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ABSTRACT

We address the problem of estimating the relative motion

between the frames of a video sequence. In comparison

with the commonly applied pairwise image registration meth-

ods, we consider global consistency conditions for the over-

all multi-frame motion estimation problem, which is more

accurate. We review the recent work on this subject and

propose an optimal framework, which can apply the con-

sistency conditions as both hard constraints in the estima-

tion problem, or as soft constraints in the form of stochastic

(Bayesian) priors. The framework is applicable to virtually

any motion model and enables us to develop a robust ap-

proach, which is resilient against the effects of outliers and

noise. The effectiveness of the proposed approach is con-

firmed by a super-resolution application on synthetic and

real data sets.

1. INTRODUCTION

Motion estimation with subpixel accuracy is of great impor-

tance to many image processing and computer vision appli-

cations, such as mosaicing [1] and super-resolution [1, 2].

Numerous image registration techniques have been devel-

oped throughout the years [3]. Of these, optical flow [4]

[5], and correlation-based methods [6] are among the most

popular.

These methods are mainly developed to estimate the rel-

ative motion between a pair of frames. For the cases where

several images are to be registered with respect to each other

(e.g. super-resolution applications), two simple strategies

are commonly used. The first is to register all frames with

respect to a single reference frame [7]. This may be called
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the anchoring approach. The choice of a reference or an-

chor frame is rather arbitrary, and can have a severe effect on

the overall accuracy of the resulting estimates. This caveat

aside, overall, this strategy is effective in cases where the

camera motion is small and random (e.g. small vibrations

of a gazing camera).

The other popular strategy is the progressive registra-

tion method [8], where images in the sequence are regis-

tered in pairs, with one of the pair acting as the reference

frame. For instance, taking a causal view with increasing

index denoting time, the ith frame of the sequence is regis-

tered with respect to the (i + 1)th frame and the (i + 1)th

frame is registered with respect to the (i+2)th frame, and so

on. The motion between an arbitrary pair of frames is com-

puted as the combined motion of the above incremental es-

timates. This method works best when the camera motion is

smooth. However, in this method, the registration error be-

tween two “nearby” frames is accumulated and propagated

when such values are used to compute motion between “far

away” frames.

Neither of the above approaches take advantage of the

important prior information available for the multi-frame

motion estimation problem. This prior information con-

strains the estimated motion vector fields between any pair

of frames to lie in a space whose geometry and structure, as

we shall see in the next section, is conveniently described.

In this paper, we study such priors and propose an optimal

method for exploiting them, to achieve very accurate esti-

mation of the relative motion in a sequence.

This paper is organized as follows. Section 2 introduces

the consistency constraints in an image sequence and re-

views the previous work on this subject. Section 3 describes

the main contribution of this paper, which is an optimal

framework for exploiting these consistency constraints. Us-

ing such framework, we introduce a highly accurate robust

multi-frame motion estimation method, which is resilient to

the outliers in an image sequence. Simulations on both real

and synthetic data sequences are presented in Section 4, and

Section 5 concludes this paper.
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2. CONSTRAINED MOTION ESTIMATION

To begin, let us define Fi,j as the operator which maps (reg-

isters) frames indexed i and j as follows:

Xi = Fi,j(Xj),

where Xi and Xj are the lexicographic reordered vector

representations of frames i and j.

Now given a sequence of N frames, precisely N(N−1)
such operators can be considered. Regardless of consid-

erations related to noise, sampling, and the finite dimen-

sions of the data, there are inherent intuitive relationships

between these pair-wise registration operators. In particu-

lar, the first condition dictates that the operator describing

the motion between any pair of frames must be the compo-

sition of the operators between two other pairs of frames.

More specifically, as illustrated in Figure 1(a), taking any

triplet of frames i, j, and k, we have the first motion consis-

tency condition as:

∀i, j, k ∈ {1, ..., N}, Fi,k = Fi,j ◦ Fj,k. (1)

The second rather obvious (but hardly ever used) consis-

tency condition states that the composition of the operator

mapping frame i to j with the operator mapping frame j

to i should yield the identity operator. This is illustrated in

Figure 1(b). Put another way,

∀i, j ∈ {1, ..., N}, Fj,i = F
−1
i,j . (2)

These natural conditions define an algebraic group struc-

ture (a Lie algebra) in which the operators reside. Therefore,

any estimation of motion between frames of a (N ≫ 2)
image sequence could take these conditions into account.

