Outline

• Previously:
 • Computer is machine that does what we tell it to do

• Next:
 • How do we tell computers what to do?
 • How do we represent data objects in binary?
 • How do we represent data locations in binary?
Representing High Level Things in Binary

- Computers represent **everything** in binary
- Instructions are specified in binary
- Instructions must be able to describe
 - Operation types (add, subtract, shift, etc.)
 - Data objects (integers, decimals, characters, etc.)
 - Memory locations

Example:

```plaintext
int x, y; // Where are x and y? How to represent an int?
bool decision; // How do we represent a bool? Where is it?
y = x + 7; // How do we specify “add”? How to represent 7?
decision=(y>18); // Etc.
```
Representing Operation Types

- Arbitrarily! 😊
- Each Instruction Set Architecture (ISA) has its own binary encodings for each operation type
- E.g., in MIPS:
 - Integer add is: 00000 010000
 - Read from memory (load) is: 010011
 - Etc.
Representing Data Types

- Same as before: binary!
- Key Idea: the same 32 bits might mean one thing if interpreted as an integer but another thing if interpreted as a floating point number.
Basic Data Types

Bit (bool): 0, 1

Bit String: sequence of bits of a particular length
- 4 bits is a nibble
- 8 bits is a byte
- 16 bits is a half-word (for MIPS32)
- 32 bits is a word (for MIPS32)
- 64 bits is a double-word (for MIPS32)
- 128 bits is a quad-word (for MIPS32)

Integers (int, long):
- “2’s Complement” (32-bit or 64-bit representation)

Floating Point (float, double):
- Single Precision (32-bit representation)
- Double Precision (64-bit representation)
- Extended (Quad) Precision (128-bit representation)

Character (char):
- ASCII 7-bit code

What is a **word**?
The standard unit of manipulation for a particular system. E.g.:
- **MIPS32:** 32 bits
- Original Nintendo: 8 bit
- Super Nintendo: 16 bit
- Intel x86 (classic): 32 bit
- Nintendo 64: 64 bit
- Intel x86_64 (modern): 64 bit
Basic Binary

- Advice: memorize the following
 - $2^0 = 1$
 - $2^1 = 2$
 - $2^2 = 4$
 - $2^3 = 8$
 - $2^4 = 16$
 - $2^5 = 32$
 - $2^6 = 64$
 - $2^7 = 128$
 - $2^8 = 256$
 - $2^9 = 512$
 - $2^{10} = 1024$
Decimal to binary using remainders

<table>
<thead>
<tr>
<th></th>
<th>Quotient</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>457</td>
<td>228</td>
<td>1</td>
</tr>
<tr>
<td>228</td>
<td>114</td>
<td>0</td>
</tr>
<tr>
<td>114</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[111001001 \]
Decimal to binary using comparison

<table>
<thead>
<tr>
<th>Num</th>
<th>Compare 2^n</th>
<th>$\geq \ ?$</th>
</tr>
</thead>
<tbody>
<tr>
<td>457</td>
<td>256</td>
<td>1</td>
</tr>
<tr>
<td>201</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hex digit</td>
<td>Binary</td>
<td>Decimal</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
<td>13</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
<td>15</td>
</tr>
</tbody>
</table>
Binary to/from hexadecimal

- $010110110010011_2 \rightarrow$
- $0101\ 1011\ 0010\ 0011_2 \rightarrow$
- $5\ B\ 2\ 3_{16}$

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
<td>13</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
<td>15</td>
</tr>
</tbody>
</table>

$0001\ 1111\ 0100\ 1011_2 \rightarrow$

0001111101001011_2
BitOps: Unary

- Bit-wise complement (~)
 - Flips every bit.

\[
\begin{align*}
\sim 0x0d & \quad // \quad (\text{binary} \ 00001101) \\
== 0xf2 & \quad // \quad (\text{binary} \ 11110010)
\end{align*}
\]

