Outline

• Previously:
 • Computer is machine that does what we tell it to do

• Next:
 • How do we tell computers what to do?
 • How do we represent data objects in binary?
 • How do we represent data locations in binary?
Representing High Level Things in Binary

- Computers represent everything in binary
- Instructions are specified in binary
- Instructions must be able to describe
 - Operation types (add, subtract, shift, etc.)
 - Data objects (integers, decimals, characters, etc.)
 - Memory locations
- Example:
  ```
  int x, y; // Where are x and y? How to represent an int?
  bool decision; // How do we represent a bool? Where is it?
  y = x + 7; // How do we specify “add”? How to represent 7?
  decision=(y>18); // Etc.
  ```
Representing Operation Types

- Arbitrarily! 😊
- Each Instruction Set Architecture (ISA) has its own binary encodings for each operation type
- E.g., in MIPS:
 - Integer add is: 00000 010000
 - Read from memory (load) is: 010011
 - Etc.
Representing Data Types

• Same as before: binary!

• Key Idea: the same 32 bits might mean one thing if interpreted as an integer but another thing if interpreted as a floating point number
Basic Data Types

Bit (bool): 0, 1

Bit String: sequence of bits of a particular length
- 4 bits is a nibble
- 8 bits is a byte
- 16 bits is a half-word (for MIPS32)
- 32 bits is a word (for MIPS32)
- 64 bits is a double-word (for MIPS32)
- 128 bits is a quad-word (for MIPS32)

Integers (char, short, int, long):
“2’s Complement” (32-bit or 64-bit representation)

Floating Point (float, double):
- Single Precision (32-bit representation)
- Double Precision (64-bit representation)
- Extended (Quad) Precision (128-bit representation)

Character (char):
ASCII 7-bit code
Basic Binary

- Advice: memorize the following
 - $2^0 = 1$
 - $2^1 = 2$
 - $2^2 = 4$
 - $2^3 = 8$
 - $2^4 = 16$
 - $2^5 = 32$
 - $2^6 = 64$
 - $2^7 = 128$
 - $2^8 = 256$
 - $2^9 = 512$
 - $2^{10} = 1024$
Useful bit facts

• If you have N bits, you can represent 2^N things.

• The binary metric system:
 • $2^{10} = 1024$.
 • This is *basically* 1000, so we can have an alternative form of metric units based on base 2.
 • 2^{10} bytes = 1024 bytes = 1kB.
 • Sometimes written as 1kiB (pronounced “kibibyte” where the ‘bi’ means ‘binary’) (but nobody says “kibibyte” out loud because it sounds stupid)
 • 2^{20} bytes = 1MB, 2^{30} bytes = 1GB, 2^{40} bytes = 1TB, etc.
 • Easy rule to convert between exponent and binary metric number:
 $$2^{XY \text{ bytes}} = 2^Y <X\text{_prefix}>B$$

2^{13} bytes = 2^3 kB = 8 kB
2^{39} bytes = 2^9 GB = 512 GB
2^{05} bytes = 2^5 B = 32 B
Decimal to binary using remainders

<table>
<thead>
<tr>
<th>?</th>
<th>Quotient</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>457 ÷ 2 =</td>
<td>228</td>
<td>1</td>
</tr>
<tr>
<td>228 ÷ 2 =</td>
<td>114</td>
<td>0</td>
</tr>
<tr>
<td>114 ÷ 2 =</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>57 ÷ 2 =</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>28 ÷ 2 =</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>14 ÷ 2 =</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>7 ÷ 2 =</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3 ÷ 2 =</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1 ÷ 2 =</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

111001001
Decimal to binary using comparison

<table>
<thead>
<tr>
<th>Num</th>
<th>Compare 2^n</th>
<th>$\geq ?$</th>
</tr>
</thead>
<tbody>
<tr>
<td>457</td>
<td>256</td>
<td>1</td>
</tr>
<tr>
<td>201</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

111001001
<table>
<thead>
<tr>
<th>Hex digit</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
<td>13</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
<td>15</td>
</tr>
</tbody>
</table>

Indicates a hex number

Hexadecimal:

<table>
<thead>
<tr>
<th>0xDEADBEEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101 1110 1010 1101 1011 1110 1110 1111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0x02468ACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0010 0100 0110 1000 1010 1100 1110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0x13579BDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001 0011 0101 0111 1001 1011 1101 1111</td>
</tr>
</tbody>
</table>
Binary to/from hexadecimal

