Previously:
 • Computer is machine that does what we tell it to do

Next:
 • How do we tell computers what to do?
 • How do we represent data objects in binary?
 • How do we represent data locations in binary?
Representing High Level Things in Binary

- Computers represent **everything** in binary
- Instructions are specified in binary
- Instructions must be able to describe
 - Operation types (add, subtract, shift, etc.)
 - Data objects (integers, decimals, characters, etc.)
 - Memory locations
- Example:
  ```
  int x, y;       // Where are x and y? How to represent an int?
  bool decision; // How do we represent a bool? Where is it?
  y = x + 7;      // How do we specify “add”? How to represent 7?
  decision=(y>18); // Etc.
  ```
Representing Operation Types

• How do we tell computer to add? Shift? Read from memory? Etc.

• Arbitrarily! 😊

• Each Instruction Set Architecture (ISA) has its own binary encodings for each operation type

• E.g., in MIPS:
 • Integer add is: 00000 010000
 • Read from memory (load) is: 010011
 • Etc.
Representing Data Types

• Same as before: binary!
• Key Idea: the same 32 bits might mean one thing if interpreted as an integer but another thing if interpreted as a floating point number
Basic Data Types

Bit (bool): 0, 1

Bit String: sequence of bits of a particular length
- 4 bits is a nibble
- 8 bits is a byte
- 16 bits is a half-word (for MIPS32)
- 32 bits is a word (for MIPS32)
- 64 bits is a double-word (for MIPS32)
- 128 bits is a quad-word (for MIPS32)

Integers (char, short, int, long):
“2’s Complement” (32-bit or 64-bit representation)

Floating Point (float, double):
- Single Precision (32-bit representation)
- Double Precision (64-bit representation)
- Extended (Quad) Precision (128-bit representation)

Character (char):
- ASCII 7-bit code

What is a word?
The standard unit of manipulation for a particular system. E.g.:
- **MIPS32:** 32 bits
- Original Nintendo: 8 bit
- Super Nintendo: 16 bit
- Intel x86 (classic): 32 bit
- Nintendo 64: 64 bit
- Intel x86_64 (modern): 64 bit
Basic Binary

- Advice: memorize the following
 - $2^0 = 1$
 - $2^1 = 2$
 - $2^2 = 4$
 - $2^3 = 8$
 - $2^4 = 16$
 - $2^5 = 32$
 - $2^6 = 64$
 - $2^7 = 128$
 - $2^8 = 256$
 - $2^9 = 512$
 - $2^{10} = 1024$
Useful bit facts

- **If you have N bits, you can represent** 2^N **things.**

- **The binary metric system:**
 - $2^{10} = 1024$.
 - This is *basically* 1000, so we can have an alternative form of metric units based on base 2.
 - 2^{10} bytes = 1024 bytes = 1kB.
 - Sometimes written as 1kiB (pronounced “kibibyte” where the ‘bi’ means ‘binary’)
 (but nobody says “kibibyte” out loud because it sounds stupid)
 - 2^{20} bytes = 1MB, 2^{30} bytes = 1GB, 2^{40} bytes = 1TB, etc.
 - Easy rule to convert between exponent and binary metric number:
 \[
 2^{XY} \text{ bytes} = 2^Y \text{ } <X\text{_prefix}>B
 \]

 \[
 \begin{align*}
 2^{13} \text{ bytes} &= 2^3 \text{ kB} = 8 \text{ kB} \\
 2^{39} \text{ bytes} &= 2^9 \text{ GB} = 512 \text{ GB} \\
 2^{05} \text{ bytes} &= 2^5 \text{ B} = 32 \text{ B}
 \end{align*}
 \]
Decimal to binary using remainders

<table>
<thead>
<tr>
<th>?</th>
<th>Quotient</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>457</td>
<td>228</td>
<td>1</td>
</tr>
<tr>
<td>228</td>
<td>114</td>
<td>0</td>
</tr>
<tr>
<td>114</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>57</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

111001001
Decimal to binary using comparison

<table>
<thead>
<tr>
<th>Num</th>
<th>Compare 2^n</th>
<th>\geq ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>457</td>
<td>256</td>
<td>1</td>
</tr>
<tr>
<td>201</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

111001001
Hexadecimal

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
<td>13</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
<td>15</td>
</tr>
</tbody>
</table>

Indicates a hex number

0xDEADBEEF

0x02468ACE

0x13579BDF
Binary to/from hexadecimal

- 01011011001000112 -->
- 0101 1011 0010 00112 -->
- 5 B 2 316

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
<td>13</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
<td>15</td>
</tr>
</tbody>
</table>

1 F 4 B16 -->
0001 1111 0100 10112 -->
00011111010010112
BitOps: Unary

- Bit-wise complement (~)
 - Flips every bit.

\[
\begin{align*}
\sim 0x0d & \quad \text{// (binary 00001101)} \\
== 0xf2 & \quad \text{// (binary 11110010)}
\end{align*}
\]

Not the same as Logical NOT (!) or sign change (−)

```c
char i, j1, j2, j3;
i = 0x0d; \quad // binary 00001101
j1 = \sim i; \quad // binary 11110010
j2 = \sim i; \quad // binary 11110011
j3 = !i; \quad // binary 00000000
```
BitOps: Two Operands

