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(a) Single low-resolution image (b) Multiframe average

(c) Multiframe restored (d) Denoised image

FIGURE 1.3
Different restoration techniques applied on the low-dosage set of images. (a)
Low-dosage image, (b) Multiframe averaged image, (c) Multiframe restored x̌,
(d) Denoised super-resolved image x̂. The multiframe average image shows the
aliasing present in the captured image. The super-resolved images show image
contrast beyond the native sampling rate of the system. The total dosage of
using 15 of these frames (15×11.3 = 170mAs) is still less than the high dosage
image of 225 mAs in Figure 1.1(b) with clear aliasing artifacts on resolution
bars labeled with numbers higher than 8.
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(a) Single low-resolution low-
dosage

(b) Multiframe low-dosage aver-
age

(c) Single low-resolution high-
dosage

(d) Multiframe low-dosage re-
stored

FIGURE 1.4
Different restoration techniques applied on the low-dosage set of images. (a)
Low-dosage image, (b) Multiframe averaged image, (c) High-dosage image at
226mAs, (d) Denoised image x̂ (15 × 11.3 = 170mAs). Restoration combin-
ing the 15 low-dosage frames in (d) frames, most clearly demonstrating the
pentagram-shaped set of micro-calcification cluster.

averaging the 15 low-resolution frames followed by interpolation. While the
SNR is improved, the aliasing contained in the low-resolution images becomes
clear as the 5 bars appear as three bars above 7 lp/mm. The third image
(Fig. 1.3(c)) shows the resulting image x̌ after applying the multiframe image
restoration step. This image shows contrast improvement but at the expense
of significant noise amplification. The final image (Fig. 1.3(d)) shows the final
image estimate x̂ after applying the non-linear wavelet thresholding denoising
algorithm. The image shows that the contrast is preserved while eliminating
most of the amplified noise.

The primary goal of mammography is detecting and diagnosing cancerous
lesions in the breast. The breast phantom includes small grains of calcium for
evaluating the diagnostic capability of micro-calcifications. Figure 1.4 shows
another block from the same experiment demonstrating the ability of the
nonlinear denoising algorithm to clearly eliminate noise while preserving the
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signal for a cluster of 0.275 mm sized calcite grains. This provides confidence
in the nonlinear denoising algorithm’s ability to discern signal from noise.

1.3.2 Super-Resolution in Optical Coherence Tomography

The invention and utilization of Optical Coherence Tomography (OCT), first
reported in [27] in 1991, has had a profound impact on many fields of research,
especially ophthalmic sciences [25, 26, 46, 49, 55]. OCT systems provide non-
invasive yet high-resolution in-vivo images of retinal structures, which can be
used to define imaging biomarkers of the onset and progression of many oph-
thalmic diseases. By employing an interferometer [8, 17], several OCT based
imaging systems have been developed through out the years, most notably
the time-domain OCT (TDOCT) and ultrahigh resolution OCT (UHROCT)
[40]. The advent of the Spectral Domain Optical Coherence Tomography
(SDOCT) system has further improved the image quality and acquisition
speed [33, 51, 60, 61, 64, 65]. Today, several commercial SDOCT systems
are available with similar capabilities and 20-30 kHz A-scan rates.

A noninvasive, accurate characterization of retinal lesions and other patho-
logical abnormalities is only possible with high-resolution, 3-D ocular imag-
ing. Commonly, the lateral, axial, and azimuthal resolution of many imaging
systems, including OCT, are associated with (and calculated based on) the
illumination source characteristics (e.g. bandwidth), the optical path (e.g.
diffraction limit due to pupil diameter, ocular aberrations, dispersion, etc.),
and other physical characteristics. Utilization of fast and efficient CCD de-
tectors has facilitated the creation of aliasing-free 3-D images of anatomical
structures. However, for some in vivo imaging applications, the SDOCT acqui-
sition time is not short enough to avoid abrupt motions such as blinking, thus
creating motion artifacts in the densely sampled volumetric measurements
(Fig. 1.6). Therefore, in practice, to speed up the image acquisition process,
these systems are utilized at a significantly lower than nominal resolution. In
SDOCT imaging, practical resolution in the azimuthal axis corresponds to the
number of B-scans sampled at relatively equal distances in a volumetric scan-
ning scheme (Fig. 1.5). Note that, valid quantitative measurements of retinal
disease biomarkers (e.g. drusen [56] volume) are only feasible from B-Scans
with known azimuthal displacement.