- \(0101101100100011_2 \rightarrow\)
- \(0101 \ 1011 \ 0010 \ 0011_2 \rightarrow\)
- \(5 \ B \ 2 \ 3_{16}\)

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
<td>13</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
<td>15</td>
</tr>
</tbody>
</table>
BitOps: Unary

• Bit-wise complement (~)
 • Flips every bit.

\[
\begin{aligned}
\sim 0x0d & \quad // \text{(binary} \ 00001101) \\
== 0xf2 & \quad // \text{(binary} \ 11110010)
\end{aligned}
\]

Not the same as Logical NOT (!) or sign change (−)

```
char i, j1, j2, j3;
i = 0x0d;    // binary 00001101
j1 = ~i;    // binary 11110010
j2 = -i;    // binary 11110011
j3 = !i;    // binary 00000000
```
• Operate **bit-by-bit** on operands to produce a result operand of the same length
• And (**&**): result 1 if both inputs 1, 0 otherwise
• Or (**|**): result 1 if either input 1, 0 otherwise
• Xor (**^**): result 1 if one input 1, but not both, 0 otherwise
• Operands **must** be of type integer
Two Operands... (cont’d)

- Examples

\[
\begin{array}{c}
\text{0011 1000} \\
\& 1101 1110 \\
\hline \\
0001 1000
\end{array}
\hspace{2cm}
\begin{array}{c}
\text{0011 1000} \\
| 1101 1110 \\
\hline \\
1111 1110
\end{array}
\hspace{2cm}
\begin{array}{c}
\text{0011 1000} \\
^\uparrow 1101 1110 \\
\hline \\
1110 0110
\end{array}
\]
Shift Operations

- $x << y$ is left (logical) shift of x by y positions
 - x and y must both be integers
 - x should be unsigned or positive
 - y leftmost bits of x are discarded
 - zero fill y bits on the right

```
01111001  <<< 3
-----------
11001000
```

- these 3 bits are discarded
- these 3 bits are zero filled
• $x \gg y$ is right (logical) shift of x by y positions
 • y rightmost bits of x are discarded
 • zero fill y bits on the left
Bitwise Recipes

- **Set a certain bit to 1?**
 - Make a MASK with a *one* at every position you want to *set*:

    ```
    m = 0x02; // 00000010
    ```
 - OR the mask with the input:

    ```
    v = 0x41; // 01000001
    v |= m;   // 01000111
    ```

- **Clear a certain bit to 0?**
 - Make a MASK with a *zero* at every position you want to *clear*:

    ```
    m = 0xFD; // 11111101 (could also write ~0x02)
    ```
 - AND the mask with the input:

    ```
    v = 0x27; // 00100111
    v &= m;  // 00100101
    ```

- **Get a substring of bits (such as bits 2 through 5)?**
 Note: bits are numbered right-to-left starting with zero.
 - Shift the bits you want all the way to the right then AND them with an appropriate mask:

    ```
    v = 0x67; // 01100111
    v >>= 2;  // 00010011
    v &= 0x0F; // 00001001
    ```
Binary Math : Addition

• Suppose we want to add two numbers:

 00011101
+ 00101011

 00101011

• How do we do this?
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00101011
\end{array}
\]

695 + 232

• How do we do this?
 • Let’s revisit decimal addition
 • Think about the process as we do it
Binary Math: Addition

- Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
+ 00101011 \\
\hline
00101011
\end{array}
\]

\[
\begin{array}{c}
695 \\
+ 232 \\
\hline
7
\end{array}
\]

- First add one’s digit 5+2 = 7
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00101011
\end{array}
\]

\[
\begin{array}{c}
1 \\
695 \\
+ 232 \\
\hline
27
\end{array}
\]

• First add one’s digit 5+2 = 7
• Next add ten’s digit 9+3 = 12 (2 carry a 1)
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00101011
\end{array}
\]

\[
\begin{array}{c}
695 \\
+ 232 \\
\hline
927
\end{array}
\]

• First add one’s digit 5+2 = 7
• Next add ten’s digit 9+3 = 12 (2 carry a 1)
• Last add hundred’s digit 1+6+2 = 9
Binary Math : Addition

Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00101011
\end{array}
\]

Back to the binary:

First add 1’s digit 1+1 = ...?
• Suppose we want to add two numbers:

\[
\begin{align*}
1 & \\
00011101 & \\
+ & 00101011 \\
\hline
0 & \\
\end{align*}
\]

• Back to the binary:
• First add 1’s digit 1+1 = 2 (0 carry a 1)
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
11 \\
00011101 \\
+ 00101011 \\
\hline
00
\end{array}
\]

• Back to the binary:
 • First add 1’s digit 1+1 = 2 (0 carry a 1)
 • Then 2’s digit: 1+0+1 =2 (0 carry a 1)
 • You all finish it out....
Binary Math: Addition

• Suppose we want to add two numbers:

\[
\begin{align*}
111111 \\
00011101 & = 29 \\
+ 00101011 & = 43 \\
\underline{01001000} & = 72
\end{align*}
\]

• Can check our work in decimal
Issues for Binary Representation of Numbers

- How to represent negative numbers?

