ECE/CS 250
Computer Architecture
Fall 2017

From C to Binary

Tyler Bletsch
Duke University

Slides are derived from work by
Daniel J. Sorin (Duke), Andrew Hilton (Duke), Alvy Lebeck (Duke),
Benjamin Lee (Duke), Amir Roth (Penn)

Also contains material adapted from CSC230: C and Software Tools developed by
the NC State Computer Science Faculty
Outline

• Previously:
 • Computer is machine that does what we tell it to do

• Next:
 • How do we tell computers what to do?
 • How do we represent data objects in binary?
 • How do we represent data locations in binary?
Representing High Level Things in Binary

- Computers represent **everything** in binary
- Instructions are specified in binary
- Instructions must be able to describe
 - Operation types (add, subtract, shift, etc.)
 - Data objects (integers, decimals, characters, etc.)
 - Memory locations
- Example:

  ```
  int x, y; // Where are x and y? How to represent an int?
  bool decision; // How do we represent a bool? Where is it?
  y = x + 7; // How do we specify “add”? How to represent 7?
  decision=(y>18); // Etc.
  ```
Representing Operation Types

• How do we tell computer to add? Shift? Read from memory? Etc.
• Arbitrarily! 😊
• Each Instruction Set Architecture (ISA) has its own binary encodings for each operation type
• E.g., in MIPS:
 • Integer add is: 00000 010000
 • Read from memory (load) is: 010011
 • Etc.
Representing Data Types

• Same as before: binary!
• Key Idea: the same 32 bits might mean one thing if interpreted as an integer but another thing if interpreted as a floating point number
Basic Data Types

Bit (bool): 0, 1

Bit String: sequence of bits of a particular length
- 4 bits is a **nibble**
- 8 bits is a **byte**
- 16 bits is a **half-word** (for MIPS32)
- 32 bits is a **word** (for MIPS32)
- 64 bits is a **double-word** (for MIPS32)
- 128 bits is a **quad-word** (for MIPS32)

Integers (int, long):
- “2's Complement” (32-bit or 64-bit representation)

Floating Point (float, double):
- Single Precision (32-bit representation)
- Double Precision (64-bit representation)
- Extended (Quad) Precision (128-bit representation)

Character (char):
- ASCII 7-bit code

What is a word?
The standard unit of manipulation for a particular system. E.g.:
- **MIPS32:** 32 bits
- Original Nintendo: 8 bit
- Super Nintendo: 16 bit
- Intel x86 (classic): 32 bit
- Nintendo 64: 64 bit
- Intel x86_64 (modern): 64 bit
Basic Binary

• Advice: memorize the following
 • $2^0 = 1$
 • $2^1 = 2$
 • $2^2 = 4$
 • $2^3 = 8$
 • $2^4 = 16$
 • $2^5 = 32$
 • $2^6 = 64$
 • $2^7 = 128$
 • $2^8 = 256$
 • $2^9 = 512$
 • $2^{10} = 1024$
Useful bit facts

- If you have \(N \) bits, you can represent \(2^N \) things.

- The binary metric system:
 - \(2^{10} = 1024 \).
 - This is *basically* 1000, so we can have an alternative form of metric units based on base 2.
 - \(2^{10} \) bytes = 1024 bytes = 1kB.
 - Sometimes written as 1kiB (pronounced “kibi-byte” where the ‘bi’ means ‘binary’) (but nobody says “kibibyte” out loud because it sounds stupid)
 - \(2^{20} \) bytes = 1MB, \(2^{30} \) bytes = 1GB, \(2^{40} \) bytes = 1TB, etc.
 - Easy rule to convert between exponent and binary metric number:
 \[
 2^{XY} \text{ bytes} = 2^Y \text{ } <X\text{ prefix}>B
 \]
 - \(2^{13} \) bytes = \(2^3 \text{ } kB = 8 \text{ } kB \)
 - \(2^{39} \) bytes = \(2^9 \text{ } GB = 512 \text{ } GB \)
 - \(2^{05} \) bytes = \(2^5 \text{ } B = 32 \text{ } B \)
Decimal to binary using remainders

