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The image processing algorithms collectively known as super-resolution have
proven effective in producing high-quality imagery from a collection of low-
resolution photographic images. In this chapter, we examine some of the ad-
vantages and challenges of applying the super-resolution framework to ap-
plications in medical imaging. We describe two novel applications in detail.
The first application addresses the problem of improving the quality of digital
mammography imaging systems while reducing X-ray radiation exposure. The
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second application addresses the problem of improving the spatio-temporal
resolution of spectral domain optical coherence tomography systems in the
presence of uncontrollable patient motion. Experimental results on real data
sets confirm the effectiveness of the proposed methodologies.

1.1 Introduction

The invention of the charge coupled device (CCD) created a new era of imaging
wherein optical images could be efficiently captured by an array of solid-state
detectors and stored as digital information. The resolution of the captured
image depended on the size and number of these detectors. Most imaging
applications critically depend on high-resolution imagery. Increasing resolu-
tion by improving detector array resolution is not always a feasible approach
to improving resolution. For example, while improvements in semiconductor
manufacturing have translated into higher-resolution image sensors, shrink-
ing pixel sizes has a tendency to decrease signal-to-noise ratios (SNR) and
light sensitivity. Furthermore, practical cost and physical limitations limit
the ability to change detectors for most legacy imaging systems. To address
this issue, the image processing community is developing a collection of algo-
rithms known as super-resolution for generating high-resolution imagery from
systems having lower-resolution imaging detectors. These algorithms combine
a collection of low-resolution images containing aliasing artifacts and restore
a high-resolution image. The ability to transcend the fundamental resolu-
tion limits of sensors using super-resolution algorithms has shown significant
progress and capability in the area of photographic imaging. By far, the major-
ity of applications using super-resolution technology have been in the area of
photographic imagery for either consumer or defense-type applications, which
are discussed in the other chapters of this book.

Relatively recently, researchers have begun developing methods to ex-
tend the super-resolution framework to different medical imaging applications.
Medical imaging applications differ from photographic imaging in several key
respects. First, unlike photographic imaging, medical imaging applications of-
ten use highly controlled illumination of the human subject during image ac-
quisition. As with any imaging system, stronger illumination energy results in
higher signal-to-noise ratios. In the case of medical imaging, however, illumi-
nation radiation is limited to prevent tissue damage, thereby limiting the SNR
to well below that of photographic imaging. Second, imaging speed is more
important in medical imaging applications than in photographic applications.
Short acquisition times both limit patient discomfort and minimize imaging
artifacts associated with patient movement. Third, unlike photographic imag-
ing, the goal of medical imaging is to facilitate the detection or diagnosis
of disease, rather than produce visually pleasing imagery. Consequently, im-



New Applications of Super-resolution in Medical Imaging 3

age processing artifacts are much less tolerable in medical images than in
photographic applications. Luckily, medical imaging systems operate under
highly controlled environments with highly similar objects. Algorithm devel-
opers can leverage prior knowledge about the anatomy or biology to improve
image quality. Finally, the majority of medical imaging applications involve
creating images from radiation propagation through three-dimensional ob-
jects. Thus, while the final images are two-dimensional, they represent some
form of projection through a three-dimensional volume.

In this chapter, we describe super-resolution and its applications from the
medical imaging community’s point of view. In Section 1.2, we describe the
general super-resolution framework and provide a brief review of the differ-
ent super-resolution algorithms. In Section 1.3.1, we introduce the first of
two novel applications of super-resolution in medical imaging. Namely, we de-
scribe how we tailor the super-resolution framework to improve the resolution
for digital X-ray mammography. In Section 1.3.2, we describe how we apply
the super-resolution framework to Optical Coherence Tomography (OCT). Fi-
nally, we conclude in Section 1.4 with some thoughts about future applications
of super-resolution in medical imaging.

1.2 The Super-Resolution Framework

The goal of super-resolution image processing is to extract a high-resolution
image from a collection of images containing aliasing artifacts. When a collec-
tion of aliased, low-resolution images contains sufficient variation, the high-
resolution, aliased image content can be separated from the low-resolution
image content thereby increasing the image resolution. This type of super-
resolution is not to be confused with optical methods for transcending the
optical diffraction limit (e.g. [63]). There are a number of broad reviews of
super-resolution algorithms [3, 15, 35]. In this section, we describe the general
super-resolution imaging framework. The section begins with a description of
a generic image capture model and concludes with a general super-resolution
estimation framework.

1.2.1 Image Capture Model

The image capture model describes the various physical processes involved
when capturing a set of images. As with most multiframe image super-
resolution algorithms, the collection of images must contain relative motion
between the sets of images from which resolution is enhanced. We assume very
simple translational motion for several reasons. First, even if this motion is
not appropriate in a wide-field sense, the motion model is typically accurate
for local regions within the images [1]. Second, the imaging acquisition system
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can often be controlled to induce only translational motion in the captured
images. Thus, for the remainder of this chapter, bear in mind that when we
refer to an image, we could also be referring to a cropped portion of a larger
image. This model has been used in several previous works on super-resolution
[11, 16, 23, 32].