- There are many ways to represent numbers in binary
 - Binary representations are encodings → many encodings possible
 - What are the issues that we must address?

- Issue #1: Complexity of arithmetic operations
- Issue #2: Negative numbers
- Issue #3: Maximum representable number

- Choose representation that makes these issues easy for machine, even if it’s not easy for humans (i.e., ECE/CS 250 students)
 - Why? Machine has to do all the work!
Sign Magnitude

- Use leftmost bit for + (0) or – (1):
- 6-bit example (1 sign bit + 5 magnitude bits):
 - +17 = 010001
 - -17 = 110001
- Pros:
 - Conceptually simple
 - Easy to convert
- Cons:
 - Harder to compute (add, subtract, etc) with
 - Positive and negative 0: 000000 and 100000

NOBODY DOES THIS
1’s Complement Representation for Integers

- Use largest positive binary numbers to represent negative numbers
 - 0000 → 0
 - 0001 → 1
 - 0010 → 2
 - 0011 → 3
 - 0100 → 4
 - 0101 → 5
 - 0110 → 6
 - 0111 → 7
 - 1000 → -7
 - 1001 → -6
 - 1010 → -5
 - 1011 → -4
 - 1100 → -3
 - 1101 → -2
 - 1110 → -1
 - 1111 → -0

- To negate a number, invert (“not”) each bit:
 - 0 → 1
 - 1 → 0

- Cons:
 - Still two 0s (yuck)
 - Still hard to compute with

NOBODY DOES THIS EITHER
2’s Complement Integers

- Use large positives to represent negatives
- \((-x) = 2^n - x\)
- This is 1’s complement + 1
- \((-x) = 2^n - 1 - x + 1\)
- So, just invert bits and add 1

6-bit examples:

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000000</td>
</tr>
<tr>
<td>1</td>
<td>000001</td>
</tr>
<tr>
<td>2</td>
<td>000010</td>
</tr>
<tr>
<td>3</td>
<td>000011</td>
</tr>
<tr>
<td>4</td>
<td>000100</td>
</tr>
<tr>
<td>5</td>
<td>000101</td>
</tr>
<tr>
<td>6</td>
<td>001000</td>
</tr>
<tr>
<td>7</td>
<td>001001</td>
</tr>
<tr>
<td>8</td>
<td>010000</td>
</tr>
<tr>
<td>9</td>
<td>010001</td>
</tr>
<tr>
<td>10</td>
<td>010010</td>
</tr>
<tr>
<td>11</td>
<td>010011</td>
</tr>
<tr>
<td>12</td>
<td>010100</td>
</tr>
<tr>
<td>13</td>
<td>010101</td>
</tr>
<tr>
<td>14</td>
<td>010110</td>
</tr>
<tr>
<td>15</td>
<td>010111</td>
</tr>
<tr>
<td>16</td>
<td>011000</td>
</tr>
<tr>
<td>17</td>
<td>011001</td>
</tr>
<tr>
<td>18</td>
<td>011010</td>
</tr>
<tr>
<td>19</td>
<td>011011</td>
</tr>
<tr>
<td>20</td>
<td>011100</td>
</tr>
<tr>
<td>21</td>
<td>011101</td>
</tr>
<tr>
<td>22</td>
<td>011110</td>
</tr>
<tr>
<td>23</td>
<td>011111</td>
</tr>
<tr>
<td>24</td>
<td>100000</td>
</tr>
<tr>
<td>25</td>
<td>100001</td>
</tr>
<tr>
<td>26</td>
<td>100010</td>
</tr>
<tr>
<td>27</td>
<td>100011</td>
</tr>
<tr>
<td>28</td>
<td>100100</td>
</tr>
<tr>
<td>29</td>
<td>100101</td>
</tr>
<tr>
<td>30</td>
<td>100110</td>
</tr>
<tr>
<td>31</td>
<td>100111</td>
</tr>
</tbody>
</table>

EVERYBODY DOES THIS

\[0_{10} = 000000_2; \quad -0_{10} = 000000_2 \Rightarrow \text{good!}\]
Pros and Cons of 2’s Complement