<table>
<thead>
<tr>
<th>?</th>
<th>Quotient</th>
<th>Remainder</th>
</tr>
</thead>
<tbody>
<tr>
<td>457 ÷ 2 =</td>
<td>228</td>
<td>1</td>
</tr>
<tr>
<td>228 ÷ 2 =</td>
<td>114</td>
<td>0</td>
</tr>
<tr>
<td>114 ÷ 2 =</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>57 ÷ 2 =</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>28 ÷ 2 =</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>14 ÷ 2 =</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>7 ÷ 2 =</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3 ÷ 2 =</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1 ÷ 2 =</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The binary representation is:

111001001
Decimal to binary using comparison

<table>
<thead>
<tr>
<th>Num</th>
<th>Compare 2^n</th>
<th>$\geq ?$</th>
</tr>
</thead>
<tbody>
<tr>
<td>457</td>
<td>256</td>
<td>1</td>
</tr>
<tr>
<td>201</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>73</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The binary representation is 111001001.
Hexadecimal

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
<td>13</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
<td>15</td>
</tr>
</tbody>
</table>

The above table lists the hexadecimal digits along with their binary and decimal equivalents. The hexadecimal numbers are indicated by the prefix `0x` followed by the hexadecimal digits. For example, `0x0` represents decimal `0`, `0x1` represents decimal `1`, and so on up to `0xF` which represents decimal `15`. The binary representation of each hexadecimal digit is shown in the second column. The decimal values are listed in the third column.
Binary to/from hexadecimal

- \(010110110010011 \)\(_2\) -->
- \(0101\ 1011\ 0010\ 0011 \)\(_2\) -->
- \(5\ B\ 2\ 3\)\(_{16}\)

<table>
<thead>
<tr>
<th>Hex digit</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
<td>13</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
<td>15</td>
</tr>
</tbody>
</table>

- \(1\ F\ 4\ B\)\(_{16}\) -->
- \(0001\ 1111\ 0100\ 1011 \)\(_2\) -->
- \(0001111101001011\)\(_2\)
BitOps: Unary

- Bit-wise complement (\(~\))
 - Flips every bit.

\[
\begin{align*}
\sim 0\times0d & \quad // \quad (\text{binary } 00001101) \\
\equiv 0xf2 & \quad // \quad (\text{binary } 11110010)
\end{align*}
\]

Not the same as Logical NOT (\(!\)) or sign change (\(-\))

```c
char i, j1, j2, j3;
i = 0x0d; \quad // \text{binary } 00001101 \\
j1 = \sim i; \quad // \text{binary } 11110010 \\
j2 = -i; \quad // \text{binary } 11110011 \\
j3 = !i; \quad // \text{binary } 00000000
```
BitOps: Two Operands

- Operate **bit-by-bit** on operands to produce a result operand of the same length
- And (\&): result 1 if both inputs 1, 0 otherwise
- Or (|): result 1 if either input 1, 0 otherwise
- Xor (^): result 1 if one input 1, but not both, 0 otherwise
- Operands **must** be of type integer
Two Operands... (cont’d)

- Examples

```
0011 1000  
& 1101 1110  
----------
0001 1000  

0011 1000  
| 1101 1110  
----------
1111 1110  

0011 1000  
^ 1101 1110  
----------
1110 0110  
```
Shift Operations

• \(x \ll y \) is left (logical) shift of \(x \) by \(y \) positions
 • \(x \) and \(y \) must both be integers
 • \(x \) should be unsigned or positive
 • \(y \) leftmost bits of \(x \) are discarded
 • zero fill \(y \) bits on the right

\[
\begin{array}{c}
01111001 \ll 3 \\
\hline
11001000
\end{array}
\]

these 3 bits are discarded

these 3 bits are zero filled
ShiftOps... (cont’d)

• $x \gg y$ is right (logical) shift of x by y positions
 • y rightmost bits of x are discarded
 • zero fill y bits on the left

```
01111001 >> 3
--------------------
00001111
```

these 3 bits are discarded

these 3 bits are zero filled
Bitwise Recipes

• Set a certain bit to 1?
 • Make a MASK with a one at every position you want to set:
 m = 0x02; // 00000010₂
 • OR the mask with the input:
 v = 0x41; // 01000001₂
 v |= m; // 010000₁₁₂