- Operate **bit-by-bit** on operands to produce a result operand of the same length
- And (`&`): result 1 if both inputs 1, 0 otherwise
- Or (`|`): result 1 if either input 1, 0 otherwise
- Xor (`^`): result 1 if one input 1, but not both, 0 otherwise
- Operands **must** be of type integer
Two Operands... (cont’d)

- Examples

```
0011 1000
& 1101 1110
---------
0001 1000
```

```
0011 1000
| 1101 1110
---------
1111 1110
```

```
0011 1000
^ 1101 1110
---------
1110 0110
```
Shift Operations

- $x \ll y$ is left (logical) shift of x by y positions
 - x and y must both be integers
 - x should be unsigned or positive
 - y leftmost bits of x are discarded
 - zero fill y bits on the right

$$01111001 \ll 3$$

- these 3 bits are discarded
- these 3 bits are zero filled
ShiftOps... (cont’d)

- `x >> y` is right (logical) shift of `x` by `y` positions
 - `y` rightmost bits of `x` are discarded
 - zero fill `y` bits on the left

```
01111001 >> 3
```

- these 3 bits are discarded
- these 3 bits are zero filled
Bitwise Recipes

- **Set a certain bit to 1?**
 - Make a MASK with a *one* at every position you want to *set*:
 \[m = 0x02; \quad // \quad 00000010_2 \]
 - OR the mask with the input:
 \[v = 0x41; \quad // \quad 01000001_2 \]
 \[v \|= m; \quad // \quad 01000011_2 \]

- **Clear a certain bit to 0?**
 - Make a MASK with a *zero* at every position you want to *clear*:
 \[m = 0xFD; \quad // \quad 11111101_2 \] (could also write ~0x02)
 - AND the mask with the input:
 \[v = 0x27; \quad // \quad 00100111_2 \]
 \[v \&= m; \quad // \quad 00100101_2 \]

- **Get a substring of bits (such as bits 2 through 5)?**
 Note: bits are numbered right-to-left starting with zero.
 - Shift the bits you want all the way to the right then AND them with an appropriate mask:
 \[v = 0x67; \quad // \quad 01100111_2 \]
 \[v >>= 2; \quad // \quad 00010011_2 \]
 \[v \&= 0x0F; \quad // \quad 00001001_2 \]
Binary Math: Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ \quad 00101011 \\
\hline
00101011
\end{array}
\]

• How do we do this?
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{align*}
00011101 & \quad 695 \\
+ 00101011 & \quad + 232 \\
\hline
00101011 & \quad \text{Result}
\end{align*}
\]

• How do we do this?
 • Let’s revisit decimal addition
 • Think about the process as we do it
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00101011
\end{array}
\]

\[
\begin{array}{c}
695 \\
+ 232 \\
\hline
7
\end{array}
\]

• First add one’s digit 5+2 = 7
Binary Math : Addition

- Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011
\end{array}
\]

\[
\begin{array}{c}
1 \\
695 \\
+ 232
\end{array}
\]

\[
\begin{array}{c}
00101011 \\
+ 00111101 \\
\hline
27
\end{array}
\]

- First add one’s digit 5+2 = 7
- Next add ten’s digit 9+3 = 12 (2 carry a 1)
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{align*}
00011101 & \quad 695 \\
+ 00101011 & \quad + 232 \\
\hline
00101011 & \quad 927
\end{align*}
\]

• First add one’s digit 5+2 = 7
• Next add ten’s digit 9+3 = 12 (2 carry a 1)
• Last add hundred’s digit 1+6+2 = 9
Binary Math : Addition

• Suppose we want to add two numbers:

 0001110\textcolor{blue}{1} \\
+ 0010101\textcolor{blue}{1} \\
 \hline
 0010101\textcolor{blue}{1}

• Back to the binary:

• First add 1’s digit 1+1 = ...?
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
1 \\
00011101 \\
+ 00101011 \\
\hline
01010101 \\
\end{array}
\]

• Back to the binary:
• First add 1’s digit 1+1 = 2 (0 carry a 1)
Binary Math: Addition

• Suppose we want to add two numbers:

```
  11
+ 00101111
---
  00
```

• Back to the binary:
• First add 1’s digit $1 + 1 = 2$ (0 carry a 1)
• Then 2’s digit: $1 + 0 + 1 = 2$ (0 carry a 1)
• You all finish it out....
Binary Math : Addition

• Suppose we want to add two numbers:

111111

00011101 = 29

+ 00101011 = 43

01001000 = 72

• Can check our work in decimal
Issues for Binary Representation of Numbers

• **How to represent negative numbers?**

• There are many ways to represent numbers in binary
 • Binary representations are encodings → many encodings possible
 • What are the issues that we must address?