The general image capture model, or forward model, combines the various
effects of the digital image acquisition process such as point-wise blurring,
motion, undersampling, and measurement noise. We represent the forward
imaging model using matrix notation as

yk = DHS(vk)x + ek, (1.1)

where x and y are rearranged in lexicographic order. Here, the vector yk rep-
resents B×B (assumed square without loss of generality) samples of the cap-
tured image yk(m′

1, m
′
2), where m′

1, m
′
2 ∈ [0, B− 1], are ordered as a (B)2× 1

vector. The captured image is undersampled with respect to an unknown
high-resolution image x(m1,m2), where mi ∈ [0, DiB − 1], by a factor of D1

and D2 in each of the two respective dimensions. The vector x represents
samples of the unknown D1B × D2B high-resolution image tile x(m1, m2)
similarly ordered. The warping operator S(vk) of size D1D2B

2 × D1D2B
2

represents the subpixel spatial shifts between the captured images. Without
loss of generality, we assume that the image y0 defines the coordinate system
of the high-resolution image and hence we only have to estimate the unknown
motion parameters for the remaining K images. Note that, here to simplify
notations, instead of vk,0, we use vk = [vk1 , vk2 ], which is the spatial shift-
ing between the reference frame (0th) and the kth frame. In Section 1.3.2,
however, we will use the full form of vk,i to represent the motion between
the ith and kth frames. In our model, we assume that these spatial shifts are
continuous values in the range of [−Di, Di]. This corresponds to the range
of subpixel motion in the captured images. The downsampling operator D of
size B2 × D1D2B

2 captures the undersampling of the detector. The matrix
H represents the blurring associated with the imaging system. This blurring
could be the result of multiple processes within the imaging system. For exam-
ple, this blurring could be the result of integration apertures or motion during
the image capture, or scattering of radiation in the object medium as a point
spread function (PSF). For the time being, we will assume that this can be
reliably measured or estimated from some other process (note [39] as an exam-
ple of jointly estimating the high-resolution image and the blur parameters in
a Bayesian framework). Finally, ek of size B2×1 represents the noise inherent
in the analog-to-digital conversion. For our purposes, we assume this noise to
be uncorrelated, zero-mean noise with standard deviation σ. This model is
sufficiently broad as to cover a wide variety of imaging systems.



New Applications of Super-resolution in Medical Imaging 5

1.2.2 Super-Resolution Estimation Framework

The goal of super-resolution image processing is to estimate the high-
resolution image x from the set of captured images {yk}. The most common
estimation framework begins with a cost function or penalty function relating
the observed data to the unknown high-resolution image. The most common
statistical framework found in super-resolution is that of the maximum a pos-
teriori (MAP) penalty function of the form

Ω(x, {vk}) = Ωd(x, {vk}) + Ωp(x). (1.2)

The MAP functionals are based on the construction of a cost function
(Ω), which is the summation of two distinct terms. One is the data penalty
term Ωd, which measures the closeness of data to the estimates. The other
is the regularization term Ωp, which applies the prior information about or
constraints on the unknown high-resolution image (x).

Early MAP functionals used in super-resolution processing utilized simple
quadratic data penalty and regularization terms [10, 45]. The most commonly
employed regularization terms use Tikhonov type functionals despite their
tendencies to reduce edge contrast. These quadratic regularization functionals
penalize the amount of high spatial-frequency energy in the high-resolution
image estimate. For example, using the generic imaging model of Equation
(1.1), a typical quadratic MAP functional takes the form

Ω(x, {vk}) =
K∑

k=0

‖yk −DHS(vk)x‖2 + λxT C−1
x x, (1.3)

where C−1
x is often a spatial high-pass operator and λ is the weighting scalar.

When Cx is the exact covariance of the unknown high-resolution image, then
this cost function produces the ideal Wiener filter estimate of the unknown
image. This MAP functional has the advantage of being quadratic, which
means that the penalty function has an analytic solution that is a linear
function of the input measurements.

Through the years, application of more advanced prior functions Ωp such
as Adaptive Kernel regression [53] and Bilateral Total-Variation (B-TV) [16]
have produced higher quality estimates of the final by imposing more accurate
assumptions about the image content. The tradeoff, however, is that such
non-linear prior functionals are more expensive to evaluate and require more
computationally-complex iterative minimization techniques. For example, the
B-TV cost function is defined as

ΩB-TV(x, {vk}) =
K∑

k=0

‖yk −DHS(vk)x‖22 + λ

L∑

t1,t2=−L

%|t1|+|t2|‖x− S(t)x‖1,(1.4)

where t = [t1, t2] is a set of integer pixel shifts and 0 < % ≤ 1 is a constant
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[16]. Such non-quadratic functionals can, however, preserve many important
features of images such as edges. Also, MAP-based robust super-resolution
techniques (e.g. [9, 16, 36]) are able to reduce the effect of outliers such as
motion estimation error.

Both the quadratic and non-quadratic MAP functionals require knowledge
of the relative shifts between the collection of low-resolution images. When the
SNR is reasonably high and the amount of aliasing artifacts are low, then the
shifting parameters {vk} can be reasonably estimated in an initial step from
the captured images yk. Theory as well as experimental evidence, however,
suggests that using a separate shift estimation process in low-SNR cases is
suboptimal. Therefore, the critical issue of joint super-resolution and motion
estimation problem has been the topic of several papers (e.g. [2, 24, 43, 58,
59, 62]). Note that, additional priors on motion vector distribution may be
also added to the above cost function [24].