• Clear a certain bit to 0?
 • Make a MASK with a zero at every position you want to clear:
 m = 0xFD; // 11111101₂ (could also write ~0x02)
 • AND the mask with the input:
 v = 0x27; // 00100111₂
 v &= m; // 001001₀₁₂

• Get a substring of bits (such as bits 2 through 5)?
 Note: bits are numbered right-to-left starting with zero.
 • Shift the bits you want all the way to the right then AND them with an appropriate mask:
 v = 0x67; // 01₁₀₀₁₁₁₂
 v >>= 2; // 00₀₁₁₀₀₁₂
 v &= 0x0F; // 00₀₀₁₀₀₁₂
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{align*}
00011101 \\
+ 00101011 \\
\hline
00101011
\end{align*}
\]

• How do we do this?
Binary Math : Addition

- Suppose we want to add two numbers:

 00011101
 + 00101011

 00011101
 + 00101011
 + 232

 00100100

- How do we do this?
 - Let’s revisit decimal addition
 - Think about the process as we do it
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00101011
\end{array}
\]

\[
\begin{array}{c}
\text{695} \\
+ \text{232} \\
\hline
\text{7}
\end{array}
\]

• First add one’s digit 5+2 = 7
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
1 \\
00011101
+ 00101011 \\
\hline
00101011
\end{array}
\]

\[
\begin{array}{c}
695 \\
+ 232 \\
\hline
27
\end{array}
\]

• First add one’s digit 5+2 = 7
• Next add ten’s digit 9+3 = 12 (2 carry a 1)
Binary Math: Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00100110
\end{array}
\]

\[
\begin{array}{c}
695 \\
+ 232 \\
\hline
927
\end{array}
\]

• First add one’s digit 5+2 = 7
• Next add ten’s digit 9+3 = 12 (2 carry a 1)
• Last add hundred’s digit 1+6+2 = 9
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
00011101 \\
+ 00101011 \\
\hline
00101011
\end{array}
\]

• Back to the binary:

• First add 1’s digit 1+1 = ...?
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{array}{c}
1 \\
00011101 \\
+ 00101011 \\
\hline
00100110
\end{array}
\]

• Back to the binary:

• First add 1’s digit 1+1 = 2 (0 carry a 1)
Binary Math : Addition

• Suppose we want to add two numbers:

```
  11
00011101
+ 00101011
  00
```

• Back to the binary:
 • First add 1’s digit 1+1 = 2 (0 carry a 1)
 • Then 2’s digit: 1+0+1 =2 (0 carry a 1)
 • You all finish it out....
Binary Math : Addition

• Suppose we want to add two numbers:

\[
\begin{align*}
111111 & \quad \text{+} \quad 00011101 = 29 \\
00101011 & \quad \text{+} \quad 00101011 = 43 \\
\hline
01001000 & = 72
\end{align*}
\]

• Can check our work in decimal
Issues for Binary Representation of Numbers

• How to represent negative numbers?

• There are many ways to represent numbers in binary
 • Binary representations are encodings → many encodings possible
 • What are the issues that we must address?

• Issue #1: Complexity of arithmetic operations

• Issue #2: Negative numbers

• Issue #3: Maximum representable number

• Choose representation that makes these issues easy for machine, even if it’s not easy for humans (i.e., ECE/CS 250 students)
 • Why? Machine has to do all the work!
Sign Magnitude

• Use leftmost bit for + (0) or – (1):

• 6-bit example (1 sign bit + 5 magnitude bits):
 - +17 = 010001
 - -17 = 110001

• Pros:
 - Conceptually simple
 - Easy to convert

• Cons:
 - Harder to compute (add, subtract, etc) with
 - Positive and negative 0: 000000 and 100000

NOBODY DOES THIS
1’s Complement Representation for Integers

- Use largest positive binary numbers to represent negative numbers
 - To negate a number,
 - invert ("not") each bit:
 - 0 → 1
 - 1 → 0
- Cons:
 - Still two 0s (yuck)
 - Still hard to compute with

