1) [10 points]
(a) Add the following base-10 numbers using 6-bit 2s complement math: -3, -4. Show your work!

To get -3 in binary, start with 3 and negate (flip all bits and add one):

```
000011
111100 < bits flipped
111101 < added one
^ this is -3
```

Same to get -4 in binary:

```
000100
111011 < bits flipped
111100 < added one
^ this is -4 in binary
```

Now we add:

```
1111 < carries
111101
+ 111100
-------
111001 < sum
```

Check our work -- let's convert the sum to decimal. First we negate it to make it positive:

```
111001
000110 < bits flipped
000111 < added one
^ this is the negation of our sum
```

111 in binary is 7 in decimal

This makes sense, as -3 + -4 = -7
2) Assume that $2 = 2000$ and $3 = 12$. Assume that memory holds the values at the addresses shown on the left. “lw” = load word, and “sw” = store word.

(a) If the computer executes sw $3, 4(2)$, then what is the value of 3 after this instruction?

$$
\begin{align*}
\text{address 2000} & \quad \text{address 2004} \\
\text{--52--} & \quad 12 \\
130 & \\
\end{align*}
$$

(the store doesn’t change the register, it changes the memory)

(b) If, after the instruction in part (a), the computer executes lw $3, 0(2)$, what is the value of 3 after this instruction?

$$130$$

(c) What single instruction could you use to write the value in 5 into address 2008?

$$\text{sw } 5, 8(2)$$

or as a joke answer: $$\text{sw } 5, 1878(3)$$

(d) What single instruction could you use to read the word of memory at address 1996 and put the result in 8?

$$\text{lw } 8, -4(2)$$
3) [10] The IEEE 754 floating point standard specifies that 32-bit floating point numbers have one sign bit, an 8-bit exponent (with a bias of 127), and a 23-bit significand (with an implicit “1”). Represent the number -11.75 in this format.

Sign bit: 1 (negative)
Fractional representation: -1 3/4
Binary representation: -1011.11
Binary representation, normalized: -1.01111 * 2^3
Mantissa with the first one removed: 01111
Exponent with bias added: 3+127 = 130
Biased exponent in binary: 1000010

1 1000010 0111100000000000000000000
4) [10] The following questions are based on the following code snippet.

(a) What is *(array+7)? Please give its datatype and its value.

 Same as array[7]
 Type: int
 Value: 49

(b) On a MIPS machine, how big (how many bytes) is the variable array?

 The variable array, like all pointers on a system with 32-bit words, is 32-bits long, which is 4 bytes long.

(c) On a MIPS machine, how big (how many bytes) is array[2]?

 It's the size of an integer, which on MIPS, is 32-bits, or 4 bytes.

(c) What is the datatype of fun?

 int**

 (A pointer to a pointer to an int. Size is still 4 bytes, since it's a pointer)

```c
int* array = (int*) malloc(42*sizeof(int));
int** fun = &array;
for (int i=0; i<42; i++) {
    array[i] = i*i;
}
free (array);
```
5) [25] Convert the following C code for the function foo() into MIPS code. Use appropriate MIPS conventions for procedure calls, including the passing of arguments and return values, as well as the saving/restoring of registers. Assume that there are 2 argument registers ($a0-$a1), 2 return value registers ($v0-$v1), 3 general-purpose callee-saved registers ($s0-$s2), and 3 general-purpose caller-saved registers ($t0-$t2). Assume $ra is callee-saved. The C code is obviously somewhat silly and unoptimized, but YOU MAY NOT OPTIMIZE IT -- you must simply translate it as is.

1: int foo (int num){
2: int temp = 0; // temp MUST be held in $t0
3: if (num < 0) {
4: temp = num + 2;
5: } else {
6: temp = num - 2;
7: }
8: int sumA = bar(temp); // sumA MUST be held in $s0
9: int sumB = sumA + temp + num; // sumB MUST be held in $s1
10: return (sumB + 2);
11:}
12: int bar (int arg){
<table>
<thead>
<tr>
<th>line(s) of C</th>
<th>instruction(s)</th>
<th>what code MUST do (if not obvious from C code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td># need 20 bytes for s0,s1,t0,t1,ra # why t1 even though its not needed in the problem? # because i need to backup a0 before the call addiu $sp,$sp,-20 sw $s0,0($sp) sw $s1,4($sp) sw $ra, 8($sp)</td>
<td>create stack frame large enough for callee-saved and callee-saved registers; save callee-saved registers (ONLY necessary ones)</td>
</tr>
<tr>
<td>2</td>
<td>li $t0, $t0, 0 # alternately, i could do "move $t0,$0"</td>
<td></td>
</tr>
<tr>
<td>3-7</td>
<td>bgez $a0, else # invert the compare to get to the else #then addi $t0, $a0, 2 j end_if # bypass the else else: addi $t0, $a0, -2 end_if:</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>move $t1,$a0 # backup num move $a0, $t0 sw $t0, 12($sp) sw $t1, 16($sp) jal bar</td>
<td>save caller-saved registers (ONLY necessary ones); call bar() with appropriate arguments</td>
</tr>
<tr>
<td>after line 8</td>
<td>lw $t0, 12($sp) lw $t1, 16($sp) mov $s0, $v0</td>
<td>restore caller-saved registers; get value returned from bar() and put it in appropriate place</td>
</tr>
<tr>
<td>9</td>
<td>add $s1, $s0, $t0 # sumA+temp add $s1, $s1, $t1 # += num</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>addi $v0, $s1, 2 lw $s0,0($sp) lw $s1,4($sp) lw $ra, 8($sp) addiu $sp, $sp, 20 jr $ra</td>
<td>pass return value back to whoever called foo(); restore callee-saved registers; destroy stack frame; return to caller</td>
</tr>
</tbody>
</table>
1) [10 points] Write the truth table for the output of the following boolean expression that has three inputs (a, b, c): output = abc + \bar{a}c + bc

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

2) [10 points] Convert the following truth table into a boolean expression in product-of-sums format. Note that there are three inputs (a,b,c) and one output. Do NOT simplify or optimize in any way.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(!a & !b & !c) | (!a & b & c) | (a & !b & c) | (a & b & !c) | (a & b & c)
Question 1 [20 points]: Consider the circuit below. Assuming the two flip flop start with a value of zero, what will the state of the flip flops be for the clock cycles shown? The initial state is done for you.

<table>
<thead>
<tr>
<th>Clock cycle</th>
<th>FF1</th>
<th>FF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Same exercise, but with a different starting condition:

<table>
<thead>
<tr>
<th>Clock cycle</th>
<th>FF1</th>
<th>FF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Question 2 [17 points]: Draw a finite state machine that will output a 1 if and only if a sequence of characters of the following form is received: exactly one ‘D’, zero or more ‘O’s, and exactly one ‘G’. (If you happen to know regular expression notation, this is the expression /DO*G/.) Examples of matching inputs include: “DG”, “DOG”, “DOOOG”. Your machine can be of the Mealy or Moore variety. It doesn’t matter what your machine does after it outputs 1.