ECE/CS 250
Computer Architecture
Summer 2018

From C to Binary

Tyler Bletsch
Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Andrew Hilton (Duke), Alvy Lebeck (Duke),
Benjamin Lee (Duke), Amir Roth (Penn)

Also contains material adapted from CSC230: C and Software Tools developed by
the NC State Computer Science Faculty
• Previously:
 • Computer is machine that does what we tell it to do

• Next:
 • How do we tell computers what to do?
 • How do we represent data objects in binary?
 • How do we represent data locations in binary?
Representing High Level Things in Binary

- Computers represent everything in binary
- Instructions are specified in binary
- Instructions must be able to describe
 - Operation types (add, subtract, shift, etc.)
 - Data objects (integers, decimals, characters, etc.)
 - Memory locations
- Example:
  ```c
  int x, y;               // Where are x and y? How to represent an int?
  bool decision;         // How do we represent a bool? Where is it?
  y = x + 7;             // How do we specify “add”? How to represent 7?
  decision=(y>18);      // Etc.
  ```
Representing Operation Types

• How do we tell computer to add? Shift? Read from memory? Etc.
• Arbitrarily! 😊
• Each Instruction Set Architecture (ISA) has its own binary encodings for each operation type
• E.g., in MIPS:
 • Integer add is: 00000 010000
 • Read from memory (load) is: 010011
 • Etc.
Representing Data Types

- Same as before: binary!
- Key Idea: the same 32 bits might mean one thing if interpreted as an integer but another thing if interpreted as a floating point number
Basic Data Types

Bit (bool): 0, 1

Bit String: sequence of bits of a particular length
 - 4 bits is a nibble
 - 8 bits is a byte
 - 16 bits is a half-word (for MIPS32)
 - 32 bits is a word (for MIPS32)
 - 64 bits is a double-word (for MIPS32)
 - 128 bits is a quad-word (for MIPS32)

Integers (int, long):
 “2’s Complement” (32-bit or 64-bit representation)

Floating Point (float, double):
 - Single Precision (32-bit representation)
 - Double Precision (64-bit representation)
 - Extended (Quad) Precision (128-bit representation)

Character (char):
 ASCII 7-bit code

What is a word?
The standard unit of manipulation for a particular system. E.g.:
- MIPS32: 32 bits
- Original Nintendo: 8 bit
- Super Nintendo: 16 bit
- Intel x86 (classic): 32 bit
- Nintendo 64: 64 bit
- Intel x86_64 (modern): 64 bit
Basic Binary

• Advice: memorize the following

 • $2^0 = 1$
 • $2^1 = 2$
 • $2^2 = 4$
 • $2^3 = 8$
 • $2^4 = 16$
 • $2^5 = 32$
 • $2^6 = 64$
 • $2^7 = 128$
 • $2^8 = 256$
 • $2^9 = 512$
 • $2^{10} = 1024$
Useful bit facts

- **If you have N bits, you can represent** 2^N **things.**

- **The binary metric system:**
 - $2^{10} = 1024$.
 - This is *basically* 1000, so we can have an alternative form of metric units based on base 2.
 - 2^{10} **bytes** = 1024 **bytes** = 1kB.
 - Sometimes written as 1kiB (pronounced “kibi byte” where the ‘bi’ means ‘binary’) (but nobody says “kibibyte” out loud because it sounds stupid)
 - 2^{20} **bytes** = 1MB, 2^{30} **bytes** = 1GB, 2^{40} **bytes** = 1TB, etc.
 - **Easy rule to convert between exponent and binary metric number:**
 $$2^{XY} \text{ bytes} = 2^Y <X_prefix>B$$

$$2^{13} \text{ bytes} = 2^3 \text{ kB} = 8 \text{ kB}$$
$$2^{39} \text{ bytes} = 2^9 \text{ GB} = 512 \text{ GB}$$
$$2^{05} \text{ bytes} = 2^5 \text{ B} = 32 \text{ B}$$
Decimal to binary using remainders

Here is a table showing the process of converting a decimal number to its binary equivalent using remainders:

<table>
<thead>
<tr>
<th>?</th>
<th>Quotient</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>457</td>
<td>228</td>
<td>1</td>
</tr>
<tr>
<td>228</td>
<td>114</td>
<td>0</td>
</tr>
<tr>
<td>114</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The binary representation of 457 is `111001001`.