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-7</td>
</tr>
<tr>
<td>1001</td>
<td>-6</td>
</tr>
<tr>
<td>1010</td>
<td>-5</td>
</tr>
<tr>
<td>1011</td>
<td>-4</td>
</tr>
<tr>
<td>1100</td>
<td>-3</td>
</tr>
<tr>
<td>1101</td>
<td>-2</td>
</tr>
<tr>
<td>1110</td>
<td>-1</td>
</tr>
<tr>
<td>1111</td>
<td>-0</td>
</tr>
</tbody>
</table>
2’s Complement Integers

- Use large positives to represent negatives
- \((-x) = 2^n - x\)
- This is 1’s complement + 1
- \((-x) = 2^n - 1 - x + 1\)
- So, just invert bits and add 1

6-bit examples:

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>010110</td>
<td>22 (_{10})</td>
</tr>
<tr>
<td>101010</td>
<td>-22 (_{10})</td>
</tr>
<tr>
<td>000001</td>
<td>1 (_{10})</td>
</tr>
<tr>
<td>111111</td>
<td>-1 (_{10})</td>
</tr>
<tr>
<td>000000</td>
<td>0 (_{10})</td>
</tr>
<tr>
<td>111111</td>
<td>-1 (_{10})</td>
</tr>
</tbody>
</table>

EVERYBODY DOES THIS
Pros and Cons of 2’s Complement

• Advantages:
 • Only one representation for 0 (unlike 1’s comp): $0 = 000000$
 • Addition algorithm is much easier than with sign and magnitude
 • Independent of sign bits

• Disadvantage:
 • One more negative number than positive
 • Example: 6-bit 2’s complement number
 $100000_2 = -32_{10}$; but 32_{10} could not be represented

All modern computers use 2’s complement for integers
Most computers today support 32-bit (int) or 64-bit integers
 - Specify 64-bit using gcc C compiler with `long long`
 - To extend precision, use `sign bit extension`
 - Integer precision is number of bits used to represent a number

Examples

$14_{10} = 001110_2$ in 6-bit representation.

$14_{10} = 00000001110_2$ in 12-bit representation

$-14_{10} = 110010_2$ in 6-bit representation

$-14_{10} = 111111110010_2$ in 12-bit representation.
Binary Math : Addition

• Let’s look at another binary addition:

\[
\begin{array}{c}
01011101 \\
+ 01101011 \\
\hline
01101011
\end{array}
\]
Binary Math : Addition

• What about this one:

 1111111
 01011101 = 93
+ 01101011 = 107
 11001000 = -56

• But... that can’t be right?
 • What do you expect for the answer?
 • What is it in 8-bit signed 2’s complement?
Integer Overflow

- Answer should be 200
 - Not representable in 8-bit signed representation
 - No right answer
- This is called integer Overflow
- Real problem in programs
Subtraction

• 2’s complement makes subtraction easy:
 • Remember: A - B = A + (-B)
 • And: -B = ~B + 1
 ↑ that means flip bits (“not”)
 • So we just flip the bits and start with carry-in (CI) = 1
 • Later: No new circuits to subtract (re-use adder hardware!)

\[
1
0110101 \rightarrow 0110101
\]
\[
-1010010 + 0101101
\]
What About Non-integer Numbers?

- There are infinitely many real numbers between two integers
- Many important numbers are real
 - Speed of light $\sim= 3\times10^8$
 - $\pi = 3.1415...$
- Fixed number of bits limits range of integers
 - Can’t represent some important numbers
- Humans use Scientific Notation
 - 1.3×10^4
Option 1: Fixed point

- Use normal integers, but \((X \times 2^K)\) instead of \(X\)
 - Example: 32 bit int, but use \(X \times 65536\)
 - \(3.1415926 \times 65536 = 205887\)
 - \(0.5 \times 65536 = 32768\), etc..

- Pros:
 - Addition/subtraction just like integers ("free")

- Cons:
 - Mul/div require renormalizing (divide by 64K)
 - Range limited (no good rep for large + small)

- Can be good in specific situations
Can we do better?