1.3 New Medical Imaging Applications

Early, fast, and accurate detection of imaging biomarkers of the onset and
progression of diseases is of great importance to the medical community since
early detection and intervention often results in optimal treatment and re-
covery. The advent of novel imaging systems has for the first time enabled
clinicians and medical researchers to visualize the anatomical substructures,
pathology, and functional features in vivo. However, earlier biomarkers of dis-
ease onset are often critically smaller or weaker in contrast compared to their
corresponding features in the advanced stages of disease. Therefore, medical
imaging community strives for inventing higher-resolution/contrast imaging
systems. As noted in Section 1.2, super-resolution can be beneficial in im-
proving the image quality of many medical imaging systems without the need
for significant hardware alternation.

An excellent review of previous medical imaging applications of super-
resolution is given in [20]. We refer the interested reader to [20] for a broad
review of applications in magnetic resonance imaging (MRI) [21, 38], func-
tional MRI (fMRI)[37], and positron emission tomography imaging system
(PET)[29, 30]. In the following two sections, we explore novel applications
of the super-resolution framework to medical imaging. The first application
is in the area of X-ray digital mammography. The second is in the area of
Optical Coherence Tomography (OCT). Each application has its own unique
properties that demand customization of the general super-resolution frame-
work described in the previous section. In both applications, the advantage of
applying the super-resolution framework is achieved by special modification
of the standard image acquisition technique.
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1.3.1 Super-Resolution in Low Radiation Digital X-ray
Mammography

Digital mammography provides the opportunity to efficiently control and cap-
ture digital images of the breast, while exposing the patient to the minimum
amount of radiation. Today’s digital detectors cannot shrink pixel sizes to
increase resolution without sacrificing the SNR measurement. To maximize
image resolution, we have explored digitally combining multiple low-dosage
images, each containing spatial shifts. These shifts are the result of patient
movement, intentional dithering of the detector, vibration in the imaging sys-
tem, and small movement of the imaging gantry. In practice, the motion con-
tained in the captured images is a combination of all such sources necessitating
accurate registration of the aliased, low-resolution images.

Applying super-resolution processing to X-ray imaging requires overcom-
ing two challenges. The first is the large amount of data associated with digital
mammogram images. The captured low-resolution images could have as much
as 10 megapixels worth of data. Thus, computational efficiency is extremely
important during processing. Second, the total radiation exposure over the col-
lection of images cannot exceed that of a normal X-ray image dosage. There-
fore, the captured data has extremely low peak-SNR (PSNR). For example,
Figure 1.1 compares a high-dosage X-ray image (computed PSNR1 ' 13 dB)
with the very low exposure images (computed SNR ' 3 dB) used in our
multiframe scheme.

Thus, providing high-resolution imagery requires sophisticated, nonlinear
reconstruction techniques to address the extremely low SNR of the captured
images. To address these two challenges, we apply a divide and conquer ap-
proach to both improve efficiency while maximizing the denoising effectiveness.
To achieve this, we propose a three-stage (registration, reconstruction, and
restoration) algorithm. The overall algorithm procedure is shown in Figure
1.2. The entire algorithm operates on a tile-based fashion. The process begins
by finding a collection of tiles with approximately equal regions-of-interest.
Then, each of these tiles are registered to a subpixel precision to estimate the
shifts {vk}. Next, we apply a multiframe image restoration step with a weak
quadratic prior function, resulting in a deblurred aliasing free image with re-
construction artifacts with known statistics. Next, we perform a fast estimate
of wavelet coefficients, which best match the reconstruction artifacts in the
previous step. Finally, we apply a nonlinear wavelet thresholding-based de-
noising step, to recover an efficiently denoised super-resolved image. In what
follows we describe each step in detail.

1In this work, the PSNR was computed numerically as PSNR= 20log10
s
n

. In experiments
on real images s is the grayscale difference between the minimum and maximum signal
regions and n is the noise standard deviation estimated from flat regions. In simulated
experiments, n is the RMSE error between the estimated and ground truth image.
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(a)

(b) (c)

FIGURE 1.1
Mammogram X-ray images from the phantom breast in (a). The red rectan-
gular section in (a) is zoomed in (b) and (c). The high dosage image in (b) is
captured at 226mAs (PSNR' 13dB). The extremely low-dosage image in (c)
is captured at 11.3 milliAmpere-second (mAs) (PSNR' 3dB). Regardless of
SNR, both images show aliasing artifacts.
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FIGURE 1.2
The block diagram shows the non-iterative super-resolution algorithm we ap-
ply to digital mammogram images.

1.3.1.1 Multiframe Shift Estimation

Apart from the basic block-matching required to find a collection of approxi-
mately registered image tiles {yk} [41], the super-resolution algorithm begins
with a multiframe subpixel shift estimation algorithm. The efficiency of this
stage is improved by ignoring the optical blur. Considering the locally space-
invariant PSF and shift assumptions in our models, we may reverse the order
of the shifting and blur operators in Equation (1.1) [11] and reformulate the
forward model without the blur operator as

yk = DS(vk)z + ek, (1.5)

where z = Hx is the unknown high-resolution blurry image.
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The registration algorithm begins with a variant of the quadratic penalty
function of Equation (1.3). The optimization process then will be formulated
as

Ω1(z, {vk}) =
K∑

k=0

‖yk −DS(vk)z‖22 + λzT C−1
z z, (1.6)

where Cz is the covariance matrix of the unknown signal z, which is typically
assumed to be stationary. In other words, we can ignore the optical blur
for this stage of processing. A typical solution to the above problem is the
cyclic coordinate-descent method [24], in which in each iteration one unknown
variable is updated based on the estimate of the other unknown variable from
the previous iteration.