• Advantages:
 • Only one representation for 0 (unlike 1’s comp): \(0 = 000000\)
 • Addition algorithm is much easier than with sign and magnitude
 • Independent of sign bits

• Disadvantage:
 • One more negative number than positive
 • Example: 6-bit 2’s complement number
 \(100000_2 = -32_{10};\) but \(32_{10}\) could not be represented

All modern computers use 2’s complement for integers
2’s Complement Precision Extension

- Most computers today support 32-bit (int) or 64-bit integers
 - Specify 64-bit using gcc C compiler with `long long`
- To extend precision, use `sign bit extension`
 - Integer precision is number of bits used to represent a number

Examples

\[14_{10} = 001110_2 \] in 6-bit representation.

\[14_{10} = 000000001110_2 \] in 12-bit representation

\[-14_{10} = 110010_2 \] in 6-bit representation

\[-14_{10} = 111111110010_2 \] in 12-bit representation.
Binary Math : Addition

• Let’s look at another binary addition:

\[
\begin{array}{c}
01011101 \\
+ 01101011 \\
\hline
01110101 \\
\end{array}
\]
Binary Math : Addition

• What about this one:

\[
\begin{align*}
1111111 \\
01011101 & = 93 \\
+ 01101011 & = 107 \\
\hline
11001000 & = -56
\end{align*}
\]

• But... that can’t be right?
 • What do you expect for the answer?
 • What is it in 8-bit signed 2’s complement?
Integer Overflow

• Answer should be 200
 • Not representable in 8-bit signed representation
 • No right answer

• This is called integer Overflow

• Real problem in programs
Subtraction

- 2’s complement makes subtraction easy:
 - Remember: \(A - B = A + (-B) \)
 - And: \(-B = \sim B + 1 \)
 - That means flip bits ("not")
 - So we just flip the bits and start with carry-in (CI) = 1
 - Later: No new circuits to subtract (re-use adder hardware!)

\[
\begin{array}{c}
0110101 \\
1010010 \\
\hline
1010010
\end{array} \quad + \quad \begin{array}{c}
0110101 \\
0101101
\end{array}
\]

\[
\begin{array}{c}
0110101 \\
0101101
\hline
0110101
\end{array}
\]
What About Non-integer Numbers?

- There are infinitely many real numbers between two integers
- Many important numbers are real
 - Speed of light $\sim 3 \times 10^8$
 - $\pi = 3.1415...$
- Fixed number of bits limits range of integers
 - Can’t represent some important numbers
- Humans use Scientific Notation
 - 1.3×10^4
Option 1: Fixed point

- Use normal integers, but \((X \times 2^K)\) instead of \(X\)
 - Example: 32 bit int, but use \(X \times 65536\)
 - \(3.1415926 \times 65536 = 205887\)
 - \(0.5 \times 65536 = 32768\), etc..

- Pros:
 - Addition/subtraction just like integers ("free")

- Cons:
 - Mul/div require renormalizing (divide by 64K)
 - Range limited (no good rep for large + small)

- Can be good in specific situations
Can we do better?

- Think about scientific notation for a second:
- For example:
 \[6.02 \times 10^{23}\]
- Real number, but comprised of ints:
 - 6 generally only 1 digit here
 - 02 any number here
 - 10 always 10 (base we work in)
 - 23 can be positive or negative
- Can we do something like this in binary?
Option 2: Floating Point

• How about:
 \[+/- \ X.YYYYYY \times 2^{+/-N} \]

• Big numbers: large positive N
• Small numbers (<1): negative N
• Numbers near 0: small N

• This is “floating point”: most common way
IEEE single precision floating point

- Specific format called IEEE single precision:

 $$
 +/- 1.YYYYY \times 2^{(N-127)}
 $$

- “float” in Java, C, C++, ...

- Assume first bit is always 1 (saves us a bit)
- 1 sign bit (+ = 0, 1 = -)
- 8 bit biased exponent (do N-127)
- Implicit 1 before binary point
- 23-bit mantissa (YYYYY)
Binary fractions

1. YYYY has a binary point
 - Like a decimal point but in binary
 - After a decimal point, you have
 - tenths
 - hundredths
 - thousandths
 - ...