Not the same as Logical NOT (!) or sign change (−)

```c
char i, j1, j2, j3;
i = 0x0d; \quad // \quad \text{binary} \ 00001101
j1 = \sim i; \quad // \quad \text{binary} \ 11110010
j2 = -i; \quad // \quad \text{binary} \ 11110011
j3 = !i; \quad // \quad \text{binary} \ 00000000
```
BitOps: Two Operands

- Operate **bit-by-bit** on operands to produce a result operand of the same length
- And (**&**): result 1 if both inputs 1, 0 otherwise
- Or (**|**): result 1 if either input 1, 0 otherwise
- Xor (**^**): result 1 if one input 1, but not both, 0 otherwise
- Operands **must** be of type integer
Two Operands... (cont’d)

Examples

0011 1000
\& 1101 1110
\
0001 1000

0011 1000
| 1101 1110
\
1111 1110

0011 1000
^ 1101 1110
\
1110 0110
Shift Operations

- $x << y$ is left (logical) shift of x by y positions
 - x and y must both be integers
 - x should be unsigned or positive
 - y leftmost bits of x are discarded
 - zero fill y bits on the right

```plaintext
01111001 << 3
-------------------
11001000
```

these 3 bits are discarded

these 3 bits are zero filled
ShiftOps... (cont’d)

• \(x \gg y \) is right (logical) shift of \(x \) by \(y \) positions
 • \(y \) rightmost bits of \(x \) are discarded
 • zero fill \(y \) bits on the left

\[
01111001 \gg 3
\]

these 3 bits are discarded

these 3 bits are zero filled
Bitwise Recipes

• Set a certain bit to 1?
 • Make a MASK with a one at every position you want to set:
 \[m = 0x02; \quad \text{// 00000010}_2 \]
 • OR the mask with the input:
 \[v = 0x41; \quad \text{// 01000001}_2 \]
 \[v |= m; \quad \text{// 01000011}_2 \]

• Clear a certain bit to 0?
 • Make a MASK with a one at every position you want to clear:
 \[m = 0xFD; \quad \text{// 11111101}_2 \] (could also write \(~0x02\))
 • AND the mask with the input:
 \[v = 0x27; \quad \text{// 00100111}_2 \]
 \[v &= m; \quad \text{// 00100101}_2 \]

• Get a substring of bits (such as bits 2 through 5)?
 \textit{Note: bits are numbered right-to-left starting with zero.}
 • Shift the bits you want all the way to the right then AND them with an appropriate mask:
 \[v = 0x67; \quad \text{// 01100111}_2 \]
 \[v >>= 2; \quad \text{// 00010011}_2 \]
 \[v &= 0x0F; \quad \text{// 00001001}_2 \]
Issues for Binary Representation of Numbers

• There are many ways to represent numbers in binary
 • Binary representations are encodings → many encodings possible
 • What are the issues that we must address?
• Issue #1: Complexity of arithmetic operations
• Issue #2: Negative numbers
• Issue #3: Maximum representable number
• Choose representation that makes these issues easy for machine, even if it’s not easy for humans (i.e., ECE/CS 250 students)
 • Why? Machine has to do all the work!
Sign Magnitude

- Use leftmost bit for + (0) or – (1):
- 6-bit example (1 sign bit + 5 magnitude bits):
 - +17 = 010001
 - -17 = 110001
- Pros:
 - Conceptually simple
 - Easy to convert
- Cons:
 - Harder to compute (add, subtract, etc) with
 - Positive and negative 0: 000000 and 100000
1’s Complement Representation for Integers

- Use largest positive binary numbers to represent negative numbers
 - 0000 → 0
 - 0001 → 1
 - 0010 → 2
 - 0011 → 3
 - 0100 → 4
 - 0101 → 5
 - 0110 → 6
 - 0111 → 7
 - 1000 → -7
 - 1001 → -6
 - 1010 → -5
 - 1011 → -4
 - 1100 → -3
 - 1101 → -2
 - 1110 → -1
 - 1111 → -0

