, illustrating the
captured ballistic and diffused (conventional) images
at distances of d = 350, 400, 417 m.
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