• **Issue #1:** Complexity of arithmetic operations

• **Issue #2:** Negative numbers

• **Issue #3:** Maximum representable number

• **Choose representation that makes these issues easy for machine, even if it’s not easy for humans (i.e., ECE/CS 250 students)**
 • Why? Machine has to do all the work!
Sign Magnitude

- Use leftmost bit for + (0) or – (1):
- 6-bit example (1 sign bit + 5 magnitude bits):
 - $+17 = 010001$
 - $-17 = 110001$
- Pros:
 - Conceptually simple
 - Easy to convert
- Cons:
 - Harder to compute (add, subtract, etc) with
 - Positive and negative 0: 000000 and 100000
1’s Complement Representation for Integers

- Use largest positive binary numbers to represent negative numbers

- To negate a number, invert (‘not’) each bit:
 - 0 → 1
 - 1 → 0

- Cons:
 - Still two 0s (yuck)
 - Still hard to compute with

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-7</td>
</tr>
<tr>
<td>1001</td>
<td>-6</td>
</tr>
<tr>
<td>1010</td>
<td>-5</td>
</tr>
<tr>
<td>1011</td>
<td>-4</td>
</tr>
<tr>
<td>1100</td>
<td>-3</td>
</tr>
<tr>
<td>1101</td>
<td>-2</td>
</tr>
<tr>
<td>1110</td>
<td>-1</td>
</tr>
<tr>
<td>1111</td>
<td>-0</td>
</tr>
</tbody>
</table>

NOBODY DOES THIS EITHER
2’s Complement Integers

- Use large positives to represent negatives

- \((-x) = 2^n - x\)

- This is 1’s complement + 1

- \((-x) = 2^n - 1 - x + 1\)

- So, just invert bits and add 1

6-bit examples:

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>010110</td>
<td>22</td>
</tr>
<tr>
<td>101010</td>
<td>-22</td>
</tr>
<tr>
<td>000001</td>
<td>1</td>
</tr>
<tr>
<td>111111</td>
<td>-1</td>
</tr>
<tr>
<td>000000</td>
<td>0</td>
</tr>
<tr>
<td>1111111</td>
<td>-2</td>
</tr>
<tr>
<td>1110</td>
<td>-3</td>
</tr>
<tr>
<td>1101</td>
<td>-4</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
</tr>
</tbody>
</table>

EVERYBODY DOES THIS
Another way to think about 2’s complement

- **Regular base 10:**
 - $6253 = 6000 + 200 + 50 + 3$
 - $= 6*10^3 + 2*10^2 + 5*10^1 + 3*10^0$

- **Unsigned base 2:**
 - $1101 = 1000 + 100 + 00 + 1$
 - $= 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0$
 - $= 8 + 4 + 1$
 - $= 13$

- **Signed base 2:**
 - $1101 = -1000 + 100 + 00 + 1$
 - $= 1*-2^3 + 1*2^2 + 0*2^1 + 1*2^0$
 - $= -8 + 4 + 1$
 - $= -3$

Alternately, flip the bits and add 1:

- 1101
- **Flip:** 0010
- **Add 1:** 0011

That’s 3 in binary, so the number is indeed -3

Two’s complement is like making the highest order bit apply a negative value!
Pros and Cons of 2’s Complement

• Advantages:
 • Only one representation for 0 (unlike 1’s comp): 0 = 000000
 • Addition algorithm is much easier than with sign and magnitude
 • Independent of sign bits

• Disadvantage:
 • One more negative number than positive
 • Example: 6-bit 2’s complement number
 $100000_2 = -32_{10}$; but 32_{10} could not be represented

All modern computers use 2’s complement for integers
Integer ranges

- **If I have an n-bit integer:**
 - And it’s **unsigned**, then I can represent \(\{0 \ .. \ 2^n - 1\} \)
 - And it’s **signed**, then I can represent \(\{-2^{n-1} \ .. \ 2^{n-1} - 1\} \)

- **Result:**

<table>
<thead>
<tr>
<th>Size in bits</th>
<th>Size in bytes</th>
<th>Datatype</th>
<th>Unsigned range</th>
<th>Signed range</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>char</td>
<td>0 .. 255</td>
<td>-128 .. 127</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>short</td>
<td>0 .. 65,535</td>
<td>-32,768 .. 32,767</td>
</tr>
<tr>
<td>32</td>
<td>4</td>
<td>int</td>
<td>0 .. 4,294,967,295</td>
<td>-2,147,483,648 .. 2,147,483,647</td>
</tr>
<tr>
<td>64</td>
<td>8</td>
<td>long long</td>
<td>18,446,744,073,709,600,000</td>
<td>-9,223,372,036,854,780,000 .. 9,223,372,036,854,780,000</td>
</tr>
</tbody>
</table>
2’s Complement Precision Extension

- Most computers today support 32-bit (int) or 64-bit integers
 - Specify 64-bit using gcc C compiler with \texttt{long long}
- To extend precision, use \texttt{sign bit extension}
 - Integer precision is number of bits used to represent a number

Examples

\begin{align*}
 14_{10} &= \ 001110_2 \text{ in 6-bit representation.} \\
 14_{10} &= \ 000000001110_2 \text{ in 12-bit representation} \\
 -14_{10} &= \ 110010_2 \text{ in 6-bit representation} \\
 -14_{10} &= \ 111111110010_2 \text{ in 12-bit representation.}
\end{align*}
Let’s look at another binary addition:

\[
\begin{array}{c}
01011101 \\
+ \quad 01101011 \\
\hline
01101011
\end{array}
\]
Binary Math : Addition

- What about this one:

\[
\begin{array}{c}
1111111 \\
01011101 = 93 \\
+ 01101011 = 107 \\
\hline
11001000 = -56
\end{array}
\]

- But... that can’t be right?
 - What do you expect for the answer?
 - What is it in 8-bit signed 2’s complement?
Integer Overflow

• Answer should be 200
 • Not representable in 8-bit signed representation
 • No right answer
• This is called integer Overflow
• Real problem in programs
Subtraction

• 2’s complement makes subtraction easy:
 • Remember: $A - B = A + (-B)$
 • And: $-B = \sim B + 1$
 \[\uparrow \text{that means flip bits ("not")} \]
 • So we just flip the bits and start with carry-in (CI) = 1
 • Later: No new circuits to subtract (re-use adder hardware!)

\[
\begin{array}{c}
0110101 \\
- 1010010 \\
\hline
1010101 \\
\hline
+ 0101101
\end{array}
\]
What About Non-integer Numbers?

