
Homework #4 – Processor Core Design

 
Last updated 2016-10-21, changes highlighted in yellow. 

For this homework, you will be building a single-cycle processor in Quartus II using Structural VHDL, 

downloading the design onto FPGA board, and running the test programs provided for you. You may use 

when-else, but not other behavioral style VHDL. This problem is not trivial, so please start early. Please 

submit a Quartus Archive (.qar) file for this assignment. 

Have fun!! 

1. Problem Statement 
In this problem, you will build an un-pipelined single-cycle processor. A skeleton has been built for you, 

including many of the essential components that make up the CPU. This skeleton includes the top-level 

entity (“skeleton”), the processor itself (“processor”), drivers for the LCD (“lcd”), PS/2 keyboard 

(“ps2”), and several supporting modules (see section 2 for details). 

The control unit (“control”) is for you to implement, which is responsible for interpreting instruction 

opcodes and setting certain signals correctly so that the correct instruction can execute. You will 

incorporate these components and add other combinational logic to make the processor functional. The 

ISA you should implement is listed in part 3. It is a very small RISC ISA. Note that there are instructions 

called input and output, which will be explained below. The processor module has following inputs and 

outputs: (do not modify these interfaces) 

clock        : IN STD_LOGIC; 

reset        : IN STD_LOGIC; 

keyboard_in  : IN STD_LOGIC_VECTOR(31 downto 0); 

keyboard_ack : OUT1 STD_LOGIC; 

lcd_write    : OUT STD_LOGIC; 

lcd_data     : OUT STD_LOGIC_VECTOR(31 downto 0); 

Before reset is asserted high, the state of the processor is undefined. After reset is asserted, the 

processor begins execution from instruction memory address zero with all zeros in the register file.  

Your implementation of the input instructions should have the following semantics: on the same cycle 

that you read the data provided on keyboard_in, you must assert keyboard_ack high for that 

clock cycle and only that clock cycle. Failing to assert it high will make you always read the same input; 

asserting it high for more than one cycle will destroy unread data in the keyboard buffer.  
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Your implementation of the output instruction should have the following semantics: on the same cycle 

that you write data to lcd_data, you must assert lcd_write high for that clock cycle and only that 

clock cycle. Failing to assert it high will cause no output to be displayed; asserting it high for more than 

one cycle will display additional gibberish. 

2. Provided materials 
The structure of the provided skeleton project is as follows; you’ll just be implementing two of the 

existing components (plus any components you choose to add): 

 skeleton: The top-level entity for the finished system; includes your processor as well as the 

keyboard and LCD. 

 lcd, ps2: Interfaces to the LCD display and PS/2 keyboard. 

 processor: The processor itself. You’ll be implementing this component. 

 control: An empty module intended to translate the opcode to various control signals needed 

by the CPU datapath. You’ll be implementing this component. 

 pll: The phase-lock-loop that provides the clock for your system. It’s provided as an Altera IP 

module, and it’s set to 10MHz by default. 

 imem: Instruction memory ROM. Implemented as an Altera IP module. To change the program, 

provide this component with a the appropriate  *-imem.hex file. 

 dmem: Data memory RAM. Implemented as an Altera IP module. To change the program, 

provide this component with a the appropriate  *-dmem.hex file. 

 alu: An Arithmetic/Logic Unit (ALU) with support for the required math operations. 

 adder_rc: A basic reusable n-bit ripple-carry adder module. 

 adder_cs: A basic reusable n-bit carry-select adder module. 

 shifter: A basic 32-bit bit shifter. 

 regfile: A register file with 32 32-bit registers, one write port, and two read ports. 

 reg: A basic reusable n-bit register module. 

 reg_2port: Similar to the basic reg module, but with two tri-state buffered output ports. 

 reg0_2port: Similar to the reg_2port module, but with a permanent value of 0. 

 decoder5to32: A basic 5-to-32-bit decoder. 

 mux: A basic reusable n-bit 2-to-1 mux module. 

  



3. The instruction set 
Your CPU has 32 general purpose registers: $r0-$r31. Register $r0 is the constant value 0 (i.e., an 
instruction can specify it as a destination but “writing” to $r0 must not change its value). The register 
$r31 is the link register for the jal instruction (similar to $ra in MIPS).  The user of your CPU may write to 
it with other instructions, but that would mess up function call/return for them.   

instruction opcode type usage operation 

add 00000 R add $rd, $rs, $rt $rd = $rs + $rt 

sub 00001 R sub $rd, $rs, $rt $rd = $rs – $rt 

and 00010 R and $rd, $rs, $rt $rd = $rs AND $rt 

or 00011 R or $rd, $rs, $rt $rd = $rs OR $rt 

sll 00100 R sll $rd, $rs, $rt $rd = $rs shifted left by $rt[4:0], zero-fill 

srl 00101 R srl $rd, $rs, $rt $rd = $rs shifted right by $rt[4:0], zero-extend 
addi 00110 I addi $rd, $rs, N $rd = $rs + N 
lw 00111 I lw $rd, N($rs) $rd = Mem[$rs+N] 
sw 01000 I sw $rd, N($rs) Mem[$rs+N] = $rd 
beq 01001 I beq $rd, $rs, N if ($rd==$rs) then PC=PC+1+N 
bgt 01010 I bgt $rd, $rs, N if ($rd>$rs) then PC=PC+1+N 
jr 01011 I jr $rd PC = $rd 
j 01100 J j N PC = N 
jal 01101 J jal N $r31=PC+1; PC = N 

input 01110 I input $rd $rd = keyboard input 
output 01111 I output $rd print character $rd[7:0] on LCD display 

 
The formats of the R, I, and J type instructions are shown below.  