• Think about scientific notation for a second:

• For example:

 \[6.02 \times 10^{23} \]

• Real number, but comprised of ints:

 • 6 generally only 1 digit here
 • 02 any number here
 • 10 always 10 (base we work in)
 • 23 can be positive or negative

• Can we do something like this in binary?
Option 2: Floating Point

• How about:

 +/- X.YYYYYY * 2^+/-N

• Big numbers: large positive N
• Small numbers (<1): negative N
• Numbers near 0: small N

• This is “floating point”: most common way
IEEE single precision floating point

- Specific format called IEEE single precision:
 \(+/-\ 1.YYYYY \times 2^{(N-127)}\)
- "float" in Java, C, C++, ...

- Assume first bit is always 1 (saves us a bit)
- 1 sign bit (+ = 0, 1 = -)
- 8 bit biased exponent (do N-127)
- Implicit 1 before binary point
- 23-bit mantissa (YYYYY)
Binary fractions

• 1.YYYY has a binary point
 • Like a decimal point but in binary
 • After a decimal point, you have
 • tenths
 • hundredths
 • thousandths
 • ...

• So after a binary point you have...
 • Halves
 • Quarters
 • Eighths
 • ...

Floating point example

- Binary fraction example:
 \[101.101 = 4 + 1 + \frac{1}{2} + \frac{1}{8} = 5.625\]
- For floating point, needs normalization:
 \[1.01101 \times 2^2\]
- Sign is +, which = 0
- Exponent = 127 + 2 = 129 = 1000 0001
- Mantissa = 1.011 0100 0000 0000 0000 0000

```
  31 30 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
  0 1000 0001 011 0100 0000 0000 0000 0000 0000 0000
```
Example:
What floating-point number is:
0xC1580000?
Answer

What floating-point number is 0xC1580000?

\[\text{X} = \begin{array}{cccccc}
31 & 30 & 23 & 22 & \text{s} & \text{E} & \text{F} \\
1 & 1000 & 0010 & 101 & 1000 & 0000 & 0000 0000 0000
\end{array} \]

Sign = 1 which is negative

Exponent = (128+2)-127 = 3

Mantissa = 1.1011

\[-1.1011 \times 2^3 = -1101.1 = -13.5\]
Trick question

• How do you represent 0.0?
 • Why is this a trick question?
 • 0.0 = 000000000
 • But need 1.XXXX representation?

• Exponent of 0 is denormalized
 • Implicit 0. instead of 1. in mantissa
 • Allows 0000....0000 to be 0
 • Helps with very small numbers near 0

• Results in +/- 0 in FP (but they are “equal”)
Other Weird FP numbers

- Exponent = 1111 1111 also not standard
 - All 0 mantissa: +/- \infty
 - 1/0 = +\infty
 - -1/0 = -\infty
 - Non zero mantissa: Not a Number (NaN)
 - \sqrt{-42} = NaN
Floating Point Representation

- Double Precision Floating point:

 64-bit representation:
 - 1-bit **sign**
 - 11-bit (biased) **exponent**
 - 52-bit **fraction** (with implicit 1).

- “double” in Java, C, C++, ...

<table>
<thead>
<tr>
<th>S</th>
<th>Exp</th>
<th>Mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11-bit</td>
<td>52-bit</td>
</tr>
</tbody>
</table>
What About Strings?

• Many important things stored as strings...
 • E.g., your name
• How should we store strings?
Standardized ASCII (0-127)