- There are infinitely many real numbers between two integers
- Many important numbers are real
 - Speed of light $\sim 3 \times 10^8$
 - $\pi = 3.1415...$
- Fixed number of bits limits range of integers
 - Can’t represent some important numbers
- Humans use Scientific Notation
 - 1.3×10^4
Option 1: Fixed point

- Use normal integers, but \((X \times 2^K)\) instead of \(X\)
 - Example: 32 bit int, but use \(X \times 65536\)
 - \(3.1415926 \times 65536 = 205887\)
 - \(0.5 \times 65536 = 32768\), etc..

- Pros:
 - Addition/subtraction just like integers ("free")

- Cons:
 - Mul/div require renormalizing (divide by 64K)
 - Range limited (no good rep for large + small)

- Can be good in specific situations
Can we do better?

- Think about scientific notation for a second:
- For example:
 \[6.02 \times 10^{23} \]
- Real number, but comprised of ints:
 - 6 generally only 1 digit here
 - 02 any number here
 - 10 always 10 (base we work in)
 - 23 can be positive or negative
- Can we do something like this in binary?
Option 2: Floating Point

- How about:
 \[+/- \ X.\text{YYYYYY} \times 2^{ +/-N} \]

- Big numbers: large positive N
- Small numbers (<1): negative N
- Numbers near 0: small N

- This is "floating point" : most common way
IEEE single precision floating point

- Specific format called IEEE single precision:

 \(+/\- \quad 1.YYYYY \times 2^{(N-127)} \)

- “float” in Java, C, C++,...

- Assume first bit is always 1 (saves us a bit)
- 1 sign bit (+ = 0, 1 = -)
- 8 bit biased exponent (do N-127)
- Implicit 1 before binary point
- 23-bit mantissa (YYYYY)
Binary fractions

1. YYYY has a binary point
 - Like a decimal point but in binary
 - After a decimal point, you have
 - tenths
 - hundredths
 - thousandths
 - ...

So after a binary point you have...
- Halves
- Quarters
- Eighths
- ...
Floating point example

- Binary fraction example:
 \[101.101 = 4 + 1 + \frac{1}{2} + \frac{1}{8} = 5.625\]

- For floating point, needs normalization:
 \[1.01101 \times 2^2\]

- Sign is +, which = 0

- Exponent = 127 + 2 = 129 = 1000 0001

- Mantissa = 1.011 0100 0000 0000 0000 0000

\[
\begin{array}{cccccccc}
0 & 1 & 0
\end{array}
\]
Example:
What floating-point number is:
0xC1580000?
What floating-point number is \(0xC1580000\)?

\[
\begin{array}{cccccccccccc}
\text{s} & \text{E} & \text{F} \\
1 & 1000 & 0010 & 101 & 1000 & 0000 & 0000 & 0000 & 0000 \\
\end{array}
\]

Sign = 1 which is negative

Exponent = \((128+2) - 127\) = 3

Mantissa = 1.1011

\(-1.1011 \times 2^3 = -1101.1 = -13.5\)
• How do you represent 0.0?
 • Why is this a trick question?
 • $0.0 = 000000000$
 • But need 1.XXXX representation?

• Exponent of 0 is denormalized
 • Implicit 0. instead of 1. in mantissa
 • Allows 0000....0000 to be 0
 • Helps with very small numbers near 0

• Results in +/- 0 in FP (but they are “equal”)
Other Weird FP numbers

• Exponent = 1111 1111 also not standard
 • All 0 mantissa: +/- ∞

 1/0 = +∞

 -1/0 = -∞

 • Non zero mantissa: Not a Number (NaN)

 sqrt(-42) = NaN
Floating Point Representation

• Double Precision Floating point:

 64-bit representation:
 • 1-bit sign
 • 11-bit (biased) exponent
 • 52-bit fraction (with implicit 1).

• “double” in Java, C, C++, ...

<table>
<thead>
<tr>
<th>S</th>
<th>Exp</th>
<th>Mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11-bit</td>
<td>52-bit</td>
</tr>
</tbody>
</table>
What About Strings?