The process involves dividing the number by 2, recording the remainder, and repeating the process with the quotient until the quotient becomes 0. The binary number is constructed by reading the remainders from the last division to the first.
Decimal to binary using comparison

<table>
<thead>
<tr>
<th>Num</th>
<th>Compare 2^n</th>
<th>$\geq ?$</th>
</tr>
</thead>
<tbody>
<tr>
<td>457</td>
<td>256</td>
<td>1</td>
</tr>
<tr>
<td>201</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

111001001
Hexadecimal

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
<td>13</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
<td>15</td>
</tr>
</tbody>
</table>

Indicates a hex number

0xDEADBEEF

0x02468ACE

0x13579BDF
Binary to/from hexadecimal

- 0101101100100011₂ -->
- 0101 1011 0010 0011₂ -->
- 5 B 2 3₁₆

1 F 4 B₁₆ -->

0001 1111 0100 1011₂ -->

0001111101001011₂
BitOps: Unary

- Bit-wise complement (~)
 - Flips every bit.

\[
\begin{align*}
\sim 0x0d & \quad // \text{ (binary } 00001101) \\
== 0xf2 & \quad // \text{ (binary } 11110010) \\
\end{align*}
\]

Not the same as Logical NOT (!) or sign change (−)

```
char i, j1, j2, j3;
i = 0x0d;    // binary 00001101
j1 = ~i;     // binary 11110010
j2 = -i;     // binary 11110011
j3 = !i;     // binary 00000000
```
BitOps: Two Operands

- Operate **bit-by-bit** on operands to produce a result operand of the same length
- And (&): result 1 if both inputs 1, 0 otherwise
- Or (|): result 1 if either input 1, 0 otherwise
- Xor (^): result 1 if one input 1, but not both, 0 otherwise
- Operands **must** be of type integer
Two Operands... (cont’d)

• Examples

0011 1000
& 1101 1110

0001 1000

0011 1000
1101 1110
1111 1110

0011 1000
^ 1101 1110

1110 0110
Shift Operations

- $x << y$ is left (logical) shift of x by y positions
 - x and y must both be integers
 - x should be unsigned or positive
 - y leftmost bits of x are discarded
 - zero fill y bits on the right

$$01111001 << 3$$

these 3 bits are discarded

11001000

these 3 bits are zero filled
• \(x \gg y \) is right (logical) shift of \(x \) by \(y \) positions
 • \(y \) rightmost bits of \(x \) are discarded
 • zero fill \(y \) bits on the left

\[
\begin{array}{c}
01111001 \\
\hline
00001111
\end{array}
\]

these 3 bits are discarded

these 3 bits are zero filled
Bitwise Recipes

- **Set a certain bit to 1?**
 - Make a MASK with a *one* at every position you want to *set*:
 \[m = 0x02; \quad // \quad 00000010_2 \]
 - OR the mask with the input:
 \[v = 0x41; \quad // \quad 01000001_2 \]
 \[v |= m; \quad // \quad 01000011_2 \]

- **Clear a certain bit to 0?**
 - Make a MASK with a *zero* at every position you want to *clear*:
 \[m = 0xFD; \quad // \quad 11111101_2 \] (could also write \(^{\sim}0x02\))
 - AND the mask with the input:
 \[v = 0x27; \quad // \quad 00100111_2 \]
 \[v &= m; \quad // \quad 00100101_2 \]

- **Get a substring of bits (such as bits 2 through 5)?**
 Note: bits are numbered right-to-left starting with zero.
 - Shift the bits you want all the way to the right then AND them with an appropriate mask:
 \[v = 0x67; \quad // \quad 01100111_2 \]
 \[v >>= 2; \quad // \quad 00011001_2 \]
 \[v &= 0x0F; \quad // \quad 00001001_2 \]
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ \ 00101011 \\
\hline
00101011
\end{array}
\]

• How do we do this?
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00101011
\end{array}
\quad \begin{array}{c}
695 \\
+ 232 \\
\hline
927
\end{array}
\]

• How do we do this?
 • Let’s revisit decimal addition
 • Think about the process as we do it
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00100110
\end{array}
\]

695 + 232 = 7

• First add one’s digit 5+2 = 7
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
1 \\
00011101 \\
+ 00101011 \\
\hline
00101011
\end{array}
\]

\[
\begin{array}{c}
695 \\
+ 232 \\
\hline
27
\end{array}
\]