- To negate a number, invert ("not") each bit:
 - 0 → 1
 - 1 → 0

- Cons:
 - Still two 0s (yuck)
 - Still hard to compute with

Nobody does this.
2’s Complement Integers

- Use large positives to represent negatives
- \((-x) = 2^n - x\)
- This is 1’s complement + 1
- \((-x) = 2^n - 1 - x + 1\)
- So, just invert bits and add 1

6-bit examples:

010110_2 = 22_{10}; 101010_2 = -22_{10}
1_{10} = 000001_2; -1_{10} = 111111_2
0_{10} = 000000_2; -0_{10} = 000000_2 \rightarrow good!
Pros and Cons of 2’s Complement

- **Advantages:**
 - Only one representation for 0 (unlike 1’s comp): \(0 = 000000\)
 - Addition algorithm is much easier than with sign and magnitude
 - Independent of sign bits

- **Disadvantage:**
 - One more negative number than positive
 - Example: 6-bit 2’s complement number
 \(100000_2 = -32_{10};\) but \(32_{10}\) could not be represented

All modern computers use 2’s complement for integers
2’s Complement Precision Extension

- Most computers today support 32-bit (int) or 64-bit integers
- Specify 64-bit using gcc C compiler with long long
- To extend precision, use sign bit extension
- Integer precision is number of bits used to represent a number

Examples

\[14_{10} = 001110_2 \text{ in 6-bit representation.} \]

\[14_{10} = 000000001110_2 \text{ in 12-bit representation} \]

\[-14_{10} = 110010_2 \text{ in 6-bit representation} \]

\[-14_{10} = 111111110010_2 \text{ in 12-bit representation.} \]
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00101011
\end{array}
\]

• How do we do this?
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\end{array}
\begin{array}{c}
695 \\
+ 232 \\
\end{array}
\]

• How do we do this?
 • Let’s revisit decimal addition
 • Think about the process as we do it
Binary Math : Addition

- Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ \ 00101011 \\
\hline
00101011 \\
\end{array}
\]

- First add one’s digit 5+2 = 7
Binary Math: Addition

Suppose we want to add two numbers:

\[\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
100010000
\end{array} \]

\[\begin{array}{c}
695 \\
+ 232 \\
\hline
27
\end{array} \]

First add one’s digit 5+2 = 7
Next add ten’s digit 9+3 = 12 (2 carry a 1)
Binary Math: Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00101011
\end{array}
\]

\[
\begin{array}{c}
695 \\
+ 232 \\
\hline
927
\end{array}
\]

• First add one’s digit 5+2 = 7
• Next add ten’s digit 9+3 = 12 (2 carry a 1)
• Last add hundred’s digit 1+6+2 = 9
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00101011
\end{array}
\]

• Back to the binary:
• First add 1’s digit 1+1 = ...?
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{align*}
 & 00011101 \\
+ & 00101011 \\
\hline
& 00101011
\end{align*}
\]

• Back to the binary:

• First add 1’s digit 1+1 = 2 (0 carry a 1)
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
11 \\
00011101 \\
+ 00101011 \\
\hline
0 0
\end{array}
\]

• Back to the binary:
• First add 1’s digit 1+1 = 2 (0 carry a 1)
• Then 2’s digit: 1+0+1 =2 (0 carry a 1)
• You all finish it out....
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{align*}
&111111 \\
&00011101 = 29 \\
+ &00101011 = 43 \\
\hline
&01001000 = 72
\end{align*}
\]

• Can check our work in decimal
Binary Math : Addition

• What about this one:

\[
\begin{array}{c}
01011101 \\
+ 01101011 \\
\hline \\
01100111
\end{array}
\]
Binary Math: Addition

• What about this one:

\[
\begin{align*}
1111111 & \\
01011101 & = 93 \\
+ 01101011 & = 107 \\
11001000 & = -56
\end{align*}
\]

• But... that can’t be right?
 • What do you expect for the answer?
 • What is it in 8-bit signed 2’s complement?
Integer Overflow

• Answer should be 200
 • Not representable in 8-bit signed representation
 • No right answer

• This is called integer Overflow

• Real problem in programs
Subtraction

- 2’s complement makes subtraction easy:
 - Remember: $A - B = A + (-B)$
 - And: $-B = \sim B + 1$
 - that means flip bits ("not")
 - So we just flip the bits and start with carry-in (CI) = 1
 - Later: No new circuits to subtract (re-use adder hardware!)

$$
\begin{array}{c}
1 \\
0110101 \\
1010010 \\
0101101
\end{array}
$$
What About Non-integer Numbers?