So after a binary point you have...
 - Halves
 - Quarters
 - Eighths
 - ...
Floating point example

- Binary fraction example:
 \[101.101 = 4 + 1 + \frac{1}{2} + \frac{1}{8} = 5.625\]
- For floating point, needs normalization:
 \[1.01101 \times 2^2\]
- Sign is +, which = 0
- Exponent = 127 + 2 = 129 = 1000 0001
- Mantissa = 1.011 0100 0000 0000 0000 0000
Example:
What floating-point number is: $0xC1580000$?
What floating-point number is $0xC1580000$?

\[\begin{array}{ccccccc}
31 & 30 & 23 & 22 & 0 \\
\hline
1 & 1000 & 0010 & 101 & 1000 & 0000 & 0000 & 0000 & 0000 \\
s & E & F \\
\end{array} \]

Sign = 1 which is negative

Exponent = $(128+2)-127 = 3$

Mantissa = 1.1011

\[-1.1011 \times 2^3 = -1101.1 = -13.5\]
Trick question

- How do you represent 0.0?
 - Why is this a trick question?
 - 0.0 = 000000000
 - But need 1.XXXXX representation?

- Exponent of 0 is denormalized
 - Implicit 0. instead of 1. in mantissa
 - Allows 0000....0000 to be 0
 - Helps with very small numbers near 0

- Results in +/- 0 in FP (but they are “equal”)

Other Weird FP numbers

- Exponent = 1111 1111 also not standard
 - All 0 mantissa: +/- ∞
 - 1/0 = +∞
 - -1/0 = -∞
 - Non zero mantissa: Not a Number (NaN)
 - sqrt(-42) = NaN
Floating Point Representation

• Double Precision Floating point:

64-bit representation:
 • 1-bit sign
 • 11-bit (biased) exponent
 • 52-bit fraction (with implicit 1).

• “double” in Java, C, C++, ...

<table>
<thead>
<tr>
<th></th>
<th>Exp</th>
<th>Mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>11-bit</td>
<td>52-bit</td>
</tr>
</tbody>
</table>
What About Strings?

• Many important things stored as strings...
 • E.g., your name
• How should we store strings?
<table>
<thead>
<tr>
<th>Dec</th>
<th>Hx</th>
<th>Oct</th>
<th>HTML</th>
<th>Char</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>000</td>
<td>NUL (null)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>SOH (start of heading)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>002</td>
<td>STX (start of text)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>003</td>
<td>ETX (end of text)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>004</td>
<td>EOT (end of transmission)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>005</td>
<td>ENQ (enquiry)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>006</td>
<td>ACK (acknowledge)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>007</td>
<td>BEL (bell)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>010</td>
<td>BS (backspace)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>011</td>
<td>TAB (horizontal tab)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>012</td>
<td>LF (NL line feed, new line)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>013</td>
<td>VT (vertical tab)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>014</td>
<td>FF (NP form feed, new page)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>015</td>
<td>CR (carriage return)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>016</td>
<td>SO (shift out)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>017</td>
<td>SI (shift in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>020</td>
<td>DLE (data link escape)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>021</td>
<td>DC1 (device control 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>022</td>
<td>DC2 (device control 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>023</td>
<td>DC3 (device control 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>024</td>
<td>DC4 (device control 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>025</td>
<td>NAK (negative acknowledge)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>026</td>
<td>SYN (synchronous idle)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>027</td>
<td>ETB (end of trans. block)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>030</td>
<td>CAN (cancel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>031</td>
<td>EM (end of medium)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>032</td>
<td>SUB (substitute)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>033</td>
<td>ESC (escape)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>034</td>
<td>FS (file separator)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1D</td>
<td>035</td>
<td>GS (group separator)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1E</td>
<td>036</td>
<td>RS (record separator)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1F</td>
<td>037</td>
<td>US (unit separator)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: www.LookupTables.com
One Interpretation of 128-255