In particular, the optimal motion estimation strategy can be

described as an estimation problem over a group structure,

which has been studied before in other contexts [9].

The above properties describe what is known as the Ja-

cobi condition, and the skew anti-symmetry relations [10].

For some practical motion models (e.g. constant motion

or the affine model), the relevant operators could be fur-

ther simplified. For example, in the case of translational

(constant) motion, the above conditions can be described by

simple linear equations relating the (single) motion vectors

between the frames:

∀i, j, k ∈ {1, ..., N}, V i,k = V i,j + V j,k, (3)

where V i,j is the motion vector field between the frames

i and j. Note that V i,i = 0, and therefore the skew anti-

symmetry condition is represented by (3), when k = i.

For the sake of completeness, we should note that the

above ideas have been already studied to some extent in the

computer vision community. In particular, the Bundle Ad-

justment (BA) [11] technique is a general, yet computation-

ally expensive method for producing a jointly optimal 3D

(a) (b)

Fig. 1. The consistent flow properties: (a) Jacobi Identity

and (b) Skew Anti-Symmetry.

structure and viewing parameters, which bares close resem-

blance to what is proposed here. It is important to note that

BA is not intended for motion estimation in 2-D images, and

does not specifically take the algebraic group structure into

account. Instead, it relies on an iterative method, which is

largely based on the motivating 3-D application. On another

front, to solve mosaicing problems, [12] adapted the BA

method to a 2-D framework, where the estimated motion

vectors are refined in a feedback loop, penalizing the global

inconsistencies between frames. Also, the importance of

consistent motion estimation for the Super-Resolution prob-

lem is discussed in [5].

The very recent approach in [10] exploits the Lie Group

structure indirectly. The motions are estimated in an un-

constrained framework, then “projected” to the set of valid

motions by what the author calls Lie-algebraic averaging.

While the framework of this approach is close to what we

suggest, the algorithm presented there is suboptimal in that

it uses the constraints only as a mechanism for post-processing

already-estimated motion fields, resulting in a suboptimal

overall procedure. Finally, in a similar way, another recent

paper, [13], computes the motion vectors between a new

frame and a set of frames for which relative motion vectors

has been previously computed. Then, the motion vectors

computed for the new image are used to refine the pairwise

estimated motion of other frames. This two-step algorithm

is iterated until convergence.

The framework we propose in this paper unifies the ear-

lier approaches and presents an optimal framework where

the constraints are used directly in the solution of the prob-

lem, and not simply as a space onto which the estimates are

projected.

3. PRECISE ESTIMATION OF TRANSLATIONAL

MOTION WITH CONSTRAINTS

We now describe our proposed methodology, and compare

it against two other competing approaches. To simplify the
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notation, we define the vectors X , V , and V (i) as follows:

X =










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...

X(N)






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
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V (N)






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V i,1

...

V i,j(i 6=j)

...
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










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,(4)

where X(i) is the ith image in this sequence rearranged in

the lexicographic order. The vector V (i) contains the set of

motion vector fields computed with respect to the reference

frame i.

3.1. Optimal Constrained Multi-Frame Registration

In a general setting, the optimal solution to the multi-frame

registration problem can be obtained by minimizing the fol-

lowing cost function:

̂V = ArgMin
V

Φ(X, V ) such that Ψ(V ) = 0, (5)

where Φ represents a motion-related cost function (e.g. pe-

nalizing deviation from brightness constraint, or a phase-

based penalty), and Ψ captures the constraints discussed

earlier.