On the quest to gather useful information from SDOCT through improv-
ing the hardware design, one quickly runs into the problem of diminishing
returns. Specifically, the optical components necessary to capture very high-
quality, dense scans become prohibitively expensive or too sensitive for many
practical applications. Unlike alternative approaches that require expensive
hardware such as eye tracking systems [22], we propose a software-based im-
age processing solution in this section based on our earlier work [12], that is
applicable to virtually any SDOCT imaging system, including the handheld
SDOCT systems which are more prone to motion errors [5, 6, 47].

In this section, we introduce a novel application of the super-resolution
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FIGURE 1.5
A volumetric SDOCT scan set is a collection of azimuthally sampled B-Scans
(a), creating a 3-D view of the retina (b). The braces in (a,b) mark the lower
retinal slab shown in (c) containing the shadows from the overlying larger
vessels. (d) is the summed voxel projection (SVP) created by axial projection
of the lower half of the B-Scans, demonstrating the vessel pattern [22, 28].
Each B-Scan corresponds to one line on the SVP.

framework for improving the azimuthal resolution of SDOCT images. We
propose a method based on capturing several repeated fast sparse 3-D scans,
followed by detecting and removing the ones affected by motion artifacts, and
finally fusing the artifact-free scans. Our approach to reduce motion artifacts
in the 3-D tomographic structure, in spirit, is close to the multi-camera time-
space super-resolution [48], MRI inter-slice reconstruction [21], and video syn-
chronization [57] problems. However, the proposed reconstruction algorithms
and applications are fundamentally different and novel.

1.3.2.1 Proposed Method: Sparse Repeated Imaging

Our goal is to transcend the limitations of SDOCT imaging systems, reduce
motion artifacts (Fig. 1.6), and obtain densely sampled, high-quality, and
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(a) (b)

FIGURE 1.6
SVPs from densely sampled volumetric SDOCT scans of two subjects. The
red ellipsoids mark motion artifact locations.

accurate 3-D SDOCT images of unpredictably moving structures such as a
human eye. In typical SDOCT ophthalmic imaging practice, the region of in-
terest is swept with a relatively high number of B-Scans. For many patients,
due to the multiple seconds required to capture scans, a dense scanning strat-
egy is prone to motion artifacts such as blinking.

Alternatively, we propose to capture several (N) sparsely sampled vol-
umetric scans with a significantly lower number of B-Scans than the target
resolution. Since the number of frames in each sequence (K) is relatively small,
each scan is captured very fast. Therefore, it is reasonable to assume that some
of these sequences will be less affected by the abrupt patient motion. We de-
tect such sequences, reorder and interlace their frames, and create a densely
sampled, artifact-free representation of the retina. Figure 1.7 represents the
main idea, where two sparsely sampled sequences are fused together creating
a dense representation of the underlying pathological structures.

Putting together the frames of different scan sets (interlacing) in a correct
order is a challenging task. A naive approach involves sorting via pair-wise reg-
istration and computing a closeness measure (e.g. normalized cross-correlation
or sum-of-squared difference) of all frames. In the case of fusing only two vol-
umetric B-Scan sets, each frame in the first volume sequence is registered to
all frames of the second sequence. Then, in the fused output sequence, this
individual frame is inserted into the second sequence nearest to the frame
in the second sequence with the highest cross-correlation value. This process
would be repeated for all remaining frames in the first sequence. Of course,
this is a simplified variation of the video synchronization problem, discussed
in detail in the computer vision literature [57]. However, aside from the pro-
hibitively heavy computational load of registering large SDOCT data sets, the
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SNR of the SDOCT images is significantly lower than the commercial cam-
corders for which the method in [57] is developed. Therefore, the commonly
used closeness measures such as normalized cross-correlation may not always
be sensitive enough to discriminate between very small structural changes in
the neighboring SDOCT ophthalmic scans (Fig. 1.7).