- There are infinitely many real numbers between two integers
- Many important numbers are real
 - Speed of light $\sim= 3 \times 10^8$
 - $\pi = 3.1415...$
- Fixed number of bits limits range of integers
 - Can’t represent some important numbers
- Humans use Scientific Notation
 - 1.3×10^4
Option 1: Fixed point

- Use normal integers, but \((X \times 2^K)\) instead of \(X\)
 - Example: 32 bit int, but use \(X \times 65536\)
 - \(3.1415926 \times 65536 = 205887\)
 - \(0.5 \times 65536 = 32768\), etc..

- Pros:
 - Addition/subtraction just like integers (“free”)

- Cons:
 - Mul/div require renormalizing (divide by 64K)
 - Range limited (no good rep for large + small)

- Can be good in specific situations
Can we do better?

- Think about scientific notation for a second:
 - For example:
 - 6.02×10^{23}
- Real number, but comprised of ints:
 - 6 generally only 1 digit here
 - 02 any number here
 - 10 always 10 (base we work in)
 - 23 can be positive or negative
- Can we do something like this in binary?
Option 2: Floating Point

- How about:
 $\pm X.YYYYYY \times 2^{\pm N}$

- Big numbers: large positive N
- Small numbers (<1): negative N
- Numbers near 0: small N

- This is "floating point" : most common way
IEEE single precision floating point

- Specific format called IEEE single precision:
 \[+/- \ 1.YYYYY \times 2^{(N-127)} \]
- “float” in Java, C, C++,...

- Assume first bit is always 1 (saves us a bit)
- 1 sign bit (+ = 0, 1 = -)
- 8 bit biased exponent (do N-127)
- Implicit 1 before binary point
- 23-bit mantissa (YYYYY)
Binary fractions

1. YYYY has a binary point
 - Like a decimal point but in binary
 - After a decimal point, you have
 - tenths
 - hundredths
 - thousandths
 - ...

So after a binary point you have...
- Halves
- Quarters
- Eighths
- ...
Floating point example

- Binary fraction example:
 \[101.101 = 4 + 1 + \frac{1}{2} + \frac{1}{8} = 5.625\]
- For floating point, needs normalization:
 \[1.01101 \times 2^2\]
- Sign is +, which = 0
- Exponent = 127 + 2 = 129 = 1000 0001
- Mantissa = 1.011 0100 0000 0000 0000 0000

\[
\begin{array}{cccccccccccccccccccc}
31 & 30 & 23 & 22 & & & & & & & & & & & & & & 0 \\
|01000 0001|011 0100 0000 0000 0000 0000 0000
\end{array}
\]
Floating Point Representation

Example:
What floating-point number is:
0xC1580000?
What floating-point number is \(0xC1580000 \)?

\[
\begin{array}{cccccc}
31 & 30 & 23 & 22 & 0 \\
\text{s} & \text{E} & \text{F} \\
1 & 1000 & 0010 & 101 & 1000 & 0000 & 0000 & 0000 & 0000
\end{array}
\]

Sign = 1 which is negative

Exponent = \((128+2)-127 = 3\)

Mantissa = 1.1011

\[-1.1011 \times 2^3 = -1101.1 = -13.5\]
Trick question

- How do you represent 0.0?
 - Why is this a trick question?
 - 0.0 = 000000000
 - But need 1.XXXXX representation?