- Many important things stored as strings...
 - E.g., your name
- How should we store strings?
<table>
<thead>
<tr>
<th>Dec</th>
<th>Hx</th>
<th>Oct</th>
<th>HTML</th>
<th>Char</th>
<th>Dec</th>
<th>Hx</th>
<th>Oct</th>
<th>HTML</th>
<th>Char</th>
<th>Dec</th>
<th>Hx</th>
<th>Oct</th>
<th>HTML</th>
<th>Char</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>000</td>
<td></td>
<td>NUL (null)</td>
<td>32</td>
<td>20</td>
<td>040</td>
<td><#32;</td>
<td>Space</td>
<td>64</td>
<td>40</td>
<td>100</td>
<td><#64;</td>
<td>@</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>001</td>
<td></td>
<td>SOH (start of heading)</td>
<td>33</td>
<td>21</td>
<td>041</td>
<td><#33;</td>
<td>!</td>
<td>65</td>
<td>41</td>
<td>101</td>
<td><#65;</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>002</td>
<td></td>
<td>STX (start of text)</td>
<td>34</td>
<td>22</td>
<td>042</td>
<td><#34;</td>
<td>"</td>
<td>66</td>
<td>42</td>
<td>102</td>
<td><#66;</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>003</td>
<td></td>
<td>ETX (end of text)</td>
<td>35</td>
<td>23</td>
<td>043</td>
<td><#35;</td>
<td>#</td>
<td>67</td>
<td>43</td>
<td>103</td>
<td><#67;</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>004</td>
<td></td>
<td>EOT (end of transmission)</td>
<td>36</td>
<td>24</td>
<td>044</td>
<td><#36;</td>
<td>$</td>
<td>68</td>
<td>44</td>
<td>104</td>
<td><#68;</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>005</td>
<td></td>
<td>ENQ (enquiry)</td>
<td>37</td>
<td>25</td>
<td>045</td>
<td><#37;</td>
<td>%</td>
<td>69</td>
<td>45</td>
<td>105</td>
<td><#69;</td>
<td>E</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>006</td>
<td></td>
<td>ACK (acknowledge)</td>
<td>38</td>
<td>26</td>
<td>046</td>
<td><#38;</td>
<td>&</td>
<td>70</td>
<td>46</td>
<td>106</td>
<td><#70;</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>007</td>
<td></td>
<td>BEL (bell)</td>
<td>39</td>
<td>27</td>
<td>047</td>
<td><#39;</td>
<td>’</td>
<td>71</td>
<td>47</td>
<td>107</td>
<td><#71;</td>
<td>G</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>010</td>
<td></td>
<td>BS (backspace)</td>
<td>40</td>
<td>28</td>
<td>050</td>
<td><#40;</td>
<td>(</td>
<td>72</td>
<td>48</td>
<td>110</td>
<td><#72;</td>
<td>H</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>011</td>
<td></td>
<td>TAB (horizontal tab)</td>
<td>41</td>
<td>29</td>
<td>051</td>
<td><#41;</td>
<td>)</td>
<td>73</td>
<td>49</td>
<td>111</td>
<td><#73;</td>
<td>I</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>012</td>
<td></td>
<td>LF (NL line feed, new line)</td>
<td>42</td>
<td>2A</td>
<td>052</td>
<td><#42;</td>
<td>*</td>
<td>74</td>
<td>4A</td>
<td>112</td>
<td><#74;</td>
<td>J</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>013</td>
<td></td>
<td>VT (vertical tab)</td>
<td>43</td>
<td>2B</td>
<td>053</td>
<td><#43;</td>
<td>+</td>
<td>75</td>
<td>4B</td>
<td>113</td>
<td><#75;</td>
<td>K</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>014</td>
<td></td>
<td>FF (NP form feed, new page)</td>
<td>44</td>
<td>2C</td>
<td>054</td>
<td><#44;</td>
<td>,</td>
<td>76</td>
<td>4C</td>
<td>114</td>
<td><#76;</td>
<td>L</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>015</td>
<td></td>
<td>CR (carriage return)</td>
<td>45</td>
<td>2D</td>
<td>055</td>
<td><#45;</td>
<td>-</td>
<td>77</td>
<td>4D</td>
<td>115</td>
<td><#77;</td>
<td>M</td>
</tr>
<tr>
<td>14</td>
<td>E</td>
<td>016</td>
<td></td>
<td>SO (shift out)</td>
<td>46</td>
<td>2E</td>
<td>056</td>
<td><#46;</td>
<td>.</td>
<td>78</td>
<td>4E</td>
<td>116</td>
<td><#78;</td>
<td>N</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>017</td>