<table>
<thead>
<tr>
<th>128</th>
<th>Ç</th>
<th>144</th>
<th>É</th>
<th>161</th>
<th>i</th>
<th>177</th>
<th>☐</th>
<th>193</th>
<th>⊥</th>
<th>209</th>
<th>☐</th>
<th>225</th>
<th>β</th>
<th>241</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>129</td>
<td>ü</td>
<td>145</td>
<td>æ</td>
<td>162</td>
<td>ó</td>
<td>178</td>
<td>☐</td>
<td>194</td>
<td>⊥</td>
<td>210</td>
<td>π</td>
<td>226</td>
<td>Γ</td>
<td>242</td>
<td>></td>
</tr>
<tr>
<td>130</td>
<td>é</td>
<td>146</td>
<td>Æ</td>
<td>163</td>
<td>ú</td>
<td>179</td>
<td>☐</td>
<td>195</td>
<td>⊥</td>
<td>211</td>
<td>π</td>
<td>227</td>
<td>π</td>
<td>243</td>
<td>≤</td>
</tr>
<tr>
<td>131</td>
<td>à</td>
<td>147</td>
<td>ò</td>
<td>164</td>
<td>ŋ</td>
<td>180</td>
<td>⊥</td>
<td>196</td>
<td>⊥</td>
<td>212</td>
<td>ℓ</td>
<td>228</td>
<td>Σ</td>
<td>244</td>
<td>³</td>
</tr>
<tr>
<td>132</td>
<td>ä</td>
<td>148</td>
<td>ö</td>
<td>165</td>
<td>Ñ</td>
<td>181</td>
<td>‖</td>
<td>197</td>
<td>⊥</td>
<td>213</td>
<td>F</td>
<td>229</td>
<td>σ</td>
<td>245</td>
<td>²</td>
</tr>
<tr>
<td>133</td>
<td>à</td>
<td>149</td>
<td>ò</td>
<td>166</td>
<td>Ạ</td>
<td>182</td>
<td>‖</td>
<td>198</td>
<td>⊥</td>
<td>214</td>
<td>²</td>
<td>230</td>
<td>µ</td>
<td>246</td>
<td>+</td>
</tr>
<tr>
<td>134</td>
<td>å</td>
<td>150</td>
<td>ũ</td>
<td>167</td>
<td>ö</td>
<td>183</td>
<td>‖</td>
<td>199</td>
<td>⊥</td>
<td>215</td>
<td>²</td>
<td>231</td>
<td>τ</td>
<td>247</td>
<td>½</td>
</tr>
<tr>
<td>135</td>
<td>ç</td>
<td>151</td>
<td>ù</td>
<td>168</td>
<td>Ñ</td>
<td>184</td>
<td>‖</td>
<td>200</td>
<td>⊥</td>
<td>216</td>
<td>²</td>
<td>232</td>
<td>Φ</td>
<td>248</td>
<td>¾</td>
</tr>
<tr>
<td>136</td>
<td>ø</td>
<td>152</td>
<td></td>
<td>169</td>
<td></td>
<td>185</td>
<td>‖</td>
<td>201</td>
<td>⊥</td>
<td>217</td>
<td>²</td>
<td>233</td>
<td>Ω</td>
<td>249</td>
<td>.</td>
</tr>
<tr>
<td>137</td>
<td>é</td>
<td>153</td>
<td>Ö</td>
<td>170</td>
<td></td>
<td>186</td>
<td>‖</td>
<td>202</td>
<td>⊥</td>
<td>218</td>
<td>²</td>
<td>234</td>
<td>Ω</td>
<td>250</td>
<td>.</td>
</tr>
<tr>
<td>138</td>
<td>è</td>
<td>154</td>
<td>Ü</td>
<td>171</td>
<td>½</td>
<td>187</td>
<td>‖</td>
<td>203</td>
<td>⊥</td>
<td>219</td>
<td>²</td>
<td>235</td>
<td>δ</td>
<td>251</td>
<td>√</td>
</tr>
<tr>
<td>139</td>
<td>i</td>
<td>156</td>
<td>£</td>
<td>172</td>
<td>¼</td>
<td>188</td>
<td>‖</td>
<td>204</td>
<td>⊥</td>
<td>220</td>
<td>²</td>
<td>236</td>
<td>∞</td>
<td>252</td>
<td>²</td>
</tr>
<tr>
<td>140</td>
<td>î</td>
<td>157</td>
<td>￥</td>
<td>173</td>
<td>i</td>
<td>189</td>
<td>‖</td>
<td>205</td>
<td>=</td>
<td>221</td>
<td>²</td>
<td>237</td>
<td>φ</td>
<td>253</td>
<td>²</td>
</tr>
<tr>
<td>141</td>
<td>i</td>
<td>158</td>
<td></td>
<td>174</td>
<td>«</td>
<td>190</td>
<td>‖</td>
<td>206</td>
<td>⊥</td>
<td>222</td>
<td>²</td>
<td>238</td>
<td>³</td>
<td>254</td>
<td>³</td>
</tr>
<tr>
<td>142</td>
<td>Ä</td>
<td>159</td>
<td>j</td>
<td>175</td>
<td>»</td>
<td>191</td>
<td>‖</td>
<td>207</td>
<td>⊥</td>
<td>223</td>
<td>²</td>
<td>239</td>
<td>³</td>
<td>255</td>
<td>³</td>
</tr>
<tr>
<td>143</td>
<td>Å</td>
<td>160</td>
<td>á</td>
<td>176</td>
<td>☐</td>
<td>192</td>
<td>⊥</td>
<td>208</td>
<td>⊥</td>
<td>224</td>
<td>α</td>
<td>240</td>
<td>≡</td>
<td>²</td>
<td>²</td>
</tr>
</tbody>
</table>