- Exponent of 0 is denormalized
 - Implicit 0. instead of 1. in mantissa
 - Allows 0000....0000 to be 0
 - Helps with very small numbers near 0

- Results in +/- 0 in FP (but they are “equal”)
Other Weird FP numbers

- Exponent = 1111 1111 also not standard
 - All 0 mantissa: +/- \infty
 - 1/0 = +\infty
 - -1/0 = -\infty
 - Non zero mantissa: Not a Number (NaN)
 - \sqrt{-42} = NaN
Floating Point Representation

• Double Precision Floating point:

64-bit representation:
 • 1-bit sign
 • 11-bit (biased) exponent
 • 52-bit fraction (with implicit 1).

• “double” in Java, C, C++, ...

<table>
<thead>
<tr>
<th>S</th>
<th>Exp</th>
<th>Mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11-bit</td>
<td>52 - bit</td>
</tr>
</tbody>
</table>
What About Strings?

• Many important things stored as strings...
 - E.g., your name
• How should we store strings?
Standardized ASCII (0-127)

<table>
<thead>
<tr>
<th>Dec</th>
<th>Hx</th>
<th>Oct</th>
<th>HTML</th>
<th>Char</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>000</td>
<td>NUL</td>
<td>(null)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>001</td>
<td>SOH</td>
<td>(start of heading)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>002</td>
<td>STX</td>
<td>(start of text)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>003</td>
<td>ETX</td>
<td>(end of text)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>004</td>
<td>EOT</td>
<td>(end of transmission)</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>005</td>
<td>ENQ</td>
<td>(enquiry)</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>006</td>
<td>ACK</td>
<td>(acknowledge)</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>007</td>
<td>BEL</td>
<td>(bell)</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>010</td>
<td>BS</td>
<td>(backspace)</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>011</td>
<td>TAB</td>
<td>(horizontal tab)</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>012</td>
<td>LF</td>
<td>(NL line feed, new line)</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>013</td>
<td>VT</td>
<td>(vertical tab)</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>014</td>
<td>FF</td>
<td>(NP form feed, new page)</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>015</td>
<td>CR</td>
<td>(carriage return)</td>
</tr>
<tr>
<td>14</td>
<td>E</td>
<td>016</td>
<td>SO</td>
<td>(shift out)</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>017</td>
<td>SI</td>
<td>(shift in)</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>020</td>
<td>DLE</td>
<td>(data link escape)</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>021</td>
<td>DC1</td>
<td>(device control 1)</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>022</td>
<td>DC2</td>
<td>(device control 2)</td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>023</td>
<td>DC3</td>
<td>(device control 3)</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>024</td>
<td>DC4</td>
<td>(device control 4)</td>
</tr>
<tr>
<td>21</td>
<td>15</td>
<td>025</td>
<td>NAK</td>
<td>(negative acknowledge)</td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td>026</td>
<td>SYN</td>
<td>(synchronous idle)</td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td>027</td>
<td>ETB</td>
<td>(end of trans. block)</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>030</td>
<td>CAN</td>
<td>(cancel)</td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td>031</td>
<td>EM</td>
<td>(end of medium)</td>
</tr>
<tr>
<td>26</td>
<td>1A</td>
<td>032</td>
<td>SUB</td>
<td>(substitute)</td>
</tr>
<tr>
<td>27</td>
<td>1B</td>
<td>033</td>
<td>ESC</td>
<td>(escape)</td>
</tr>
<tr>
<td>28</td>
<td>1C</td>
<td>034</td>
<td>FS</td>
<td>(file separator)</td>
</tr>
<tr>
<td>29</td>
<td>1D</td>
<td>035</td>
<td>GS</td>
<td>(group separator)</td>
</tr>
<tr>
<td>30</td>
<td>1E</td>
<td>036</td>
<td>RS</td>
<td>(record separator)</td>
</tr>
<tr>
<td>31</td>
<td>1F</td>
<td>037</td>
<td>US</td>
<td>(unit separator)</td>
</tr>
</tbody>
</table>