• First add one’s digit 5+2 = 7
• Next add ten’s digit 9+3 = 12 (2 carry a 1)
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00100100
\end{array}
\]

\[
\begin{array}{c}
695 \\
+ 232 \\
\hline
927
\end{array}
\]

• First add one’s digit 5+2 = 7
• Next add ten’s digit 9+3 = 12 (2 carry a 1)
• Last add hundred’s digit 1+6+2 = 9
• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00100110
\end{array}
\]

• Back to the binary:
• First add 1’s digit 1+1 = ...?
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{cccc}
& 1 \\
0 & 0 & 0 & 1 \\
+ & 0 & 0 & 1 \\
\hline
0 & 1 & 1 & 1 \\
\end{array}
\]

• Back to the binary:

• First add 1’s digit 1+1 = 2 (0 carry a 1)
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
11 \\
00011101 \\
+ 00101011 \\
\hline
00
\end{array}
\]

• Back to the binary:

• First add 1’s digit 1+1 = 2 (0 carry a 1)
• Then 2’s digit: 1+0+1 =2 (0 carry a 1)
• You all finish it out....
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{align*}
111111 \\
00011101 & = 29 \\
+ 00101011 & = 43 \\
01001000 & = 72
\end{align*}
\]

• Can check our work in decimal
Issues for Binary Representation of Numbers

- **How to represent negative numbers?**

- There are many ways to represent numbers in binary
 - Binary representations are encodings → many encodings possible
 - What are the issues that we must address?

- **Issue #1: Complexity of arithmetic operations**

- **Issue #2: Negative numbers**

- **Issue #3: Maximum representable number**

- Choose representation that makes these issues easy for machine, even if it’s not easy for humans (i.e., ECE/CS 250 students)
 - Why? Machine has to do all the work!
Sign Magnitude

- Use leftmost bit for + (0) or – (1):
- 6-bit example (1 sign bit + 5 magnitude bits):
 - +17 = 010001
 - -17 = 110001
- Pros:
 - Conceptually simple
 - Easy to convert
- Cons:
 - Harder to compute (add, subtract, etc) with
 - Positive and negative 0: 000000 and 100000

NOBODY DOES THIS
1’s Complement Representation for Integers

- Use largest positive binary numbers to represent negative numbers:
 - To negate a number, invert (“not”) each bit:
 - $0 \rightarrow 1$
 - $1 \rightarrow 0$

- Cons:
 - Still two 0s (yuck)
 - Still hard to compute with

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-7</td>
</tr>
<tr>
<td>1001</td>
<td>-6</td>
</tr>
<tr>
<td>1010</td>
<td>-5</td>
</tr>
<tr>
<td>1011</td>
<td>-4</td>
</tr>
<tr>
<td>1100</td>
<td>-3</td>
</tr>
<tr>
<td>1101</td>
<td>-2</td>
</tr>
<tr>
<td>1110</td>
<td>-1</td>
</tr>
<tr>
<td>1111</td>
<td>-0</td>
</tr>
</tbody>
</table>

N O B O D Y D O E S T H I S E I T H E R
2’s Complement Integers

- Use large positives to represent negatives
- \((-x) = 2^n - x\)
- This is 1’s complement + 1
- \((-x) = 2^n - 1 - x + 1\)
- So, just invert bits and add 1

6-bit examples:

010110_2 = 22_{10}; 101010_2 = -22_{10}

1_{10} = 000001_2; -1_{10} = 111111_2

0_{10} = 000000_2; -0_{10} = 000000_2 \rightarrow \text{good!}

EVERYBODY DOES THIS
Pros and Cons of 2’s Complement

• Advantages:
 • Only one representation for 0 (unlike 1’s comp): $0 = 000000$
 • Addition algorithm is much easier than with sign and magnitude
 • Independent of sign bits

• Disadvantage:
 • One more negative number than positive
 • Example: 6-bit 2’s complement number
 $100000_2 = -32_{10}$; but 32_{10} could not be represented

All modern computers use 2’s complement for integers
Most computers today support 32-bit (int) or 64-bit integers

- Specify 64-bit using gcc C compiler with long long
- To extend precision, use sign bit extension
 - Integer precision is number of bits used to represent a number