To get a feeling for this general formulation, we address

the translational motion case, (the consistency conditions

for the affine case are described in the Appendix), with Φ
representing the Optical Flow model:

Φ(X,V )=
N

∑

i,j=1
︸︷︷︸

i6=j

‖X
(x)

i v
(x)

i,j +X
(y)

i v
(y)

i,j +X
(t)

i,j )‖
2
2, (6)

where X
(x)

i and X
(y)

i are the spatial derivatives (in x and y

directions) of the ith frame, and X
(t)

i,j is the temporal deriva-

tive (e.g., the difference between frames i and j). Here the

motion vector field V i,j is spatially constant, and it can be

represented by the scalar components v
(x)

i,j and v
(y)

i,j in x and

y axes, respectively, and for 1 ≤ i, j ≤ N . Using this, the

translational consistency condition as in Equation (3) is then

formulated as

Ψ(V ) : CV = 0, (7)

where the unknown motion vector V has all the 2N(N −1)

entries v
(x)

i,j and v
(y)

i,j stacked to a vector. The constraint ma-

trix C is of size [2(N −1)2 × 2N(N −1)]. Each row in C

has only two or three non-zero (±1) elements representing

the skew anti-symmetry and Jacobi identity conditions in

(3), respectively. The defined problem has a quadratic pro-

gramming structure, and it can be solved using accessible

optimization algorithms.

3.2. Two-Step Projective Multi-Frame Registration

As a comparison to our proposal, we discuss a two-step ap-

proach that is in spirit similar to what is done in [10]. In

this method, for a sequence of N frames, in the first step

all N(N − 1) possible pairwise motion vector fields (V i,j)

are estimated. Note that the pairwise motion vector fields

are individually estimated by optimizing the following cost

function:
̂V i,j = ArgMin

V
i,j

Φ(Xi,j , V i,j)

where Φ(Xi,j , V i,j) may represent any motion estimation

cost function.

In the second step, these motion vectors are projected

onto a consistent set of N(N − 1) pairwise motion vectors.

For the case of translational motion model, with the consis-

tency condition in (7), the projection of the motion vector

fields onto the constraint space is computed as:

V proj = (I − C[CT C]−1CT )̂V .

Such a two step projection method (as in [10]) is not opti-

mal and would be expected to result in inferior estimations

compared to the solution of the method posed in Equation

(5).

3.3. Robust Multi-Frame Registration

In many real video sequences, the practical scenarios are

not well-modelled by temporally stationary noise statistics,

and abrupt changes or occlusions may introduce significant

outliers into the data. Note that even the presence of very

small amount of outliers, which may be unavoidable (e.g.

the bordering pixel effects), heavily affects the motion esti-

mation accuracy. In such cases, it is prudent to modify the

above approaches in two ways. First, one may replace the

hard constraints developed above with soft ones, by intro-

ducing them as Bayesian priors which will penalize rather

than constrain the optimization problem. Second, we may

want to introduce alternative norms to the standard 2-norm

for both the error term and the constraint in (5). Incorporat-

ing both modifications, one can consider optimizing a mod-

ified cost function which includes a term representing the

“soft” version of the constraints as:

̂V = ArgMin
V

Φr(X,V ) + λΨ(V ), (8)

where λ represents the strength of the regularizing term.

The functions Φ and Ψ may use robust measures, such as

the 1-norm. For instance, to deal with outliers directly, one

might use

Φr(X,V )=
N

∑

i,j=1
︸︷︷︸

i 6=j

‖X
(x)

i v
(x)

i,j +X
(y)

i v
(y)

i,j +X
(t)

i,j )‖1. (9)
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a: Experiment 1 b:Experiment 2

Fig. 2. One of the input frames used in the first and the

second experiments (simulated motion).
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Fig. 3. MSE comparison of different registration methods

in the first simulated experiment.

The use of such robust error term together with the hard

constraint cost function of (5) often suffices to enhance the

estimator performance. Note that unlike the L2 norm which

reduces the estimation error by an implicit averaging of the

estimates, the robust L1 norm implements a median estima-

tor [14], which effectively picks the most reliable estimated

motion vector for each pair of frames. The experiments in

the next section justify this claim.

4. EXPERIMENTS

A simulated experiment was conducted by registering 5 frames

of size [65 × 65]. For these frames we have the correct

translational motion vectors in hand. One of these frames is

shown in Fig.2(a).

The mean square errors (MSEs) of the computed mo-

tion vectors (against the true motion vectors) with the sin-

gle reference approach (Section 1), suboptimal projective

(Section 3.2), the L2 constrained (Section 3.1), and the L1

norm with hard constraints (Section 3.3) methods are com-
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Fig. 4. MSE comparison of different registration methods

in the second simulated experiment.

pared in Fig.3. Each point in this graphs shows the average

of 100 different realizations of additive noise (Monte Carlo

simulation) for different SNRs 1.