Noting that Equation (1.6) is known in numerical analysis literature as
the Separable Non-linear Least Squares problem [18], we momentarily assume
in our Variable-Projection technique [42, 58] that the non-linear parameters
(motion-vectors) are known. Consequently, the estimate of the set of linear
parameters (z) is computed as

ẑ =
(
Q({vk}) + λC−1

z

)−1
g({vk}), (1.7)

where

Q({vk}) =
1
σ2

K∑

k=0

ST (vk)DT DS(vk), (1.8)

g({vk}) =
1
σ2

K∑

k=0

ST (vk)DT yk . (1.9)

We plug the parametric estimate of the blurry high-resolution image (ẑ)
into the MAP functional (Eq. (1.6)) and after some algebraic simplifications,
we get a new (maximization) cost function that only relies on the motion-
vectors:

Ω1({vk}) = g({vk})T
(
Q({vk}) + λC−1

z

)−1
g({vk}). (1.10)

Note that, unlike the cyclic coordinate-descent method, we require no it-
erations between the sets of parameters since we do not explicitly calculate
Equation (1.7). Indeed, a direct approach to maximize Equation (1.10) in-
volves inverting a large matrix of size D1D2B

2 ×D1D2B
2 which is computa-

tionally challenging for even small image tiles. In [42], we described a series
of numerical tricks to speed up the process. One is solving the problem in the
Fourier domain and taking advantage of the spectral folding phenomenon in
aliased images.
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1.3.1.2 Multiframe ForWarD Deconvolution and Denoising

The output of the previous algorithm is an estimate of the set of sampling
shift offsets {vk} with which we can estimate the high-resolution image x.
We estimate a high-quality super-resolution image using a non-iterative, two-
stage, linear deconvolution and nonlinear denoising algorithm. The algorithm
addresses the SNR versus sharpness tradeoff inherent to quadratic-type reg-
ularization functionals without resorting to iterative, nonlinear regularization
penalty functions. More information about the algorithm can be found in [44].

The first stage of the algorithm performs multiframe deconvolution using a
weak quadratic penalty function. Armed with estimates of the image shifts, a
sharpened, high-resolution image can be obtained using a variant of Equation
(1.7) given by

x̌ = B−1(v̂)HT g(v̂), (1.11)

where

B(v̂) = HT Q(v̂)H + λC−1
x ,

(1.12)

v̂ = [v1, ...,vk]T and Q and g were defined in Equations (1.8) and (1.9).
In this first stage of the algorithm, we use a very small value of λ so

as to under-regularize the estimate of the high-resolution image estimate x̂.
This creates a very sharp high-resolution image at the expense of extreme
noise amplification. The second stage of the algorithm involves eliminating
the noise while preserving the image signal content. We achieve this with a
type of wavelet thresholding algorithm similar to the ForWard algorithm of
[34] or the BayesShrink algorithm of [4]. The wavelet thresholding algorithm
operates by first applying a wavelet transform to the noisy high-resolution
image represented as

w = Ψx̌, (1.13)

where the matrix Ψ represents the wavelet transform operator and w the
wavelet coefficients. Then, the wavelet coefficients are scaled according to

w′i = sgn(wi)max(0, |wi| − γi), (1.14)

where wi represents the individual wavelet coefficients, sgn is the sign func-
tion, and γi represents the threshold value for those wavelet coefficients. Af-
ter applying this threshold, the inverse wavelet transform is applied to the
thresholded wavelet coefficients to get the final denoised estimate of the high-
resolution image

x̂ = Ψ−1w′. (1.15)
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This type of wavelet thresholding has the ability to eliminate noise while
preserving signal content. More information about how this is implemented
efficiently can be found in [44].

1.3.1.3 Experimental X-ray Results

We applied our multiframe reconstruction and restoration algorithm to real
images captured on an experimental X-ray imaging system. Our experimental
imaging system is based on a Mammomat NovationTOMO digital mammog-
raphy prototype system (Siemens Medical Solutions, Erlangen Germany)2,
stationed at Duke University Medical Center. The system uses a stationary
selenium-based detector having 85 µm pixels. Pixels with this size correspond
to a Nyquist sampling rate of 5.6 line pairs per millimeter (lp/mm). We used a
CIRS model 11A breast phantom (CIRS Inc., Norfolk VA) to test our super-
resolution algorithms. We introduced shifts in the image by two methods.
First, we allowed the X-ray tube to rotate by ± 1 degree. Second, we manually
moved the breast phantom to introduce motion into the system. This manual
motion was completely uncontrolled. Our dataset consisted of 15 frames at the
low dosage level of 11.3 mAs at 28 kVp tube voltage. As a point of reference,
we also acquired a single frame at a more typical dosage of 226 mAs at 28
kVp tube voltage (Fig. 1.1), which is 25.

The breast phantom includes several testing features including a pair of
resolution bar charts and small grains that mimic calcification in the breast.
The results reported here are focused on the test resolution chart and the
calcification grains that best represent the contrast performance and potential
improved-detection abilities of the multiframe image reconstruction system.