<td></td>
<td>SI (shift in)</td>
<td>47</td>
<td>2F</td>
<td>057</td>
<td><#47;</td>
<td>/</td>
<td>79</td>
<td>4F</td>
<td>117</td>
<td><#79;</td>
<td>O</td>
</tr>
<tr>
<td>16</td>
<td>G</td>
<td>020</td>
<td></td>
<td>DLE (data link escape)</td>
<td>48</td>
<td>30</td>
<td>060</td>
<td><#48;</td>
<td>0</td>
<td>80</td>
<td>50</td>
<td>120</td>
<td><#80;</td>
<td>P</td>
</tr>
<tr>
<td>17</td>
<td>H</td>
<td>021</td>
<td></td>
<td>DC1 (device control 1)</td>
<td>49</td>
<td>31</td>
<td>061</td>
<td><#49;</td>
<td>1</td>
<td>81</td>
<td>51</td>
<td>121</td>
<td><#81;</td>
<td>Q</td>
</tr>
<tr>
<td>18</td>
<td>I</td>
<td>022</td>
<td></td>
<td>DC2 (device control 2)</td>
<td>50</td>
<td>32</td>
<td>062</td>
<td><#50;</td>
<td>2</td>
<td>82</td>
<td>52</td>
<td>122</td>
<td><#82;</td>
<td>R</td>
</tr>
<tr>
<td>19</td>
<td>J</td>
<td>023</td>
<td></td>
<td>DC3 (device control 3)</td>
<td>51</td>
<td>33</td>
<td>063</td>
<td><#51;</td>
<td>3</td>
<td>83</td>
<td>53</td>
<td>123</td>
<td><#83;</td>
<td>S</td>
</tr>
<tr>
<td>20</td>
<td>K</td>
<td>024</td>
<td></td>
<td>DC4 (device control 4)</td>
<td>52</td>
<td>34</td>
<td>064</td>
<td><#52;</td>
<td>4</td>
<td>84</td>
<td>54</td>
<td>124</td>
<td><#84;</td>
<td>T</td>
</tr>
<tr>
<td>21</td>
<td>L</td>
<td>025</td>
<td></td>
<td>NAK (negative acknowledge)</td>
<td>53</td>
<td>35</td>
<td>065</td>
<td><#53;</td>
<td>5</td>
<td>85</td>
<td>55</td>
<td>125</td>
<td><#85;</td>
<td>U</td>
</tr>
<tr>
<td>22</td>
<td>M</td>
<td>026</td>
<td></td>
<td>SYN (synchronous idle)</td>
<td>54</td>
<td>36</td>
<td>066</td>
<td><#54;</td>
<td>6</td>
<td>86</td>
<td>56</td>
<td>126</td>
<td><#86;</td>
<td>V</td>
</tr>
<tr>
<td>23</td>
<td>N</td>
<td>027</td>
<td></td>
<td>ETB (end of trans. block)</td>
<td>55</td>
<td>37</td>
<td>067</td>
<td><#55;</td>
<td>7</td>
<td>87</td>
<td>57</td>
<td>127</td>
<td><#87;</td>
<td>W</td>
</tr>
<tr>
<td>24</td>
<td>O</td>
<td>030</td>
<td></td>
<td>CAN (cancel)</td>
<td>56</td>
<td>38</td>
<td>070</td>
<td><#56;</td>
<td>8</td>
<td>88</td>
<td>58</td>
<td>130</td>
<td><#88;</td>
<td>X</td>
</tr>
<tr>
<td>25</td>
<td>P</td>
<td>031</td>
<td></td>
<td>EM (end of medium)</td>
<td>57</td>
<td>39</td>
<td>071</td>
<td><#57;</td>
<td>9</td>
<td>89</td>
<td>59</td>
<td>131</td>
<td><#89;</td>
<td>Y</td>
</tr>
<tr>
<td>26</td>
<td>Q</td>
<td>032</td>
<td></td>
<td>SUB (substitute)</td>
<td>58</td>
<td>3A</td>
<td>072</td>
<td><#58;</td>
<td>:</td>
<td>90</td>
<td>5A</td>
<td>132</td>
<td><#90;</td>
<td>Z</td>
</tr>
<tr>
<td>27</td>
<td>R</td>
<td>033</td>
<td></td>
<td>ESC (escape)</td>
<td>59</td>
<td>3B</td>
<td>073</td>
<td><#59;</td>
<td>;</td>
<td>91</td>
<td>5B</td>
<td>133</td>
<td><#91;</td>
<td>[</td>
</tr>
<tr>
<td>28</td>
<td>S</td>
<td>034</td>
<td></td>
<td>FS (file separator)</td>
<td>60</td>
<td>3C</td>
<td>074</td>
<td><#60;</td>
<td><</td>
<td>92</td>
<td>5C</td>
<td>134</td>
<td><#92;</td>
<td>\</td>
</tr>
<tr>
<td>29</td>
<td>T</td>
<td>035</td>
<td></td>
<td>GS (group separator)</td>
<td>61</td>
<td>3D</td>
<td>075</td>
<td><#61;</td>
<td>=</td>
<td>93</td>
<td>5D</td>
<td>135</td>
<td><#93;</td>
<td>]</td>
</tr>
<tr>
<td>30</td>
<td>U</td>
<td>036</td>
<td></td>
<td>RS (record separator)</td>
<td>62</td>
<td>3E</td>
<td>076</td>
<td><#62;</td>
<td>></td>
<td>94</td>
<td>5E</td>
<td>136</td>
<td><#94;</td>
<td>^</td>
</tr>
<tr>
<td>31</td>
<td>V</td>
<td>037</td>
<td></td>
<td>US (unit separator)</td>
<td>63</td>
<td>3F</td>
<td>077</td>
<td><#63;</td>
<td>?</td>
<td>95</td>
<td>5F</td>
<td>137</td>
<td><#95;</td>
<td>_</td>
</tr>
</tbody>
</table>