<table>
<thead>
<tr>
<th>Dec</th>
<th>Hx</th>
<th>Oct</th>
<th>HTML</th>
<th>Char</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>000</td>
<td>NUL</td>
<td>(null)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>001</td>
<td>SOH</td>
<td>(start of heading)</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>002</td>
<td>STX</td>
<td>(start of text)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>003</td>
<td>ETX</td>
<td>(end of text)</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>004</td>
<td>EOT</td>
<td>(end of transmission)</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>005</td>
<td>ENQ</td>
<td>(enquiry)</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>006</td>
<td>ACK</td>
<td>(acknowledge)</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>007</td>
<td>BEL</td>
<td>(bell)</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>010</td>
<td>BS</td>
<td>(backspace)</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>011</td>
<td>TAB</td>
<td>(horizontal tab)</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>012</td>
<td>LF</td>
<td>(NL line feed, new line)</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>013</td>
<td>VT</td>
<td>(vertical tab)</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>014</td>
<td>FF</td>
<td>(NP form feed, new page)</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>015</td>
<td>CR</td>
<td>(carriage return)</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>016</td>
<td>SO</td>
<td>(shift out)</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>017</td>
<td>SI</td>
<td>(shift in)</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>020</td>
<td>DLE</td>
<td>(data link escape)</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>021</td>
<td>DC1</td>
<td>(device control 1)</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>022</td>
<td>DC2</td>
<td>(device control 2)</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>023</td>
<td>DC3</td>
<td>(device control 3)</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>024</td>
<td>DC4</td>
<td>(device control 4)</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>025</td>
<td>NAK</td>
<td>(negative acknowledge)</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>026</td>
<td>SYN</td>
<td>(synchronous idle)</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>027</td>
<td>ETB</td>
<td>(end of trans. block)</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>030</td>
<td>CAN</td>
<td>(cancel)</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>031</td>
<td>EM</td>
<td>(end of medium)</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>032</td>
<td>SUB</td>
<td>(substitute)</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>033</td>
<td>ESC</td>
<td>(escape)</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>034</td>
<td>FS</td>
<td>(file separator)</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>035</td>
<td>GS</td>
<td>(group separator)</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>036</td>
<td>RS</td>
<td>(record separator)</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>037</td>
<td>US</td>
<td>(unit separator)</td>
</tr>
</tbody>
</table>

Source: www.LookupTables.com
One Interpretation of 128-255

128	Ç	144	É	161	í	177		193		209		225	ß	241	±
129	ü	145	æ	162	ó	178		194		210		226	Γ	242	¥
130	é	146	Æ	163	ú	179		195		211		227	π	243	£
131	à	147	ò	164	ŋ	180		196		212		228	Σ	244	¥
132	á	148	ö	165	Ň	181		197		213		229	Ω	245	¥
133	ã	149	ô	166		182		198		214		230	μ	246	£
134	å	150	ù	167		183		199		215		231	τ	247	¥
135	ç	151	û	168		184		200		216		232	Φ	248	¥
136	ë	152		169		185		201		217		233	Ω	249	¥
137	è	153	Õ	170		186		202		218		234	μ	250	¥
138	ë	154	Ü	171	½	187		203		219		235	γ	251	√
139	i	156	£	172	¼	188		204		220		236	∞	252	¥
140	î	157	¥	173	i	189		205		221		237	φ	253	¥
141	ì	158		174	«	190		206		222		238	∈	254	¥
142	Ä	159	ÿ	175	»	191		207		223		239	ι	255	¥
143	Å	160	á	176		192		208		224		240	≡		
(This allowed totally sweet ASCII art in the 90s)

Sources:
Outline

• Previously:
 • Computer is machine that does what we tell it to do

• Next:
 • How do we tell computers what to do?
 • How do we represent data objects in binary?
 • How do we represent data locations in binary?
Computer Memory

- Where do we put these numbers?
 - Registers [more on these later]
 - In the processor core
 - Compute directly on them
 - Few of them (~16 or 32 registers, each 32-bit or 64-bit)

- Memory [Our focus now]
 - External to processor core
 - Load/store values to/from registers
 - Very large (multiple GB)
Memory Organization

• Memory: billions of locations...how to get the right one?
 • Each memory location has an address
 • Processor asks to read or write specific address
 • Memory, please load address 0x123400
 • Memory, please write 0xFE into address 0x8765000
 • Kind of like a giant array
 • Array of what?
 • Bytes?
 • 32-bit ints?
 • 64-bit ints?
Memory Organization

- Most systems: byte (8-bit) addressed
 - Memory is “array of bytes”
 - Each address specifies 1 byte
 - Support to load/store 8, 16, 32, 64 bit quantities
 - Byte ordering varies from system to system

- Some systems “word addressed”
 - Memory is “array of words”
 - Smaller operations “faked” in processor
 - Not very common
Word of the Day: Endianess