Source: www.LookupTables.com
One Interpretation of 128-255

<table>
<thead>
<tr>
<th>Code</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>ç</td>
</tr>
<tr>
<td>129</td>
<td>ü</td>
</tr>
<tr>
<td>130</td>
<td>é</td>
</tr>
<tr>
<td>131</td>
<td>â</td>
</tr>
<tr>
<td>132</td>
<td>ä</td>
</tr>
<tr>
<td>133</td>
<td>à</td>
</tr>
<tr>
<td>134</td>
<td>å</td>
</tr>
<tr>
<td>135</td>
<td>ç</td>
</tr>
<tr>
<td>136</td>
<td>è</td>
</tr>
<tr>
<td>137</td>
<td>ë</td>
</tr>
<tr>
<td>138</td>
<td>ë</td>
</tr>
<tr>
<td>139</td>
<td>i</td>
</tr>
<tr>
<td>140</td>
<td>î</td>
</tr>
<tr>
<td>141</td>
<td>ï</td>
</tr>
<tr>
<td>142</td>
<td>Ä</td>
</tr>
<tr>
<td>143</td>
<td>Å</td>
</tr>
</tbody>
</table>

Source: www.LookupTables.com
(This allowed totally sweet ASCII art in the 90s)

Sources:
Outline

• Previously:
 • Computer is machine that does what we tell it to do

• Next:
 • How do we tell computers what to do?
 • How do we represent data objects in binary?
 • How do we represent data locations in binary?
Computer Memory

• Where do we put these numbers?
 • Registers [more on these later]
 • In the processor core
 • Compute directly on them
 • Few of them (~16 or 32 registers, each 32-bit or 64-bit)

• Memory [Our focus now]
 • External to processor core
 • Load/store values to/from registers
 • Very large (multiple GB)
Memory Organization

• Memory: billions of locations...how to get the right one?
 • Each memory location has an address
 • Processor asks to read or write specific address
 • Memory, please load address 0x123400
 • Memory, please write 0xFE into address 0x8765000
 • Kind of like a giant array
 • Array of what?
 • Bytes?
 • 32-bit ints?
 • 64-bit ints?
Memory Organization

• Most systems: byte (8-bit) addressed
 • Memory is “array of bytes”
 • Each address specifies 1 byte
 • Support to load/store 8, 16, 32, 64 bit quantities
 • Byte ordering varies from system to system

• Some systems “word addressed”
 • Memory is “array of words”
 • Smaller operations “faked” in processor
 • Not very common
Word of the Day: Endianess

Byte Order

• **Big Endian:** byte 0 is 8 most significant bits IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

• **Little Endian:** byte 0 is 8 least significant bits Intel 80x86, DEC Vax, DEC Alpha
Memory Layout

- Memory is array of bytes, but there are conventions as to what goes where in this array
 - **Text**: instructions (the program to execute)
 - **Data**: global variables
 - **Stack**: local variables and other per-function state; starts at top & grows down
 - **Heap**: dynamically allocated variables; grows up
- What if stack and heap overlap????
int anumber = 3;

int factorial (int x) {
 if (x == 0) {
 return 1;
 }
 else {
 return x * factorial (x - 1);
 }
}

int main (void) {
 int z = factorial (anumber);
 printf("%d\n", z);
 return 0;
}
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a = " + a + " b = " + b);
 }
}

• What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}
• What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a =" + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a =" + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data +
 " b = " + b.data);
 }
}

• What does this print? Why?
Let’s do some different Java...

public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

- What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
Let’s do some different Java...

```java
public class Ex2 {
    int data;
    public Ex2 (int d) { data = d; }
    public static void swap (Ex2 x, Ex2 y) {
        int temp = x.data;
        x.data = y.data;
        y.data = temp;
    }
    public static void main (String[] args) {
        Example a = new Example (42);
        Example b = new Example (100);
        swap (a, b);
        System.out.println("a = " + a.data + " b = " + b.data);
    }
}
```

- What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

- What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data +
 " b = " + b.data);
 }
}

• What does this print? Why?
References and Pointers (review)

- Java has references:
 - Any variable of object type is a reference
 - Point at objects (which are all in the heap)
 - Under the hood: is the memory address of the object
 - Cannot explicitly manipulate them (e.g., add 4)