Source: www.LookupTables.com
One Interpretation of 128-255

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Character</th>
<th>ASCII Value</th>
<th>ASCII Code</th>
<th>Hexadecimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>Ç</td>
<td>144</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>129</td>
<td>ü</td>
<td>145</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>130</td>
<td>é</td>
<td>146</td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>131</td>
<td>à</td>
<td>147</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>132</td>
<td>á</td>
<td>148</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>133</td>
<td>à</td>
<td>149</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>134</td>
<td>å</td>
<td>150</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>135</td>
<td>æ</td>
<td>151</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>136</td>
<td>ë</td>
<td>152</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>137</td>
<td>ë</td>
<td>153</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>138</td>
<td>ë</td>
<td>154</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>139</td>
<td>ी</td>
<td>156</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>140</td>
<td>ी</td>
<td>157</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>141</td>
<td>ी</td>
<td>158</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>142</td>
<td>Å</td>
<td>159</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>143</td>
<td>å</td>
<td>160</td>
<td></td>
<td>–</td>
</tr>
</tbody>
</table>

Source: www.LookupTables.com
(This allowed totally sweet ASCII art in the 90s)

Sources:
• Previously:
 • Computer is machine that does what we tell it to do

• Next:
 • How do we tell computers what to do?
 • How do we represent data objects in binary?
 • How do we represent data locations in binary?
Computer Memory

- Where do we put these numbers?
 - Registers [more on these later]
 - In the processor core
 - Compute directly on them
 - Few of them (~16 or 32 registers, each 32-bit or 64-bit)

- Memory [Our focus now]
 - External to processor core
 - Load/store values to/from registers
 - Very large (multiple GB)
Memory Organization

- Memory: billions of locations...how to get the right one?
 - Each memory location has an **address**
 - Processor asks to read or write specific address
 - Memory, please load address 0x123400
 - Memory, please write 0xFE into address 0x8765000
 - Kind of like a giant array
 - Array of what?
 - Bytes?
 - 32-bit ints?
 - 64-bit ints?
Memory Organization

• Most systems: byte (8-bit) addressed
 • Memory is “array of bytes”
 • Each address specifies 1 byte
 • Support to load/store 8, 16, 32, 64 bit quantities
 • Byte ordering varies from system to system

• Some systems “word addressed”
 • Memory is “array of words”
 • Smaller operations “faked” in processor
 • Not very common
Word of the Day: Endianess

Byte Order

- **Big Endian**: byte 0 is 8 most significant bits IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA
- **Little Endian**: byte 0 is 8 least significant bits Intel 80x86, DEC Vax, DEC Alpha
Memory Layout

- Memory is an array of bytes, but there are conventions as to what goes where in this array.
 - **Text**: instructions (the program to execute)
 - **Data**: global variables
 - **Stack**: local variables and other per-function state; starts at top & grows down
 - **Heap**: dynamically allocated variables; grows up
- What if stack and heap overlap????
int anumber = 3;

int factorial (int x) {
 if (x == 0) {
 return 1;
 } else {
 return x * factorial (x - 1);
 }
}

int main (void) {
 int z = factorial (anumber);
 int* p = malloc(sizeof(int)*64);
 printf("%d\n", z);
 return 0;
}

// p is a local on stack, *p is in heap
Summary: From C to Binary

- Everything must be represented in binary!
- Pointer is memory location that contains address of another memory location
- Computer memory is linear array of bytes
 - **Integers:**
 - unsigned \{0..2^{n-1}\} vs signed \{-2^{n-1} .. 2^{n-1}-1\} (“2’s complement”)
 - char (8-bit), short (16-bit), int/long (32-bit), long long (64-bit)
 - **Floats:** IEEE representation,
 - float (32-bit: 1 sign, 8 exponent, 23 mantissa)
 - double (64-bit: 1 sign, 11 exponent, 52 mantissa)
 - **Strings:** char array, ASCII representation
- Memory layout
 - **Stack** for local, **static** for globals, **heap** for malloc’d stuff (must free!)
The following slides re-state a lot of what we’ve covered but in a different way. We’ll likely skip it for time, but you can use the slides as an additional reference.
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a = " + a + " b = " + b);
 }
}

• What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

- What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

- What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
Let’s do a little Java...

```java
public class Example {
    public static void swap (int x, int y) {
        int temp = x;
        x = y;
        y = temp;
    }
    public static void main (String[] args) {
        int a = 42;
        int b = 100;
        swap (a, b);
        System.out.println("a =" + a + " b = " + b);
    }
}
```

• What does this print? Why?

Stack:
```
<table>
<thead>
<tr>
<th>main</th>
</tr>
</thead>
<tbody>
<tr>
<td>a  42</td>
</tr>
<tr>
<td>b  100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>swap</th>
</tr>
</thead>
<tbody>
<tr>
<td>x  100</td>
</tr>
<tr>
<td>y  42</td>
</tr>
<tr>
<td>temp 42</td>
</tr>
<tr>
<td>RA c0</td>
</tr>
</tbody>
</table>
```
Let's do a little Java...

public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
Let’s do some different Java…

```java
public class Ex2 {
    int data;
    public Ex2 (int d) { data = d; }
    public static void swap (Ex2 x, Ex2 y) {
        int temp = x.data;
        x.data = y.data;
        y.data = temp;
    }
    public static void main (String[] args) {
        Example a = new Example (42);
        Example b = new Example (100);
        swap (a, b);
        System.out.println("a =" + a.data +
                          " b = " + b.data);
    }
}
```

- What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a =" + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
Let’s do some different Java...

```java
public class Ex2 {
    int data;
    public Ex2 (int d) { data = d; }
    public static void swap (Ex2 x, Ex2 y) {
        int temp = x.data;
        x.data = y.data;
        y.data = temp;
    }
    public static void main (String[] args) {
        Example a = new Example (42);
        Example b = new Example (100);
        swap (a, b);
        System.out.println("a = " + a.data + " b = " + b.data);
    }
}

• What does this print? Why?
```
Let’s do some different Java...

```java
public class Ex2 {
    int data;
    public Ex2 (int d) { data = d; }
    public static void swap (Ex2 x, Ex2 y) {
        int temp = x.data;
        x.data = y.data;
        y.data = temp;
    }
    public static void main (String[] args) {
        Example a = new Example (42);
        Example b = new Example (100);
        swap (a, b);
        System.out.println("a = " + a.data + " b = " + b.data);
    }
}
```

- What does this print? Why?