Byte Order

- **Big Endian:** byte 0 is 8 most significant bits IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA
- **Little Endian:** byte 0 is 8 least significant bits Intel 80x86, DEC Vax, DEC Alpha

![Diagram of big and little endian byte orders](image)
Memory Layout

- Memory is array of bytes, but there are conventions as to what goes where in this array
 - **Text**: instructions (the program to execute)
 - **Data**: global variables
 - **Stack**: local variables and other per-function state; starts at top & grows down
 - **Heap**: dynamically allocated variables; grows up
- What if stack and heap overlap????
int anumber = 3;

int factorial (int x) {
 if (x == 0) {
 return 1;
 }
 else {
 return x * factorial (x - 1);
 }
}

int main (void) {
 int z = factorial (anumber);
 printf("%d\n", z);
 return 0;
}
Summary: From C to Binary

• Everything must be represented in binary!
• Pointer is memory location that contains address of another memory location
• Computer memory is linear array of bytes
 • **Integers:**
 • unsigned \(\{0..2^n-1\}\) vs signed \(-2^{n-1} .. 2^{n-1}-1\) ("2’s complement")
 • char (8-bit), short (16-bit), int/long (32-bit), long long (64-bit)
 • **Floats:** IEEE representation,
 • float (32-bit: 1 sign, 8 exponent, 23 mantissa)
 • double (64-bit: 1 sign, 11 exponent, 52 mantissa)
 • **Strings:** char array, ASCII representation
• Memory layout
 • **Stack** for local, **static** for globals, **heap** for malloc’d stuff (must free!)
The following slides re-state a lot of what we’ve covered but in a different way. We’ll likely skip it for time, but you can use the slides as an additional reference.
Let’s do a little Java…

public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
Let’s do a little Java...

```java
public class Example {
    public static void swap (int x, int y) {
        int temp = x;
        x = y;
        y = temp;
    }
    public static void main (String[] args) {
        int a = 42;
        int b = 100;
        swap (a, b);
        System.out.println("a = " + a + " b = " + b);
    }
}
```

- What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}

• What does this print? Why?
Let’s do a little Java…

```java
public class Example {
    public static void swap (int x, int y) {
        int temp = x;
        x = y;
        y = temp;
    }
    public static void main (String[] args) {
        int a = 42;
        int b = 100;
        swap (a, b);
        System.out.println("a =" + a + " b = " + b);
    }
}
```

- What does this print? Why?
public class Example {
 public static void swap (int x, int y) {
 int temp = x;
 x = y;
 y = temp;
 }
 public static void main (String[] args) {
 int a = 42;
 int b = 100;
 swap (a, b);
 System.out.println("a =" + a + " b = " + b);
 }
}
• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data +
 " b = " + b.data);
 }
}

• What does this print? Why?
Let’s do some different Java…

```java
public class Ex2 {
    int data;
    public Ex2 (int d) { data = d; }
    public static void swap (Ex2 x, Ex2 y) {
        int temp = x.data;
        x.data = y.data;
        y.data = temp;
    }
    public static void main (String[] args) {
        Example a = new Example (42);
        Example b = new Example (100);
        swap (a, b);
        System.out.println("a =" + a.data +
                           " b = " + b.data);
    }
}
```

- What does this print? Why?
Let’s do some different Java...

```java
public class Ex2 {
    int data;
    public Ex2 (int d) { data = d; }
    public static void swap (Ex2 x, Ex2 y) {
        int temp = x.data;
        x.data = y.data;
        y.data = temp;
    }
    public static void main (String[] args) {
        Example a = new Example (42);
        Example b = new Example (100);
        swap (a, b);
        System.out.println("a =" + a.data + " b =" + b.data);
    }
}
```

- What does this print? Why?
Let’s do some different Java…

public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data +
 " b = " + b.data);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a =" + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a =" + a.data +
 " b = " + b.data);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a = " + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
public class Ex2 {
 int data;
 public Ex2 (int d) { data = d; }
 public static void swap (Ex2 x, Ex2 y) {
 int temp = x.data;
 x.data = y.data;
 y.data = temp;
 }
 public static void main (String[] args) {
 Example a = new Example (42);
 Example b = new Example (100);
 swap (a, b);
 System.out.println("a =" + a.data + " b = " + b.data);
 }
}