FIGURE 1.7
Fusing (interlacing) multiple sparsely sampled scan sequences to create an
azimuthally higher resolution volume of B-Scans. Indeed, unlike this schematic
example, in clinical applications the displacement between sequences might be
non-integer as it is induced by patient motion.

To reduce the computational complexity of 3-D registration and improve
accuracy, we introduce an alternative global solution based on 2-D registra-
tion. Note that, the azimuthal axis displacement is the only motion that we
need to estimate to be able to interlace the 3-D volumetric scans. A quick
consultation with Figure 1.5 shows that the y-axis in the 2-D SVP images
corresponds to the azimuthal axis in the 3-D data volumes. Therefore, instead
of dealing with full 3-D datasets, we axially project the input 3-D sequences
and create corresponding SVP images (Fig. 1.5). This will reduce the task
of registering K sets each with B images (B-Scans) of size [B × L] pixels, to
registering only K images (SVPs) each of size [B ×B] pixels. In essence, we
are projecting down into the SCP domain to create a collection of K images
that are undersampled in only one dimension (e.g. D1 = 1).

Aside from a significant reduction in data volume, the axial projection
reduces the noise in the SVP images by averaging over hundreds of pixels. As
SNR of the SVP images is relatively higher, outlier (motion artifact corrupted)
image sets can be more accurately detected and excluded from the data pool.

We recover the order of the frames in the dense 3-D output by registering
the remaining SVPs. As explained in the next subsection, we calculate the y-
axis motion between different SVPs and associate this to the azimuthal motion
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parameters (frame number) of the 3-D volumes. For example, an estimated
five pixel displacement for the SVPs of two scan sets in y-axis, indicates an
offset of five frames in the corresponding B-Scan sequences. Moreover, by
estimating the x -axis motion of the SVPs, we recover the lateral registration
parameters needed for aligning the fused (interlaced) B-Scans in the final fused
3-D volume.

1.3.2.2 Multiframe Joint Registration

In many super-resolution applications, fast pairwise image registration is suf-
ficient for estimating the relative shifts between the sets of low-resolution
images. The basis for this approach is based on the following approximation
of Equation (1.5)

yk = DS(vk)z ≈ S(v′k)p + ek + ak (1.16)

where v′k = [v1,kv2,k/D2] is the apparent motion in the undersampled image,
p is the approximate non-aliased portion of the low-resolution image, and ak

is the aliasing artifacts which we approximately treated as noise. From the
simplified model of Equation (1.16), we see that the relationship between a
pair of low-resolution images yk and yj is approximately given by

yk = S(v′j − v′k)yj ≈ yj + (v′j − v′k)∇S(0)yj (1.17)

where the second half of the equation is based on the first order Taylor ap-
proximation of the shift operator S(v). In practice, the operators ∇S(0) =
[Sx(0)Sy(0)] are approximately the x and y gradient operators. Equation
(1.17) is known as the optical flow constraint and can be used to estimate
the shift between any pair of low-resolution frames. Such an approach works
as long as the energy in the aliasing artifacts ak are minimal. We use the
notation v′j−k = v′j − v′k.

Due to the sub-Nyquist sampling in the azimuthal direction, the SVPs of
the sparse, fast-acquired sequences are aliased in the y-axis, complicating the
subpixel motion estimation task. Moreover, small estimation bias in the pair-
wise SVP registration is magnified to a significant misalignment error when
several sequences are fused together. Therefore, to minimize the overall motion
estimation error, we exploit global consistency conditions in a multiframe mo-
tion estimation framework [14, 19]. This bundle-adjusted, optical flow-based
technique relies on the fact that the operator describing the motion between
any pair of frames must be the composition of the operators between two other
pairs of frames. In effect, by incorporating this prior information in the joint
motion estimation framework of [14], we minimize the motion estimation bias
while having extremely fast registration by estimating motion entirely in the
low-resolution domain.