We applied our algorithm to 100 × 100 pixel tiles in the captured image
to estimate 400× 400 pixel high-resolution images (enhancement D = 4). We
modeled our system PSF as a heavy-tailed exponential energy distribution
with β = 1.5. To get a measure of the PSNR, we calculated the standard
deviation in a textureless region of the phantom. We also measured the dif-
ference in grayscale values between registration bars in the resolution chart
to get an approximate PSNR value of 3 dB. We employed 2-tap Daubechies
filters for the soft thresholding wavelet functions and 6-tap Daubechies filters
for the coarse denoising by way of hard wavelet coefficient thresholding. We
focus on the portion of the resolution chart beyond the Nyquist rate for the
imaging system (5.6 lp/mm). The numbers indicate the resolution in terms
of line pairs per millimeter (lp/mm). Figure 1.3 shows the images throughout
the super-resolution process.

The first image (Fig. 1.3(a)) shows one of the 15 low-dosage images. The
image has very low SNR and shows some of the aliasing associated with an
undersampled detector. The second image (Fig. 1.3(b)) shows an example of

2Caution: Investigational Device. Limited by US Federal law to investigational use. The
information about this product is preliminary. The product is under development and is
not commercially available in the US; and its future availability cannot be ensured.
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(a) Single low-resolution image (b) Multiframe average

(c) Multiframe restored (d) Denoised image

FIGURE 1.3
Different restoration techniques applied on the low-dosage set of images. (a)
Low-dosage image, (b) Multiframe averaged image, (c) Multiframe restored x̌,
(d) Denoised super-resolved image x̂. The multiframe average image shows the
aliasing present in the captured image. The super-resolved images show image
contrast beyond the native sampling rate of the system. The total dosage of
using 15 of these frames (15×11.3 = 170mAs) is still less than the high dosage
image of 225 mAs in Figure 1.1(b) with clear aliasing artifacts on resolution
bars labeled with numbers higher than 8.
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(a) Single low-resolution low-
dosage

(b) Multiframe low-dosage aver-
age

(c) Single low-resolution high-
dosage

(d) Multiframe low-dosage re-
stored

FIGURE 1.4
Different restoration techniques applied on the low-dosage set of images. (a)
Low-dosage image, (b) Multiframe averaged image, (c) High-dosage image at
226mAs, (d) Denoised image x̂ (15 × 11.3 = 170mAs). Restoration combin-
ing the 15 low-dosage frames in (d) frames, most clearly demonstrating the
pentagram-shaped set of micro-calcification cluster.

averaging the 15 low-resolution frames followed by interpolation. While the
SNR is improved, the aliasing contained in the low-resolution images becomes
clear as the 5 bars appear as three bars above 7 lp/mm. The third image
(Fig. 1.3(c)) shows the resulting image x̌ after applying the multiframe image
restoration step. This image shows contrast improvement but at the expense
of significant noise amplification. The final image (Fig. 1.3(d)) shows the final
image estimate x̂ after applying the non-linear wavelet thresholding denoising
algorithm. The image shows that the contrast is preserved while eliminating
most of the amplified noise.

The primary goal of mammography is detecting and diagnosing cancerous
lesions in the breast. The breast phantom includes small grains of calcium for
evaluating the diagnostic capability of micro-calcifications. Figure 1.4 shows
another block from the same experiment demonstrating the ability of the
nonlinear denoising algorithm to clearly eliminate noise while preserving the
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signal for a cluster of 0.275 mm sized calcite grains. This provides confidence
in the nonlinear denoising algorithm’s ability to discern signal from noise.

1.3.2 Super-Resolution in Optical Coherence Tomography

The invention and utilization of Optical Coherence Tomography (OCT), first
reported in [27] in 1991, has had a profound impact on many fields of research,
especially ophthalmic sciences [25, 26, 46, 49, 55]. OCT systems provide non-
invasive yet high-resolution in-vivo images of retinal structures, which can be
used to define imaging biomarkers of the onset and progression of many oph-
thalmic diseases. By employing an interferometer [8, 17], several OCT based
imaging systems have been developed through out the years, most notably
the time-domain OCT (TDOCT) and ultrahigh resolution OCT (UHROCT)
[40]. The advent of the Spectral Domain Optical Coherence Tomography
(SDOCT) system has further improved the image quality and acquisition
speed [33, 51, 60, 61, 64, 65]. Today, several commercial SDOCT systems
are available with similar capabilities and 20-30 kHz A-scan rates.

A noninvasive, accurate characterization of retinal lesions and other patho-
logical abnormalities is only possible with high-resolution, 3-D ocular imag-
ing. Commonly, the lateral, axial, and azimuthal resolution of many imaging
systems, including OCT, are associated with (and calculated based on) the
illumination source characteristics (e.g. bandwidth), the optical path (e.g.
diffraction limit due to pupil diameter, ocular aberrations, dispersion, etc.),
and other physical characteristics. Utilization of fast and efficient CCD de-
tectors has facilitated the creation of aliasing-free 3-D images of anatomical
structures. However, for some in vivo imaging applications, the SDOCT acqui-
sition time is not short enough to avoid abrupt motions such as blinking, thus
creating motion artifacts in the densely sampled volumetric measurements
(Fig. 1.6). Therefore, in practice, to speed up the image acquisition process,
these systems are utilized at a significantly lower than nominal resolution. In
SDOCT imaging, practical resolution in the azimuthal axis corresponds to the
number of B-scans sampled at relatively equal distances in a volumetric scan-
ning scheme (Fig. 1.5). Note that, valid quantitative measurements of retinal
disease biomarkers (e.g. drusen [56] volume) are only feasible from B-Scans
with known azimuthal displacement.