The second simulated experiment was conducted by reg-

istering 7 frames of size [39 × 39]. One of these frames is

shown in Fig. 2(b). We repeated the previous experiment

on this data set (with 30 Monte Carlo iterations for different

SNRs) and compared the performance of different methods

in Fig. 4.

A real experiment was also conducted aligning 27 color-

filtered low-resolution (LR) images. One of these LR frames

after demosaicing [2] is shown in Fig.5(a). The method

of [2] was used to construct a high resolution (HR) im-

age, by registering these images on a finer grid (resolution

enhancement factor of three in x and y directions). We

used the method described in [15] to compute the motion

vectors in an ”anchored” fashion (Section 1). Figure 5(b)

shows the HR reconstruction using this method with clear

mis-registration errors. The result of applying the two step

multi-frame projective image registration of Section 3.2 is

shown in Fig.5(c). Some mis-registration errors are still vis-

ible in this result. Finally, the result of applying the optimal

multi-frame registration method (Section 3.1) is shown in

Fig.5(d), with almost no visible mis-registration error.

5. CONCLUSION

In this paper we studied several multi-frame motion esti-

mation methods, focusing on the methods that exploit the

consistency conditions. As an alternative to existing meth-

ods, we proposed a general framework to optimally benefit

1Signal to noise ratio (SNR) is defined as 10 log10

σ
2

σ
2
n

, where σ

2, σ

2
n

are variance of a clean frame and noise, respectively.
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(a) (b)

(c) (d)

Fig. 5. Experimental registration results for a real sequence.

(a) One input LR frame after demosaicing.(b) Single Ref-

erence HR registration. (c) Projective HR registration. (d)

Optimal HR registration. This paper (with all color pictures)

is available at http://www.soe.ucsc.edu/∼milanfar.

from these constraints. Such framework is flexible, and is

applicable to more general motion models. Based on this

framework, we proposed a highly accurate multi-frame mo-

tion estimation method which is robust to the outliers in im-

age sequences. This robust method, which minimizes an L1

norm cost function, often provides more accurate estimation

than the common least square approaches. Our experiments

show that the high accuracy and reliability of the proposed

multi-frame motion estimation method is especially useful

for the multi-frame super-resolution applications in which

very accurate motion estimation is essential for effective im-

age reconstruction.
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Appendix: Affine Motion Constraints

In this section we review the consistency constraints for

the affine motion model. The affine transformation models

a composition of rotation, translation, scaling, and shearing.

This six parameter global motion model is defined by

[

xi

yi

]

=

[

ai,j bi,j

ci,j di,j

] [

xj

yj

]

+

[

ei,j

fi,j

]

, (10)

where [xi, yi]
T , and [xj , yj ]

T are the coordinates of two cor-

responding pixels in frames i and j. Defining

Mi,j =

[

ai,j bi,j

ci,j di,j

]

, T i,j =

[

ei,j

fi,j

]

, (11)

the consistency constraints for the affine case are defined by

the relations

∀ 1 ≤ i, j, k ≤ N,

{

Mi,k = Mi,jMj,k

T i,k = Mi,jT j,k + T i,j

(12)

Note that Mi,i = I and T i,i = 0, and therefore (12) results

in a set of 6(N − 1)2 independent nonlinear constraints.

A more intuitive (and perhaps more practical) set of con-

strains can be obtained if we consider a simplified version

of the general affine model where only scale, rotation, and

translation are considered. Such simplified model is repre-

sented by replacing the first coefficient matrix on the right

side of (10) with

M ′

i,j =

[

ai,j bi,j

ci,j di,j

]

= αi,j

[

cos(θi,j) − sin(θi,j)
sin(θi,j) cos(θi,j)

]

(13)

where αi,j , and θi,j are the scaling and rotation parameters,

respectively. The consistency constraints for this simplified

affine model are given by the following relations:







αi,k = αi,jαj,k

θi,k = θi,j + θj,k

T i,k = M ′

i,jT j,k + T i,j

(14)

For a set of N frames the above relations amount to 4(N −

1)2 independent non-linear constraints. Non-linear program-

ming (e.g. “fmincon” function in MATLAB) can be used

to minimize the cost functions with such non-linear con-

straints.
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