We overcome the errors associated using a global constraint enforcing the
transitivity of the pairwise motion estimates. For example, if we consider three
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frames, then the transitivity of the motion estimates requires that

v′k−j = v′l−j + v′k−l (1.18)

Figure 1.8 schematically describes this motion constraint. In the case of mul-
tiple translational motion vectors [14], the above conditions can be described
by simple linear equations relating the motion vectors between the frames as

FIGURE 1.8
Global motion consistency conditions that exist for any set of images: the
operator describing the motion between any pair of images is the composition
of the operators between two other pairs of images: vi,k = vi,j + vj,k.

UV = 0 , (1.19)

where U is a
[
2(K−1)2 × 2K(K−1)

]
consistency condition matrix and U is

a vector collecting the set of unknown motion vectors {v′k}. Each row in the
sparse matrix U has only two or three non-zero (±1) elements. Motion vectors
are estimated by minimizing a global cost function such as
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ΩOF(V ) =
K∑

i 6=j

∥∥yi − yj − v′i−j∇S(0)yj

∥∥
1
, s.t. UV = 0 , (1.20)

We used nonlinear programming (“fmincon” function in MATLAB) to min-
imize this cost function. The above conditions for the more general case of
affine motion are defined in [14]. This is a simpler but faster implementation
of the general framework described in Section 1.2. Since we do not estimate
the high-resolution image jointly with the registration parameters our solution
is suboptimal. Indeed, mathematically more rigorous solutions for registering
aliased images are also possible [42], which increase computational complex-
ity of the proposed algorithm. However, noting the extremely large SDOCT
image sets (hundreds of images of size [512× 1024] or larger), the goal of our
proposed solution is to be practical for clinical implementation rather than
mathematically optimal.

1.3.2.3 Experimental Results

The above registration technique recovers the order and the relative azimuthal
distance of B-Scans from different scan sets, which can be exploited to recon-
struct a dense 3-D view of the imaged pathological structure. Since misaligned
or broken vessels are easily detectable in retinal imaging applications, the ves-
sel pattern as seen on the SVP serves as an efficient qualitative measure of the
success and accuracy of the overall algorithm. Therefore, we use the estimated
motion parameters to reconstruct a fused (super-resolved) 2-D SVP map of
retinal vessel structure.

Figure 1.6 shows a dense scanning of a subject, whose motion artifacts
have resulted in an SVP with broken vessel structure. From the same subject,
we captured 12 sparsely sampled volumetric scans (each with 50 B-Scans)
and adjusted the baseline of each image using the fast registration StackReg
plug-in (Biomedical Imaging Group; Swiss Federal Institute of Technology
Lausanne) [54] for ImageJ (freeware; National Institutes of Health; Bethesda,
MD). Following [28], by summing the lower half of the B-Scans in the ax-
ial direction, we created SVPs with distinct vessel patterns. After contrast
adjustment, four of the six sequences with the highest SVP normalized cross-
correlation values were manually selected to be registered. Figures 1.9(a) and
1.9(b) show two corresponding SVPs of these four sequences. Registered and
sequentially ordered AVI movies of these four input sequences are available
in http://www.duke.edu/∼sf59/datasets/SDOCT SR.avi, screenshots of which
are shown in Figure 1.9(f).

We used the multiframe projective bundle-adjusted motion estimation
method of [14] to recover the subpixel translational motion parameters of these
four SVPs (Sec. 1.3.2.2). We used the fast zero-order classic kernel regression-
based super-resolution algorithm described in [52] to reconstruct the fused
SVP. Since there are no aliasing artifacts in the x -axis (lateral direction), the
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SVP resolution is only enhanced in the y-axis. The SVP of the fused sequence
is shown in Figure 1.9(c), which has more details than any of the input SVPs.

As a point of reference, we also captured a gold-standard sequence shown
in Figure 1.9(d), which is the visually best of 4 densely sampled volumetric
scans (100 B-Scans). The reconstruction accuracy and quality improvement
is confirmed by comparing the input and output SVPs to the gold-standard.
We believe the small jaggedness in reconstructed vessels of Figure 1.9(c) is
mainly due to the dynamic structural deformation of the vessels during the
cardiac cycle. Overall, the vessel pattern in Figure 1.9(c) shows fewer dis-
continuities (blue ellipsoids) compared to the input SVPs. Moreover, due to
the less aggressive interpolation in the azimuthal (y-axis) direction, the vessel
thicknesses are more accurate in Figure 1.9(c) than in any of the input frames
(red ellipsoids).