Examples

\[14_{10} = 001110_2 \] in 6-bit representation.

\[14_{10} = 000000001110_2 \] in 12-bit representation

\[-14_{10} = 110010_2 \] in 6-bit representation

\[-14_{10} = 111111110010_2 \] in 12-bit representation.
Binary Math : Addition

• Let’s look at another binary addition:

01011101
+ 01101011

01100110
Binary Math : Addition

- What about this one:

 \[
 \begin{array}{c}
 \text{1111111} \\
 \text{01011101} = 93 \\
 + \text{01101011} = 107 \\
 \hline
 \text{11001000} = -56
 \end{array}
 \]

- But... that can’t be right?
 - What do you expect for the answer?
 - What is it in 8-bit signed 2’s complement?
Integer Overflow

• Answer should be 200
 • Not representable in 8-bit signed representation
 • No right answer

• This is called integer Overflow

• Real problem in programs
Subtraction

• 2’s complement makes subtraction easy:
 • Remember: \(A - B = A + (-B) \)
 • And: \(-B = \overline{B} + 1 \)
 \(\uparrow \) that means flip bits ("not")
 • So we just flip the bits and start with carry-in (CI) = 1
 • Later: No new circuits to subtract (re-use adder hardware!)

\[
\begin{array}{c}
0110101 \\
\downarrow \\
1010010 \\
\hline
10101101
\end{array}
\]

\[
\begin{array}{c}
0110101 \\
\downarrow \\
0101101
\end{array}
\]

\[
\begin{array}{c}
0110101 \\
\downarrow \\
01011101
\end{array}
\]
What About Non-integer Numbers?

• There are infinitely many real numbers between two integers
• Many important numbers are real
 • Speed of light \(\sim = 3 \times 10^8 \)
 • \(\pi = 3.1415... \)
• Fixed number of bits limits range of integers
 • Can’t represent some important numbers
• Humans use Scientific Notation
 • \(1.3 \times 10^4 \)
Option 1: Fixed point

• Use normal integers, but \((X \times 2^K)\) instead of \(X\)
 • Example: 32 bit int, but use \(X \times 65536\)
 • \(3.1415926 \times 65536 = 205887\)
 • \(0.5 \times 65536 = 32768\), etc..

• Pros:
 • Addition/subtraction just like integers (“free”)

• Cons:
 • Mul/div require renormalizing (divide by 64K)
 • Range limited (no good rep for large + small)

• Can be good in specific situations
Can we do better?

• Think about scientific notation for a second:
 • For example:
 \[6.02 \times 10^{23} \]
 • Real number, but comprised of ints:
 • 6 generally only 1 digit here
 • 02 any number here
 • 10 always 10 (base we work in)
 • 23 can be positive or negative
 • Can we do something like this in binary?
Option 2: Floating Point

- How about:
 \[+/- \ X.\text{YYYYYY} \times 2^{\pm N} \]

- Big numbers: large positive N
- Small numbers (<1): negative N
- Numbers near 0: small N

- This is “floating point”: most common way
IEEE single precision floating point

- Specific format called IEEE single precision:
 \(+/- \ 1.YYYY \times 2^{(N-127)}\)
- “float” in Java, C, C++, ...

- Assume first bit is always 1 (saves us a bit)
- 1 sign bit (+ = 0, 1 = -)
- 8 bit biased exponent (do N-127)
- Implicit 1 before *binary point*
- 23-bit *mantissa* (YYYYY)
Binary fractions

1. YYYY has a binary point
 - Like a decimal point but in binary
 - After a decimal point, you have
 - tenths
 - hundredths
 - thousandths
 - ...

So after a binary point you have...
 - Halves
 - Quarters
 - Eighths
 - ...

Floating point example

- Binary fraction example:
 \[101.101 = 4 + 1 + \frac{1}{2} + \frac{1}{8} = 5.625 \]
- For floating point, needs normalization:
 \[1.01101 \times 2^2 \]
- Sign is +, which = 0
- Exponent = 127 + 2 = 129 = 1000 0001
- Mantissa = 1.011 0100 0000 0000 0000 0000
Example:
What floating-point number is:
0xC1580000?
What floating-point number is 0xC1580000?