- Some languages (C, C++, assembly) have explicit pointers:
 - Hold the memory address of something
 - Can explicitly compute on them
 - Can de-reference the pointer (*ptr) to get thing-pointed-to
 - Can take the address-of (&x) to get something’s address
 - Can do very unsafe things, shoot yourself in the foot
Points

• “address of” operator &
 • don’t confuse with bitwise AND operator (&&)

Given
  ```
  int x; int* p;  // p points to an int
  p = &x;
  ```

Then
  ```
  *p = 2;  and x = 2; produce the same result
  ```

Note: p is a pointer, *p is an int

• What happens for `p = 2`?

On 32-bit machine, p is 32-bits

x 0x26cf0

p 0x26d00

0x26c0f0
Back to Arrays

• Java:
  ```java
  int [] x = new int [nElems];
  ```

• C:
  ```c
  int data[42]; //if size is known constant
  int* data = (int*)malloc (nElem * sizeof(int));
  ```

 • `malloc` takes number of bytes
 • `sizeof` tells how many bytes something takes
Arrays, Pointers, and Address Calculation

- **x** is a pointer, what is **x+33**?
- A pointer, but where?
 - what does calculation depend on?
- Result of adding an int to a pointer depends on size of object pointed to
 - One reason why we tell compiler what type of pointer we have, even though all pointers are really the same thing (and same size)

```c
int* a = malloc(100*sizeof(int));

a[33] is the same as *(a+33)
if a is 0x00a0, then a+1 is 0x00a4, a+2 is 0x00a8 (decimal 160, 164, 168)
```

```c
double* d = malloc(200*sizeof(double));

*(d+33) is the same as d[33]
if d is 0x00b0, then d+1 is 0x00b8, d+2 is 0x00c0 (decimal 176, 184, 192)
```
More Pointer Arithmetic

- address one past the end of an array is ok for pointer comparison only

- what’s at *(begin+44)?

- what does begin++ mean?

- how are pointers compared using < and using ==?

- what is value of end - begin?

```c
char* a = new char[44];
char* begin = a;
char* end = a + 44;

while (begin < end)
{
    *begin = ‘z’;
    begin++;
}
```
int* a = new int[100];

a is a pointer
*a is an int
a[0] is an int (same as *a)
a[1] is an int
a+1 is a pointer
a+32 is a pointer
*(a+1) is an int (same as a[1])
*(a+99) is an int
*(a+100) is trouble
#include <stdio.h>

main()
{
 int* a = (int*)malloc (100 * sizeof(int));
 int* p = a;
 int k;

 for (k = 0; k < 100; k++)
 {
 *p = k;
 p++;
 }
 printf("entry 3 = %d\n", a[3])
}
Memory Manager (Heap Manager)

- `malloc()` and `free()`
- Library routines that handle memory management for heap (allocation / deallocation)
- Java has garbage collection (reclaim memory of unreferenced objects)
- C must use `free`, else memory leak

[Diagram showing memory segmentation: Stack, Available Memory, Allocated Memory, Text, Memory]
Strings as Arrays (review)

- A string is an array of characters with ‘\0’ at the end
- Each element is one byte, ASCII code
- ‘\0’ is null (ASCII code 0)
strlen() again

- `strlen()` returns the number of characters in a string
 - same as number elements in char array?

```c
int strlen(char * s)
// pre: '\0' terminated
// post: returns # chars
{
    int count=0;
    while (*s++)
        count++;
    return count;
}
```
Vector Class vs. Arrays

- **Vector Class**
 - insulates programmers
 - array bounds checking
 - automagically growing/shrinking when more items are added/deleted

- **How are Vectors implemented?**
 - Arrays, re-allocated as needed

- **Arrays can be more efficient**
Summary: From C to Binary

• Everything must be represented in binary!
• Computer memory is linear array of bytes
• Pointer is memory location that contains address of another memory location
• We’ll visit these topics again throughout semester