On the quest to gather useful information from SDOCT through improv-
ing the hardware design, one quickly runs into the problem of diminishing
returns. Specifically, the optical components necessary to capture very high-
quality, dense scans become prohibitively expensive or too sensitive for many
practical applications. Unlike alternative approaches that require expensive
hardware such as eye tracking systems [22], we propose a software-based im-
age processing solution in this section based on our earlier work [12], that is
applicable to virtually any SDOCT imaging system, including the handheld
SDOCT systems which are more prone to motion errors [5, 6, 47].

In this section, we introduce a novel application of the super-resolution
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FIGURE 1.5
A volumetric SDOCT scan set is a collection of azimuthally sampled B-Scans
(a), creating a 3-D view of the retina (b). The braces in (a,b) mark the lower
retinal slab shown in (c) containing the shadows from the overlying larger
vessels. (d) is the summed voxel projection (SVP) created by axial projection
of the lower half of the B-Scans, demonstrating the vessel pattern [22, 28].
Each B-Scan corresponds to one line on the SVP.

framework for improving the azimuthal resolution of SDOCT images. We
propose a method based on capturing several repeated fast sparse 3-D scans,
followed by detecting and removing the ones affected by motion artifacts, and
finally fusing the artifact-free scans. Our approach to reduce motion artifacts
in the 3-D tomographic structure, in spirit, is close to the multi-camera time-
space super-resolution [48], MRI inter-slice reconstruction [21], and video syn-
chronization [57] problems. However, the proposed reconstruction algorithms
and applications are fundamentally different and novel.

1.3.2.1 Proposed Method: Sparse Repeated Imaging

Our goal is to transcend the limitations of SDOCT imaging systems, reduce
motion artifacts (Fig. 1.6), and obtain densely sampled, high-quality, and
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(a) (b)

FIGURE 1.6
SVPs from densely sampled volumetric SDOCT scans of two subjects. The
red ellipsoids mark motion artifact locations.

accurate 3-D SDOCT images of unpredictably moving structures such as a
human eye. In typical SDOCT ophthalmic imaging practice, the region of in-
terest is swept with a relatively high number of B-Scans. For many patients,
due to the multiple seconds required to capture scans, a dense scanning strat-
egy is prone to motion artifacts such as blinking.

Alternatively, we propose to capture several (N) sparsely sampled vol-
umetric scans with a significantly lower number of B-Scans than the target
resolution. Since the number of frames in each sequence (K) is relatively small,
each scan is captured very fast. Therefore, it is reasonable to assume that some
of these sequences will be less affected by the abrupt patient motion. We de-
tect such sequences, reorder and interlace their frames, and create a densely
sampled, artifact-free representation of the retina. Figure 1.7 represents the
main idea, where two sparsely sampled sequences are fused together creating
a dense representation of the underlying pathological structures.

Putting together the frames of different scan sets (interlacing) in a correct
order is a challenging task. A naive approach involves sorting via pair-wise reg-
istration and computing a closeness measure (e.g. normalized cross-correlation
or sum-of-squared difference) of all frames. In the case of fusing only two vol-
umetric B-Scan sets, each frame in the first volume sequence is registered to
all frames of the second sequence. Then, in the fused output sequence, this
individual frame is inserted into the second sequence nearest to the frame
in the second sequence with the highest cross-correlation value. This process
would be repeated for all remaining frames in the first sequence. Of course,
this is a simplified variation of the video synchronization problem, discussed
in detail in the computer vision literature [57]. However, aside from the pro-
hibitively heavy computational load of registering large SDOCT data sets, the
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SNR of the SDOCT images is significantly lower than the commercial cam-
corders for which the method in [57] is developed. Therefore, the commonly
used closeness measures such as normalized cross-correlation may not always
be sensitive enough to discriminate between very small structural changes in
the neighboring SDOCT ophthalmic scans (Fig. 1.7).

FIGURE 1.7
Fusing (interlacing) multiple sparsely sampled scan sequences to create an
azimuthally higher resolution volume of B-Scans. Indeed, unlike this schematic
example, in clinical applications the displacement between sequences might be
non-integer as it is induced by patient motion.

To reduce the computational complexity of 3-D registration and improve
accuracy, we introduce an alternative global solution based on 2-D registra-
tion. Note that, the azimuthal axis displacement is the only motion that we
need to estimate to be able to interlace the 3-D volumetric scans. A quick
consultation with Figure 1.5 shows that the y-axis in the 2-D SVP images
corresponds to the azimuthal axis in the 3-D data volumes. Therefore, instead
of dealing with full 3-D datasets, we axially project the input 3-D sequences
and create corresponding SVP images (Fig. 1.5). This will reduce the task
of registering K sets each with B images (B-Scans) of size [B × L] pixels, to
registering only K images (SVPs) each of size [B ×B] pixels. In essence, we
are projecting down into the SCP domain to create a collection of K images
that are undersampled in only one dimension (e.g. D1 = 1).

Aside from a significant reduction in data volume, the axial projection
reduces the noise in the SVP images by averaging over hundreds of pixels. As
SNR of the SVP images is relatively higher, outlier (motion artifact corrupted)
image sets can be more accurately detected and excluded from the data pool.