1100 0001 0101 1000 0000 0000 0000 0000

```
<table>
<thead>
<tr>
<th>31</th>
<th>30</th>
<th>23</th>
<th>22</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>E</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Sign = 1 which is negative
Exponent = (128+2)-127 = 3
Mantissa = 1.1011

\[-1.1011 \times 2^3 = -1101.1 = -13.5\]
Trick question

• How do you represent 0.0?
 • Why is this a trick question?
 • 0.0 = 000000000
 • But need 1.XXXX representation?

• Exponent of 0 is denormalized
 • Implicit 0. instead of 1. in mantissa
 • Allows 0000....0000 to be 0
 • Helps with very small numbers near 0

• Results in +/- 0 in FP (but they are “equal”)

Other Weird FP numbers

- Exponent = 1111 1111 also not standard
 - All 0 mantissa: +/- ∞
 - 1/0 = +∞
 - -1/0 = -∞
 - Non zero mantissa: Not a Number (NaN)
 sqrt(-42) = NaN
Floating Point Representation

• Double Precision Floating point:

64-bit representation:
 • 1-bit sign
 • 11-bit (biased) exponent
 • 52-bit fraction (with implicit 1).

• “double” in Java, C, C++, ...

<table>
<thead>
<tr>
<th>S</th>
<th>Exp</th>
<th>Mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11-bit</td>
<td>52-bit</td>
</tr>
</tbody>
</table>
What About Strings?

• Many important things stored as strings...
 • E.g., your name
• How should we store strings?
<table>
<thead>
<tr>
<th>Dec</th>
<th>Hx</th>
<th>Oct</th>
<th>Html</th>
<th>Chr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>000</td>
<td>NUL</td>
<td>(null)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>001</td>
<td>SOH</td>
<td>(start of heading)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>002</td>
<td>STX</td>
<td>(start of text)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>003</td>
<td>ETX</td>
<td>(end of text)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>004</td>
<td>EOT</td>
<td>(end of transmission)</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>005</td>
<td>ENQ</td>
<td>(enquiry)</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>006</td>
<td>ACK</td>
<td>(acknowledge)</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>007</td>
<td>BEL</td>
<td>(bell)</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>010</td>
<td>BS</td>
<td>(backspace)</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>011</td>
<td>TAB</td>
<td>(horizontal tab)</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>012</td>
<td>LF</td>
<td>(NL line feed, new line)</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>013</td>
<td>VT</td>
<td>(vertical tab)</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>014</td>
<td>FF</td>
<td>(NP form feed, new page)</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>015</td>
<td>CR</td>
<td>(carriage return)</td>
</tr>
<tr>
<td>14</td>
<td>E</td>
<td>016</td>
<td>SO</td>
<td>(shift out)</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>017</td>
<td>SI</td>
<td>(shift in)</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>020</td>
<td>DLE</td>
<td>(data link escape)</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>021</td>
<td>DC1</td>
<td>(device control 1)</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>022</td>
<td>DC2</td>
<td>(device control 2)</td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>023</td>
<td>DC3</td>
<td>(device control 3)</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>024</td>
<td>DC4</td>
<td>(device control 4)</td>
</tr>
<tr>
<td>21</td>
<td>15</td>
<td>025</td>
<td>NAK</td>
<td>(negative acknowledge)</td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td>026</td>
<td>SYN</td>