• What does this print? Why?
References and Pointers (review)

• Java has references:
 • Any variable of object type is a reference
 • Point at objects (which are all in the heap)
 • Under the hood: is the memory address of the object
 • Cannot explicitly manipulate them \((e.g.,\, \text{add } 4)\)

• Some languages (C, C++, assembly) have explicit pointers:
 • Hold the memory address of something
 • Can explicitly compute on them
 • Can de-reference the pointer \((\ast ptr)\) to get thing-pointed-to
 • Can take the address-of \((&x)\) to get something’s address
 • Can do very unsafe things, shoot yourself in the foot
• “address of” operator &
 • don’t confuse with bitwise AND operator (&&)

Given

```c
int x; int* p;  // p points to an int
p = &x;
```

Then

```c
*p = 2;  and x = 2; produce the same result
Note: p is a pointer, *p is an int
```

• What happens for `p = 2`;

On 32-bit machine, `p` is 32-bits

```
x 0x26cf0
```

```
p 0x26d00
```

```
0x26cbf0
```
• Java:
  ```java
  int [] x = new int [nElems];
  ```

• C:
  ```c
  int data[42]; //if size is known constant
  int* data = (int*)malloc (nElem * sizeof(int));
  ```

 • `malloc` takes number of bytes
 • `sizeof` tells how many bytes something takes
• x is a pointer, what is x+33?
• A pointer, but where?
 • what does calculation depend on?
• Result of adding an int to a pointer depends on size of object pointed to
 • One reason why we tell compiler what type of pointer we have, even though all pointers are really the same thing (and same size)

int* a=malloc(100*sizeof(int));

given:

```
 0  1  32  33  98  99
```

a[33] is the same as *(a+33)
if a is 0x00a0, then a+1 is 0x00a4, a+2 is 0x00a8
(decimal 160, 164, 168)

double* d=malloc(200*sizeof(double));

given:

```
 0  1  3  199
```

*(d+33) is the same as d[33]
if d is 0x00b0, then d+1 is 0x00b8, d+2 is 0x00c0
(decimal 176, 184, 192)
More Pointer Arithmetic

• address one past the end of an array is ok for pointer comparison only

• what’s at *(begin+44)?

• what does begin++ mean?

• how are pointers compared using < and using == ?

• what is value of end - begin?

```c
char* a = new char[44];
char* begin = a;
char* end = a + 44;
while (begin < end)
{
    *begin = 'z';
    begin++;
}
```
More Pointers & Arrays

```
int* a = new int[100];
```

```
0  1  32 33  98 99
```

- `a` is a pointer
- `*a` is an int
- `a[0]` is an int (same as `*a`)
- `a[1]` is an int
- `a+1` is a pointer
- `a+32` is a pointer
- `*(a+1)` is an int (same as `a[1]`)
- `*(a+99)` is an int
- `*(a+100)` is trouble
#include <stdio.h>

main()
{
 int* a = (int*)malloc (100 * sizeof(int));
 int* p = a;
 int k;

 for (k = 0; k < 100; k++)
 {
 *p = k;
 p++;
 }
 printf("entry 3 = %d\n", a[3])
}
Memory Manager (Heap Manager)

- `malloc()` and `free()`
- Library routines that handle memory management for heap (allocation / deallocation)
- Java has garbage collection (reclaim memory of unreferenced objects)
- C must use `free`, else memory leak
Strings as Arrays (review)

- A string is an array of characters with ‘\0’ at the end
- Each element is one byte, ASCII code
- ‘\0’ is null (ASCII code 0)
• `strlen()` returns the number of characters in a string
 • same as number elements in char array?

```c
int strlen(char * s)
    // pre: ‘\0’ terminated
    // post: returns # chars
{
    int count=0;
    while (*s++)
    {
        count++;
    }
    return count;
}
```
Vector Class vs. Arrays

• Vector Class
 • insulates programmers
 • array bounds checking
 • automagically growing/shrinking when more items are added/deleted

• How are Vectors implemented?
 • Arrays, re-allocated as needed

• Arrays can be more efficient