We recover the order of the frames in the dense 3-D output by registering
the remaining SVPs. As explained in the next subsection, we calculate the y-
axis motion between different SVPs and associate this to the azimuthal motion
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parameters (frame number) of the 3-D volumes. For example, an estimated
five pixel displacement for the SVPs of two scan sets in y-axis, indicates an
offset of five frames in the corresponding B-Scan sequences. Moreover, by
estimating the x -axis motion of the SVPs, we recover the lateral registration
parameters needed for aligning the fused (interlaced) B-Scans in the final fused
3-D volume.

1.3.2.2 Multiframe Joint Registration

In many super-resolution applications, fast pairwise image registration is suf-
ficient for estimating the relative shifts between the sets of low-resolution
images. The basis for this approach is based on the following approximation
of Equation (1.5)

yk = DS(vk)z ≈ S(v′k)p + ek + ak (1.16)

where v′k = [v1,kv2,k/D2] is the apparent motion in the undersampled image,
p is the approximate non-aliased portion of the low-resolution image, and ak

is the aliasing artifacts which we approximately treated as noise. From the
simplified model of Equation (1.16), we see that the relationship between a
pair of low-resolution images yk and yj is approximately given by

yk = S(v′j − v′k)yj ≈ yj + (v′j − v′k)∇S(0)yj (1.17)

where the second half of the equation is based on the first order Taylor ap-
proximation of the shift operator S(v). In practice, the operators ∇S(0) =
[Sx(0)Sy(0)] are approximately the x and y gradient operators. Equation
(1.17) is known as the optical flow constraint and can be used to estimate
the shift between any pair of low-resolution frames. Such an approach works
as long as the energy in the aliasing artifacts ak are minimal. We use the
notation v′j−k = v′j − v′k.

Due to the sub-Nyquist sampling in the azimuthal direction, the SVPs of
the sparse, fast-acquired sequences are aliased in the y-axis, complicating the
subpixel motion estimation task. Moreover, small estimation bias in the pair-
wise SVP registration is magnified to a significant misalignment error when
several sequences are fused together. Therefore, to minimize the overall motion
estimation error, we exploit global consistency conditions in a multiframe mo-
tion estimation framework [14, 19]. This bundle-adjusted, optical flow-based
technique relies on the fact that the operator describing the motion between
any pair of frames must be the composition of the operators between two other
pairs of frames. In effect, by incorporating this prior information in the joint
motion estimation framework of [14], we minimize the motion estimation bias
while having extremely fast registration by estimating motion entirely in the
low-resolution domain.

We overcome the errors associated using a global constraint enforcing the
transitivity of the pairwise motion estimates. For example, if we consider three
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frames, then the transitivity of the motion estimates requires that

v′k−j = v′l−j + v′k−l (1.18)

Figure 1.8 schematically describes this motion constraint. In the case of mul-
tiple translational motion vectors [14], the above conditions can be described
by simple linear equations relating the motion vectors between the frames as

FIGURE 1.8
Global motion consistency conditions that exist for any set of images: the
operator describing the motion between any pair of images is the composition
of the operators between two other pairs of images: vi,k = vi,j + vj,k.

UV = 0 , (1.19)

where U is a
[
2(K−1)2 × 2K(K−1)

]
consistency condition matrix and U is

a vector collecting the set of unknown motion vectors {v′k}. Each row in the
sparse matrix U has only two or three non-zero (±1) elements. Motion vectors
are estimated by minimizing a global cost function such as
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ΩOF(V ) =
K∑

i 6=j

∥∥yi − yj − v′i−j∇S(0)yj

∥∥
1
, s.t. UV = 0 , (1.20)

We used nonlinear programming (“fmincon” function in MATLAB) to min-
imize this cost function. The above conditions for the more general case of
affine motion are defined in [14]. This is a simpler but faster implementation
of the general framework described in Section 1.2. Since we do not estimate
the high-resolution image jointly with the registration parameters our solution
is suboptimal. Indeed, mathematically more rigorous solutions for registering
aliased images are also possible [42], which increase computational complex-
ity of the proposed algorithm. However, noting the extremely large SDOCT
image sets (hundreds of images of size [512× 1024] or larger), the goal of our
proposed solution is to be practical for clinical implementation rather than
mathematically optimal.

1.3.2.3 Experimental Results

The above registration technique recovers the order and the relative azimuthal
distance of B-Scans from different scan sets, which can be exploited to recon-
struct a dense 3-D view of the imaged pathological structure. Since misaligned
or broken vessels are easily detectable in retinal imaging applications, the ves-
sel pattern as seen on the SVP serves as an efficient qualitative measure of the
success and accuracy of the overall algorithm. Therefore, we use the estimated
motion parameters to reconstruct a fused (super-resolved) 2-D SVP map of
retinal vessel structure.

Figure 1.6 shows a dense scanning of a subject, whose motion artifacts
have resulted in an SVP with broken vessel structure. From the same subject,
we captured 12 sparsely sampled volumetric scans (each with 50 B-Scans)
and adjusted the baseline of each image using the fast registration StackReg
plug-in (Biomedical Imaging Group; Swiss Federal Institute of Technology
Lausanne) [54] for ImageJ (freeware; National Institutes of Health; Bethesda,
MD). Following [28], by summing the lower half of the B-Scans in the ax-
ial direction, we created SVPs with distinct vessel patterns. After contrast
adjustment, four of the six sequences with the highest SVP normalized cross-
correlation values were manually selected to be registered. Figures 1.9(a) and
1.9(b) show two corresponding SVPs of these four sequences. Registered and
sequentially ordered AVI movies of these four input sequences are available
in http://www.duke.edu/∼sf59/datasets/SDOCT SR.avi, screenshots of which
are shown in Figure 1.9(f).