<td>(synchronous idle)</td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td>027</td>
<td>ETB</td>
<td>(end of trans. block)</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>030</td>
<td>CAN</td>
<td>(cancel)</td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td>031</td>
<td>EM</td>
<td>(end of medium)</td>
</tr>
<tr>
<td>26</td>
<td>1A</td>
<td>032</td>
<td>SUB</td>
<td>(substitute)</td>
</tr>
<tr>
<td>27</td>
<td>1B</td>
<td>033</td>
<td>ESC</td>
<td>(escape)</td>
</tr>
<tr>
<td>28</td>
<td>1C</td>
<td>034</td>
<td>FS</td>
<td>(file separator)</td>
</tr>
<tr>
<td>29</td>
<td>1D</td>
<td>035</td>
<td>GS</td>
<td>(group separator)</td>
</tr>
<tr>
<td>30</td>
<td>1E</td>
<td>036</td>
<td>RS</td>
<td>(record separator)</td>
</tr>
<tr>
<td>31</td>
<td>1F</td>
<td>037</td>
<td>US</td>
<td>(unit separator)</td>
</tr>
</tbody>
</table>

Source: www.LookupTables.com
One Interpretation of 128-255

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>Ç</td>
<td>144</td>
<td>É</td>
<td>161</td>
<td>i</td>
<td>177</td>
<td></td>
<td>193</td>
<td>↓</td>
<td>209</td>
<td>=</td>
<td>225</td>
<td>b</td>
<td>241</td>
<td>±</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>ü</td>
<td>145</td>
<td>æ</td>
<td>162</td>
<td>ó</td>
<td>178</td>
<td></td>
<td>194</td>
<td>↑</td>
<td>210</td>
<td>π</td>
<td>226</td>
<td>Γ</td>
<td>242</td>
<td>></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>é</td>
<td>146</td>
<td>À</td>
<td>163</td>
<td>Ú</td>
<td>179</td>
<td></td>
<td>195</td>
<td>↓</td>
<td>211</td>
<td>π</td>
<td>227</td>
<td>π</td>
<td>243</td>
<td><</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>à</td>
<td>147</td>
<td>ò</td>
<td>164</td>
<td>ñ</td>
<td>180</td>
<td></td>
<td>196</td>
<td>←</td>
<td>212</td>
<td>↓</td>
<td>228</td>
<td>Σ</td>
<td>244</td>
<td><</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>ä</td>
<td>148</td>
<td>ö</td>
<td>165</td>
<td>Ñ</td>
<td>181</td>
<td></td>
<td>197</td>
<td>↑</td>
<td>213</td>
<td>F</td>
<td>229</td>
<td>σ</td>
<td>245</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>à</td>
<td>149</td>
<td>ò</td>
<td>166</td>
<td></td>
<td>182</td>
<td></td>
<td>198</td>
<td>↓</td>
<td>214</td>
<td>Γ</td>
<td>230</td>
<td>μ</td>
<td>246</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>å</td>
<td>150</td>
<td>ü</td>
<td>167</td>
<td>°</td>
<td>183</td>
<td></td>
<td>199</td>
<td>↓</td>
<td>215</td>
<td>Γ</td>
<td>231</td>
<td>τ</td>
<td>247</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>ç</td>
<td>151</td>
<td>ù</td>
<td>168</td>
<td>Ñ</td>
<td>184</td>
<td></td>
<td>200</td>
<td>↓</td>
<td>216</td>
<td>F</td>
<td>232</td>
<td>Φ</td>
<td>248</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>è</td>
<td>153</td>
<td>Ö</td>
<td>170</td>
<td>–</td>
<td>186</td>
<td></td>
<td>202</td>
<td>↓</td>
<td>218</td>
<td>Γ</td>
<td>234</td>
<td>∞</td>
<td>250</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>è</td>
<td>154</td>
<td>Ü</td>
<td>171</td>
<td>!</td>
<td>187</td>
<td></td>
<td>203</td>
<td>↓</td>
<td>219</td>
<td>π</td>
<td>235</td>
<td>δ</td>
<td>251</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>i</td>
<td>156</td>
<td>£</td>
<td>172</td>
<td>!</td>
<td>188</td>
<td></td>
<td>204</td>
<td>↓</td>
<td>220</td>
<td>π</td>
<td>236</td>
<td>∞</td>
<td>252</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>ï</td>
<td>157</td>
<td>¥</td>
<td>173</td>
<td>i</td>
<td>189</td>
<td></td>
<td>205</td>
<td>=</td>
<td>221</td>
<td>π</td>
<td>237</td>
<td>φ</td>
<td>253</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>ï</td>
<td>158</td>
<td>–</td>
<td>174</td>