Stack

- main
- a
- b
- swap
- x
- y
- temp
- RA
- c0

Heap

- Ex2
 - data: 42
- Ex2
 - data: 100
Let’s do some different Java…

```java
public class Ex2 {
    int data;
    public Ex2(int d) { data = d; }
    public static void swap(Ex2 x, Ex2 y) {
        int temp = x.data;
        x.data = y.data;
        y.data = temp;
    }
    public static void main(String[] args) {
        Example a = new Example(42);
        Example b = new Example(100);
        swap(a, b);
        System.out.println("a = " + a.data + " b = " + b.data);
    }
}
```

- What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data +
 " b = " + b.data);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
References and Pointers (review)

• Java has references:
 • Any variable of object type is a reference
 • Point at objects (which are all in the heap)
 • Under the hood: is the memory address of the object
 • Cannot explicitly manipulate them (e.g., add 4)

• Some languages (C,C++,assembly) have explicit pointers:
 • Hold the memory address of something
 • Can explicitly compute on them
 • Can de-reference the pointer (*ptr) to get thing-pointed-to
 • Can take the address-of (&x) to get something’s address
 • Can do very unsafe things, shoot yourself in the foot
Pointers

- “address of” operator &
 - don’t confuse with bitwise AND operator (&&)

Given

```c
int x; int* p; // p points to an int
p = &x;
```

Then

```c
*p = 2; and x = 2; produce the same result
```

Note: p is a pointer, *p is an int

- What happens for `p = 2`;

On 32-bit machine, p is 32-bits

```
x 0x26cf0

... p 0x26d00 0x26cbf0
```
Back to Arrays

• Java:

  ```java
  int [] x = new int [nElems];
  ```

• C:

  ```c
  int data[42]; //if size is known constant
  int* data = (int*)malloc (nElem * sizeof(int));
  ```

 • `malloc` takes number of bytes
 • `sizeof` tells how many bytes something takes
Arrays, Pointers, and Address Calculation

- **x** is a pointer, what is **x+33**?

- A pointer, but where?
 - what does calculation depend on?

- Result of adding an int to a pointer depends on size of object pointed to
 - One reason why we tell compiler what type of pointer we have, even though all pointers are really the same thing (and same size)

```c
int* a = malloc(100*sizeof(int));

array: 0 1 32 33 98 99

a[33] is the same as *(a+33)
if a is 0x00a0, then a+1 is 0x00a4, a+2 is 0x00a8
(decimal 160, 164, 168)

double* d = malloc(200*sizeof(double));

double: 0 1 3 199

*(d+33) is the same as d[33]
if d is 0x00b0, then d+1 is 0x00b8, d+2 is 0x00c0
(decimal 176, 184, 192)
```
More Pointer Arithmetic

• address one past the end of an array is ok for pointer comparison only

• what’s at *(begin+44)?

• what does begin++ mean?

• how are pointers compared using < and using == ?

• what is value of end - begin?

```c
char* a = new char[44];
char* begin = a;
char* end = a + 44;

while (begin < end)
{
    *begin = ‘z’;
    begin++;
}
```
More Pointers & Arrays

```cpp
int* a = new int[100];
```

- `a` is a pointer
- `*a` is an int
- `a[0]` is an int (same as `*a`)
- `a[1]` is an int
- `a+1` is a pointer
- `a+32` is a pointer
- `*(a+1)` is an int (same as `a[1]`)
- `*(a+99)` is an int
- `*(a+100)` is trouble
#include <stdio.h>

main()
{
 int* a = (int*)malloc (100 * sizeof(int));
 int* p = a;
 int k;

 for (k = 0; k < 100; k++)
 {
 *p = k;
 p++;
 }
 printf("entry 3 = %d\n", a[3])
}
Memory Manager (Heap Manager)

- `malloc()` and `free()`
- Library routines that handle memory management for heap (allocation / deallocation)
- Java has garbage collection (reclaim memory of unreferenced objects)
- C must use `free`, else memory leak
Strings as Arrays (review)

<table>
<thead>
<tr>
<th>s</th>
<th>t</th>
<th>r</th>
<th>i</th>
<th>g</th>
<th>"0"</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>15</td>
<td>16</td>
<td>42</td>
<td>43</td>
</tr>
</tbody>
</table>

- A string is an array of characters with `\0` at the end
- Each element is one byte, ASCII code
- `\0` is null (ASCII code 0)
strlen() again

• `strlen()` returns the number of characters in a string
 • same as number elements in char array?

```c
int strlen(char * s)
// pre: ‘\0’ terminated
// post: returns # chars
{
    int count=0;
    while (*s++)
        count++;
    return count;
}
```
Vector Class vs. Arrays

- Vector Class
 - insulates programmers
 - array bounds checking
 - automagically growing/shrinking when more items are added/deleted

- How are Vectors implemented?
 - Arrays, re-allocated as needed

- Arrays can be more efficient