Source: www.LookupTables.com
(This allowed totally sweet ASCII art in the 90s)

Sources:
Outline

• Previously:
 • Computer is machine that does what we tell it to do

• Next:
 • How do we tell computers what to do?
 • How do we represent data objects in binary?
 • How do we represent data locations in binary?
Computer Memory

- Where do we put these numbers?
 - Registers [more on these later]
 - In the processor core
 - Compute directly on them
 - Few of them (~16 or 32 registers, each 32-bit or 64-bit)

- Memory [Our focus now]
 - External to processor core
 - Load/store values to/from registers
 - Very large (multiple GB)
Memory Organization

- Memory: billions of locations...how to get the right one?
 - Each memory location has an **address**
 - Processor asks to read or write specific address
 - Memory, please load address 0x123400
 - Memory, please write 0xFE into address 0x8765000
 - Kind of like a giant array
 - Array of what?
 - Bytes?
 - 32-bit ints?
 - 64-bit ints?
Memory Organization

- Most systems: byte (8-bit) addressed
 - Memory is “array of bytes”
 - Each address specifies 1 byte
 - Support to load/store 8, 16, 32, 64 bit quantities
 - Byte ordering varies from system to system

- Some systems “word addressed”
 - Memory is “array of words”
 - Smaller operations “faked” in processor
 - Not very common
Word of the Day: Endianess

Byte Order

- **Big Endian:** byte 0 is 8 most significant bits IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA
- **Little Endian:** byte 0 is 8 least significant bits Intel 80x86, DEC Vax, DEC Alpha
Memory Layout

- Memory is an array of bytes, but there are conventions as to what goes where in this array.
 - **Text**: instructions (the program to execute)
 - **Data**: global variables
 - **Stack**: local variables and other per-function state; starts at top & grows down
 - **Heap**: dynamically allocated variables; grows up
- What if stack and heap overlap???
int anumber = 3;

int factorial (int x) {
 if (x == 0) {
 return 1;
 }
 else {
 return x * factorial (x - 1);
 }
}

int main (void) {
 int z = factorial (anumber);
 int* p = malloc(sizeof(int)*64);
 printf(“%d
”, z);
 return 0;
}

 // p is a local on stack, *p is in heap
Summary: From C to Binary

• Everything must be represented in binary!
• Pointer is memory location that contains address of another memory location
• Computer memory is linear array of bytes
 • Integers:
 • unsigned \{0..2^{n-1}\} vs signed \{-2^{n-1} .. 2^{n-1}-1\} (“2’s complement”)
 • char (8-bit), short (16-bit), int/long (32-bit), long long (64-bit)
 • Floats: IEEE representation,
 • float (32-bit: 1 sign, 8 exponent, 23 mantissa)
 • double (64-bit: 1 sign, 11 exponent, 52 mantissa)
 • Strings: char array, ASCII representation
• Memory layout
 • Stack for local, static for globals, heap for malloc’d stuff (must free!)
The following slides re-state a lot of what we’ve covered but in a different way. We’ll likely skip it for time, but you can use the slides as an additional reference.
Let’s do a little Java…

```java
public class Example {
    public static void swap (int x, int y) {
        int temp = x;
        x = y;
        y = temp;
    }
    public static void main (String[] args) {
        int a = 42;
        int b = 100;
        swap (a, b);
        System.out.println("a =" + a + " b = " + b);
    }
}
```

• What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

- What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}
• What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

- What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a =" + a.data +
 " b = " + b.data);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
Let’s do some different Java...

```java
public class Ex2 {
    int data;
    public Ex2 (int d) { data = d; }
    public static void swap (Ex2 x, Ex2 y) {
        int temp = x.data;
        x.data = y.data;
        y.data = temp;
    }
    public static void main (String[] args) {
        Example a = new Example (42);  // Stack
        Example b = new Example (100);
        swap (a, b);                    // Heap
        System.out.println("a = " + a.data + " b = " + b.data);
    }
}
```

- What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + "; b = " + b.data);
 }
}