<td>«</td>
<td>190</td>
<td>↓</td>
<td>206</td>
<td>#</td>
<td>222</td>
<td>π</td>
<td>238</td>
<td>ε</td>
<td>254</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>À</td>
<td>159</td>
<td>f</td>
<td>175</td>
<td>»</td>
<td>191</td>
<td>↓</td>
<td>207</td>
<td>↓</td>
<td>223</td>
<td>π</td>
<td>239</td>
<td><</td>
<td>255</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Å</td>
<td>160</td>
<td>á</td>
<td>176</td>
<td></td>
<td>192</td>
<td></td>
<td>208</td>
<td>↓</td>
<td>224</td>
<td>α</td>
<td>240</td>
<td>=</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(This allowed totally sweet ASCII art in the 90s)

Sources:
Outline

• Previously:
 • Computer is machine that does what we tell it to do

• Next:
 • How do we tell computers what to do?
 • How do we represent data objects in binary?
 • How do we represent data locations in binary?
Computer Memory

- Where do we put these numbers?
 - Registers [more on these later]
 - In the processor core
 - Compute directly on them
 - Few of them (~16 or 32 registers, each 32-bit or 64-bit)

- Memory [Our focus now]
 - External to processor core
 - Load/store values to/from registers
 - Very large (multiple GB)
Memory Organization

- Memory: billions of locations...how to get the right one?
 - Each memory location has an address
 - Processor asks to read or write specific address
 - Memory, please load address 0x123400
 - Memory, please write 0xFE into address 0x8765000
 - Kind of like a giant array
 - Array of what?
 - Bytes?
 - 32-bit ints?
 - 64-bit ints?
Memory Organization

- Most systems: byte (8-bit) addressed
 - Memory is “array of bytes”
 - Each address specifies 1 byte
 - Support to load/store 8, 16, 32, 64 bit quantities
 - Byte ordering varies from system to system

- Some systems “word addressed”
 - Memory is “array of words”
 - Smaller operations “faked” in processor
 - Not very common
Word of the Day: Endianess

Byte Order

- **Big Endian**: byte 0 is 8 *most* significant bits IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA
- **Little Endian**: byte 0 is 8 *least* significant bits Intel 80x86, DEC Vax, DEC Alpha
Memory Layout

- Memory is array of bytes, but there are conventions as to what goes where in this array
 - Text: instructions (the program to execute)
 - Data: global variables
 - Stack: local variables and other per-function state; starts at top & grows down
 - Heap: dynamically allocated variables; grows up
- What if stack and heap overlap????

Typical Address Space

- Stack
- Heap
- Data
- Text
- Reserved
int anumber = 3;

int factorial (int x) {
 if (x == 0) {
 return 1;
 } else {
 return x * factorial (x - 1);
 }
}

int main (void) {
 int z = factorial (anumber);
 printf("%d\n", z);
 return 0;
}

Summary: From C to Binary

- Everything must be represented in binary!
- Pointer is memory location that contains address of another memory location
- Computer memory is linear array of bytes
 - **Integers:**
 - unsigned \(\{0..2^n-1\} \) vs signed \(\{-2^{n-1} .. 2^{n-1}-1\} \) (“2’s complement”)
 - char (8-bit), short (16-bit), int/long (32-bit), long long (64-bit)
 - **Floats:** IEEE representation,
 - float (32-bit: 1 sign, 8 exponent, 23 mantissa)
 - double (64-bit: 1 sign, 11 exponent, 52 mantissa)
 - **Strings:** char array, ASCII representation
- Memory layout
 - **Stack** for local, **static** for globals, **heap** for malloc’d stuff (must free!)
The following slides re-state a lot of what we’ve covered but in a different way. We’ll likely skip it for time, but you can use the slides as an additional reference.
Let’s do a little Java…