We used the multiframe projective bundle-adjusted motion estimation
method of [14] to recover the subpixel translational motion parameters of these
four SVPs (Sec. 1.3.2.2). We used the fast zero-order classic kernel regression-
based super-resolution algorithm described in [52] to reconstruct the fused
SVP. Since there are no aliasing artifacts in the x -axis (lateral direction), the
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SVP resolution is only enhanced in the y-axis. The SVP of the fused sequence
is shown in Figure 1.9(c), which has more details than any of the input SVPs.

As a point of reference, we also captured a gold-standard sequence shown
in Figure 1.9(d), which is the visually best of 4 densely sampled volumetric
scans (100 B-Scans). The reconstruction accuracy and quality improvement
is confirmed by comparing the input and output SVPs to the gold-standard.
We believe the small jaggedness in reconstructed vessels of Figure 1.9(c) is
mainly due to the dynamic structural deformation of the vessels during the
cardiac cycle. Overall, the vessel pattern in Figure 1.9(c) shows fewer dis-
continuities (blue ellipsoids) compared to the input SVPs. Moreover, due to
the less aggressive interpolation in the azimuthal (y-axis) direction, the vessel
thicknesses are more accurate in Figure 1.9(c) than in any of the input frames
(red ellipsoids).

1.4 Conclusion

We have provided a proof of concept for the applicability of image process-
ing based algorithms as an alternative to expensive hardware for creating
robust high quality X-ray mammography and SDOCT ophthalmic imaging.
The proposed super-resolution-based algorithm enables ophthalmic imaging
practitioners and radiologists to optimally utilize the SDOCT and X-ray sys-
tems in their highest resolution capacity.

For the SDOCT case, several implementation variations for improving the
efficiency are possible. For example, rather than discarding a whole defected
sequence, we may discard only those B-Scans affected by abrupt motion arti-
facts (e.g. blinking), and use the remaining uncorrupted B-Scans. To produce
more visually appealing SVPs, more efficient super-resolution techniques such
as the steering adaptive kernel [52] or robust super-resolution [16] may be also
exploited. Moreover, incorporation of an advanced adaptive sparse sampling
strategy (3-D extension of the method in [13]) in this imaging framework is
part of our ongoing research.

While the proposed algorithm efficiently removes abrupt motion artifacts,
a practical drawback is the case of imaging objects with constant deformable
motion. For example, in the case of imaging pulsing blood vessels, each sparse
sequence is associated with a unique position of the blood vessels compared to
the background tissues. A possible remedy is synchronizing the start of image
acquisition in each sparse sequence with the electrocardiogram (EKG) signal.

We note that two alternative related sparse imaging scenarios can be also
considered. One is based on capturing large field of view repeated scans, dense
in the azimuthal direction but sparsely sampled in the lateral direction. Then,
a classic super-resolution algorithm (e.g. [16, 52]) may reconstruct the lateral
resolution of individual B-Scans. Our pilot experimental results have shown
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moderate improvements, when imaging objects under a SDOCT microscope.
However, in practical clinical trials the difficulty of capturing repeated scans
from a unique azimuthal location largely voids the applicability of this strat-
egy.

Alternatively, the authors of the published work in [66] propose to capture
azimuthally dense scan sets with a small field of view in the axial-lateral plane
(e.g. the en face view is divided into four sub-sections, which are imaged
subsequently). A customized semi-automatic software stitches the 3-D scan
volumes, creating a visually appealing, large field of view, 3-D rendition of
the retina. However, unfortunately for the same practical imaging problem
noted for the aforementioned strategy, as evident in the experimental results
in [66], it is extremely hard (if not impossible) to recover unique, large field
of view B-Scans without evident registration artifacts.

As for the mammography, we believe the design of future X-ray imag-
ing systems would benefit from a systematic analysis of the resolution and
SNR required for mammographic screening and diagnosis. In the future, we
will explore the fundamental tradeoffs between radiation exposure, number
of frames, and reconstruction performance. Furthermore, we will investigate
more sophisticated redundant wavelet techniques such as curvelets [50] or
ridgelets [7] which might show even better performance than the proposed
multiframe ForWaRD technique. In fact, recent research has shown that use
of more sophisticated wavelets can improve the image quality in other medical
imaging applications [31].

We believe this novel application of super-resolution can be used as a
stepping stone toward many other image fusion based medical imaging system
designs, aimed especially at patients with uncontrollable motion, pediatrics,
or hand-held probe imaging. While this chapter was focused on X-ray and
OCT image enhancement, similar strategies can be exploited for enhancing the
quality of some other volumetric medical imaging devices such as ultrasound.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 1.9
(a) and (b) are two representative SVPs of four input retinal SDOCT se-
quences (50 regularly sampled B-Scans each). (c) is the SVP of the fused
sequence (200 irregularly sampled B-Scans). (d) is the Gold-Standard SVP
which is the best dense (100 regularly sampled B-Scans) out of 4 such se-
quences (Figure 1.6(b) is an example of dense sampling of the same subject
with motion artifacts). (e) and (f) are the screen shots of the AVI movies
of registered four input B-Scan sets and the reordered and interlaced output
B-Scan set, respectively (2.1 MB).
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