• What does this print? Why?
Let’s do some different Java…

```java
public class Ex2 {
    int data;
    public Ex2 (int d) { data = d; }
    public static void swap (Ex2 x, Ex2 y) {
        int temp = x.data;
        x.data = y.data;
        y.data = temp;
    }
    public static void main (String[] args) {
        Example a = new Example (42);
        Example b = new Example (100);
        swap (a, b);
        System.out.println("a = " + a.data + " b = " + b.data);
    }
}
```

- What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
Let’s do some different Java...

```java
public class Ex2 {
    int data;
    public Ex2 (int d) { data = d; }
    public static void swap (Ex2 x, Ex2 y) {
        int temp = x.data;
        x.data = y.data;
        y.data = temp;
    }
    public static void main (String[] args) {
        Example a = new Example (42);
        Example b = new Example (100);
        swap (a, b);
        System.out.println("a = " + a.data + " b = " + b.data);
    }
}

• What does this print? Why?
```
References and Pointers (review)

• Java has **references**:
 • Any variable of object type is a reference
 • Point at objects (which are all in the heap)
 • Under the hood: is the memory address of the object
 • Cannot explicitly manipulate them (**e.g.**, add 4)

• Some languages (**C**, **C++**, **assembly**) have explicit **pointers**:
 • Hold the memory address of something
 • Can explicitly compute on them
 • Can **de-reference** the pointer (***ptr**) to get thing-pointed-to
 • Can take the **address-of** (**&x**) to get something’s address
 • Can do very **unsafe** things, shoot yourself in the foot
Points

• “address of” operator &
 • don’t confuse with bitwise AND operator (&&)

Given
  ```
  int x; int* p; // p points to an int
  p = &x;
  ```

Then
  ```
  *p = 2; and x = 2; produce the same result
  Note: p is a pointer, *p is an int
  ```

• What happens for `p = 2`?

On 32-bit machine, p is 32-bits
Back to Arrays

- Java:
  ```java
  int [] x = new int [nElems];
  ```

- C:
  ```c
  int data[42]; //if size is known constant
  int* data = (int*)malloc (nElem * sizeof(int));
  ```
 - `malloc` takes number of bytes
 - `sizeof` tells how many bytes something takes
• \(x \) is a pointer, what is \(x+33 \)?

• A pointer, but where?
 • what does calculation depend on?

• Result of adding an int to a pointer depends on size of object pointed to
 • One reason why we tell compiler what type of pointer we have, even though all pointers are really the same thing (and same size)

```c
int* a = malloc(100 * sizeof(int));

a[33] is the same as *(a + 33)
if a is 0x00a0, then a+1 is 0x00a4, a+2 is 0x00a8
(decimal 160, 164, 168)
```

```c
double* d = malloc(200 * sizeof(double));

*(d + 33) is the same as d[33]
if d is 0x00b0, then d+1 is 0x00b8, d+2 is 0x00c0
(decimal 176, 184, 192)
```
More Pointer Arithmetic

- Address one past the end of an array is ok for pointer comparison only.

- What's at *(begin+44) *?

- What does begin++ mean?

- How are pointers compared using < and using == ?

- What is value of end - begin?

```c
char* a = new char[44];
char* begin = a;
char* end = a + 44;
while (begin < end) {
    *begin = 'z';
    begin++;
}
```
int* a = new int[100];

a is a pointer
*a is an int
a[0] is an int (same as *a)
a[1] is an int
a+1 is a pointer
a+32 is a pointer
*(a+1) is an int (same as a[1])
*(a+99) is an int
*(a+100) is trouble
Array Example

```c
#include <stdio.h>

main()
{
    int* a = (int*)malloc (100 * sizeof(int));
    int* p = a;
    int k;

    for (k = 0; k < 100; k++)
    {
        *p = k;
        p++;
    }
    printf("entry 3 = %d\n", a[3])
}
```
Memory Manager (Heap Manager)

- `malloc()` and `free()`
- Library routines that handle memory management for heap (allocation / deallocation)
- Java has garbage collection (reclaim memory of unreferenced objects)
- C must use `free`, else memory leak
Strings as Arrays (review)

- A string is an array of characters with `\0` at the end
- Each element is one byte, ASCII code
- `\0` is null (ASCII code 0)
• **`strlen()` returns the number of characters in a string**
 • same as number elements in char array?

```c
int strlen(char * s)
// pre: ‘\0’ terminated
// post: returns # chars
{
    int count=0;
    while (*s++)
        count++;
    return count;
}
```
Vector Class vs. Arrays

- **Vector Class**
 - insulates programmers
 - array bounds checking
 - automagically growing/shrinking when more items are added/deleted

- **How are Vectors implemented?**
 - Arrays, re-allocated as needed

- **Arrays can be more efficient**