```java
public class Example {
    public static void swap (int x, int y) {
        int temp = x;
        x = y;
        y = temp;
    }
    public static void main (String[] args) {
        int a = 42;
        int b = 100;
        swap (a, b);
        System.out.println("a =" + a + " b = " + b);
    }
}
```

• What does this print? Why?
Let’s do a little Java...

public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
Let’s do a little Java…

```java
public class Example {
    public static void swap (int x, int y) {
        int temp = x;
        x = y;
        y = temp;
    }

    public static void main (String[] args) {
        int a = 42;
        int b = 100;
        swap (a, b);
        System.out.println("a =\" + a + " b = \" + b);
    }
}
```

- What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a = " + a + " b = " + b);
 }
}

• What does this print? Why?
Let’s do a little Java…

```java
public class Example {
    public static void swap (int x, int y) {
        int temp = x;
        x = y;
        y = temp;
    }
    public static void main (String[] args) {
        int a = 42;
        int b = 100;
        swap (a, b);
        System.out.println("a =" + a + " b = " + b);
    }
}
```

• What does this print? Why?
Let’s do a little Java…

public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a = " + a + " b = " + b);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a =" + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }

 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a =" + a.data +
 " b = " + b.data);
 }
}

- What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
Let’s do some different Java…

```java
class Ex2 {
    int data;
    public Ex2 (int d) { data = d; }
    public static void swap (Ex2 x, Ex2 y) {
        int temp = x.data;
        x.data = y.data;
        y.data = temp;
    }
    public static void main (String[] args) {
        Example a = new Example (42);
        Example b = new Example (100);
        swap (a, b);
        System.out.println("a =" + a.data + " b = " + b.data);
    }
}
```

- What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println(“a = “ + a.data + “ b = “ + b.data);
 }
}

- What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
Let’s do some different Java...

c0

public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

- What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a =" + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
References and Pointers (review)

- Java has **references**:
 - Any variable of object type is a reference
 - Point at objects (which are all in the heap)
 - Under the hood: is the memory address of the object
 - Cannot explicitly manipulate them (*e.g.*, add 4)

- Some languages (C, C++, assembly) have explicit **pointers**:
 - Hold the memory address of something
 - Can explicitly compute on them
 - Can de-reference the pointer (*ptr) to get thing-pointed-to
 - Can take the **address-of** (&x) to get something’s address
 - Can do very **unsafe** things, shoot yourself in the foot
Pointers

• “address of” operator &
 • don’t confuse with bitwise AND operator (&&)

Given

```c
int x; int* p;  // p points to an int
p = &x;
```

Then

```c
*p = 2;  and x = 2; produce the same result
```

Note: p is a pointer, *p is an int

• What happens for p = 2?;

On 32-bit machine, p is 32-bits

```
x 0x26cf0
```

```
p 0x26d00 0x26cbf0
```
Back to Arrays

• Java:
  ```java
  int [] x = new int [nElems];
  ```

• C:
  ```c
  int data[42]; //if size is known constant
  int* data = (int*)malloc (nElem * sizeof(int));
  ```

 • malloc takes number of bytes
 • sizeof tells how many bytes something takes
Arrays, Pointers, and Address Calculation

• x is a pointer, what is x+33?

• A pointer, but where?
 • what does calculation depend on?

• Result of adding an int to a pointer depends on size of object pointed to
 • One reason why we tell compiler what type of pointer we have, even though all pointers are really the same thing (and same size)

```c
int* a = malloc(100*sizeof(int));

a[33] is the same as *(a+33)
if a is 0x00a0, then a+1 is 0x00a4, a+2 is 0x00a8
(decimal 160, 164, 168)
```

```c
double* d = malloc(200*sizeof(double));

*(d+33) is the same as d[33]
if d is 0x00b0, then d+1 is 0x00b8, d+2 is 0x00c0
(decimal 176, 184, 192)
```
More Pointer Arithmetic

- address one past the end of an array is ok for pointer comparison only

- what’s at *(begin+44)?

- what does begin++ mean?

- how are pointers compared using < and using ==?

- what is value of end - begin?
More Pointers & Arrays

```cpp
int* a = new int[100];
```

- `a` is a pointer
- `*a` is an int
- `a[0]` is an int (same as `*a`)
- `a[1]` is an int
- `a+1` is a pointer
- `a+32` is a pointer
- `*(a+1)` is an int (same as `a[1]`)
- `*(a+99)` is an int
- `*(a+100)` is trouble
```c
#include <stdio.h>

main()
{
    int* a = (int*)malloc (100 * sizeof(int));
    int* p = a;
    int k;

    for (k = 0; k < 100; k++)
    {
        *p = k;
        p++;
    }
    printf("entry 3 = %d\n", a[3])
}
```
Memory Manager (Heap Manager)

- `malloc()` and `free()`
- Library routines that handle memory management for heap (allocation / deallocation)
- Java has garbage collection (reclaim memory of unreferenced objects)
- C must use `free`, else memory leak
Strings as Arrays (review)

- A string is an array of characters with ‘\0’ at the end
- Each element is one byte, ASCII code
- ‘\0’ is null (ASCII code 0)
• `strlen()` returns the number of characters in a string
 • same as number elements in char array?

```c
int strlen(char * s)
// pre: ‘\0’ terminated
// post: returns # chars
{
    int count=0;
    while (*s++)
        count++;
    return count;
}
```
Vector Class vs. Arrays

- **Vector Class**
 - insulates programmers
 - array bounds checking
 - automagically growing/shrinking when more items are added/deleted

- **How are Vectors implemented?**
 - Arrays, re-allocated as needed

- **Arrays can be more efficient**