1.4 Conclusion

We have provided a proof of concept for the applicability of image process-
ing based algorithms as an alternative to expensive hardware for creating
robust high quality X-ray mammography and SDOCT ophthalmic imaging.
The proposed super-resolution-based algorithm enables ophthalmic imaging
practitioners and radiologists to optimally utilize the SDOCT and X-ray sys-
tems in their highest resolution capacity.

For the SDOCT case, several implementation variations for improving the
efficiency are possible. For example, rather than discarding a whole defected
sequence, we may discard only those B-Scans affected by abrupt motion arti-
facts (e.g. blinking), and use the remaining uncorrupted B-Scans. To produce
more visually appealing SVPs, more efficient super-resolution techniques such
as the steering adaptive kernel [52] or robust super-resolution [16] may be also
exploited. Moreover, incorporation of an advanced adaptive sparse sampling
strategy (3-D extension of the method in [13]) in this imaging framework is
part of our ongoing research.

While the proposed algorithm efficiently removes abrupt motion artifacts,
a practical drawback is the case of imaging objects with constant deformable
motion. For example, in the case of imaging pulsing blood vessels, each sparse
sequence is associated with a unique position of the blood vessels compared to
the background tissues. A possible remedy is synchronizing the start of image
acquisition in each sparse sequence with the electrocardiogram (EKG) signal.

We note that two alternative related sparse imaging scenarios can be also
considered. One is based on capturing large field of view repeated scans, dense
in the azimuthal direction but sparsely sampled in the lateral direction. Then,
a classic super-resolution algorithm (e.g. [16, 52]) may reconstruct the lateral
resolution of individual B-Scans. Our pilot experimental results have shown
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moderate improvements, when imaging objects under a SDOCT microscope.
However, in practical clinical trials the difficulty of capturing repeated scans
from a unique azimuthal location largely voids the applicability of this strat-
egy.

Alternatively, the authors of the published work in [66] propose to capture
azimuthally dense scan sets with a small field of view in the axial-lateral plane
(e.g. the en face view is divided into four sub-sections, which are imaged
subsequently). A customized semi-automatic software stitches the 3-D scan
volumes, creating a visually appealing, large field of view, 3-D rendition of
the retina. However, unfortunately for the same practical imaging problem
noted for the aforementioned strategy, as evident in the experimental results
in [66], it is extremely hard (if not impossible) to recover unique, large field
of view B-Scans without evident registration artifacts.

As for the mammography, we believe the design of future X-ray imag-
ing systems would benefit from a systematic analysis of the resolution and
SNR required for mammographic screening and diagnosis. In the future, we
will explore the fundamental tradeoffs between radiation exposure, number
of frames, and reconstruction performance. Furthermore, we will investigate
more sophisticated redundant wavelet techniques such as curvelets [50] or
ridgelets [7] which might show even better performance than the proposed
multiframe ForWaRD technique. In fact, recent research has shown that use
of more sophisticated wavelets can improve the image quality in other medical
imaging applications [31].

We believe this novel application of super-resolution can be used as a
stepping stone toward many other image fusion based medical imaging system
designs, aimed especially at patients with uncontrollable motion, pediatrics,
or hand-held probe imaging. While this chapter was focused on X-ray and
OCT image enhancement, similar strategies can be exploited for enhancing the
quality of some other volumetric medical imaging devices such as ultrasound.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 1.9
(a) and (b) are two representative SVPs of four input retinal SDOCT se-
quences (50 regularly sampled B-Scans each). (c) is the SVP of the fused
sequence (200 irregularly sampled B-Scans). (d) is the Gold-Standard SVP
which is the best dense (100 regularly sampled B-Scans) out of 4 such se-
quences (Figure 1.6(b) is an example of dense sampling of the same subject
with motion artifacts). (e) and (f) are the screen shots of the AVI movies
of registered four input B-Scan sets and the reordered and interlaced output
B-Scan set, respectively (2.1 MB).
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