Type Format 

R Opcode [31:27] Rd [26:22] Rs [21:17] Rt [16:12] Zeroes [11:0] 

I Opcode [31:27] Rd [26:22] Rs2 [21:17] Immediate [16:0] 

J Opcode [31:27] Target [26:0] 

 

Notes: 

 The immediate field in I-Type instructions (bits 16 downto 0) is signed 2s complement. The 

processor should sign-extend it to the full 32-bit word size. 

 The instruction memory ROM is fairly small, so your PC can be as small as 12 bits; bits higher 

than this in J-type instructions (bits 26 downto 0) can be discarded. 

 Register fields that are undefined are filled with zeroes by the assembler (for example, the jr 

instruction will have an $rt field which isn’t used; the assembler will set this field to zero). That 

                                                           
2
 Register fields updated 2016-10-21 



said, this shouldn’t matter, as such instructions shouldn’t be doing anything with such registers 

anyway. 

 Register $r0 always equals zero. 

 Registers $r1 through $r30 are general purpose. 

 Register $r31 stores the link address of a jump-and-link instruction. 

 The input instruction shall assert high on input_ack for the cycle only when the input is 

read from the keyboard controller; otherwise it shall assert low. 

 The output instruction shall assert high on LCD_wren for the cycle only when the data is 

output to the LCD controller; otherwise it shall assert low. 

 Memory is word-addressed, meaning that each unique memory address gives a full 32-bit 

word; this is in contrast to memory on MIPS and x86, which are byte-addressed. This was done 

because word-addressed memory is actually easier to implement. 

 The instruction and data memory address spaces are separate (one is a ROM, the other a RAM).  

 Static data begins at data memory address zero. Stack data begins at the end of the data 

memory and grows downwards. There is no preset boundary between the end of static data and 

the start of the upwards-growing heap; this is a responsibility of the assembly program. 

 Note that the operand order for bgt and beq, as applied to the ALU, is different from most 

other instructions. Further, note that the ALU gives you an “isLessThan” signal rather than 

“isGreaterThan”.  

 There are many aspects of the ISA that don’t actually affect your job as the CPU architect at all. 

As a result, you don’t need to worry about: 

o Stack management – the stack is a convention maintained by programmers writing code 

for your CPU; you don’t have to do anything to make it exist. This means that it’s up the 

programmer to decide if one the registers will be used as a stack pointer; you as the CPU 

designer don’t have to do anything special to allow or enforce this. 

o Heap management – same as the stack; it’s maintained by the programmers so you 

don’t have to do anything to make it exist. This means that even though the heap is 

supposed to start right above static data, you as the CPU designer don’t have to do 

anything special to allow or enforce this. 

o The kernel – there’s no OS kernel for your CPU, and user programs running on your CPU 

will have direct access to the I/O devices (keyboard+LCD), so you don’t need to worry 

about inventing syscalls, protected instructions, exceptions, etc. 

 

  



4. Testing 
It is a good idea to test thoroughly before you download the design to FPGA board. It is recommended 

to use ModelSim to test each module. When running on the FPGA board, a keyboard should be plugged 

into the PS/2 port (not USB port) on the board for input. 

We are providing an assembler and a disassembler for you to generate test programs and to analyze 

existing binary files.  These tools are posted on the course page (below the link to this writeup).  These 

are very limited tools (e.g., no hex values for constants - only decimal integers).  We have tested the 

assembler on the Duke Linux machines.  You will have to copy the generated memory image files to your 

own machine, or you can use the assembler to whatever machine you have, provided you have Python 

2.6 or later installed. Please read the included readme.txt for details on these tools. 

Along with these tools, we are providing a number of test programs: 

 test-fibonacci: Asks a user for a number N, then prints the N-th Fibonacci number. It 

computes recursively, so may have memory issues for N>30 or so. 

 test-give_me_n: Asks a user for a number, then prints that number.  

 test-hello: This program prints "Hello" just with immediate values. 

 test-hello2: This program prints "Hello from dmem" from data memory. 

 test-simple: This program doesn't output anything; it mainly just plays with various 

instructions, and is suitable for simulation. 

The HEX files for instruction memory and data memory are provided for the first two3. For the others, 

you’ll need to use the included assembler to produce these HEX files. The output format is the Intel HEX 

format, which specifies words using a special notation. 

To use a given program, update the imem and dmem components using the wizard interface to set their 

initialization file to the appropriate -imem.hex and -dmem.hex files. 

The test-give_me_n-*.hex file is selected by default for imem and dmem. When this program 

starts, it displays “Give Me N:”, and you can type in a number and press “Enter”, and it should show “n=” 

and the number that you entered. If you then press “reset” the process repeats (you are prompted for 

another number, which it will then display back to you).  
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 These test programs were just available to me as hex, with the original author and means of creation lost to 

history. It has been disassembled using the enclosed disassembler, with jumps annotated as comments. This is an 
interestingly realistic situation, as having an undocumented binary file and needing to reverse-engineer it is not an 
uncommon problem in industry... 

https://en.wikipedia.org/wiki/Intel_HEX
https://en.wikipedia.org/wiki/Intel_HEX


5. Extra Credit 
There are several ways to earn extra credit on this assignment, each worth up to 5 points. You may 

implement as many as you wish, but you will only be credited for up to two (2) of them. Options: 

 Implement a game or other interesting program from scratch on your CPU. The program must 

be of significant complexity. 

 Display PC[15:0] in hex on the seven-segment display using digits HEX3..HEX0. 

 Display a “mega-instructions executed” counter in hex on the seven-segment display using digits 

HEX7..HEX4; this will show a count of instructions executed divided by 220 (which approximates 

106). This counter should be cleared to zero on reset. 

 Allow switching between the PLL-provided clock and a manual “human” clock. When SW0 is set 

high, the CPU clock should run at full speed. When SW0 is set low, the clock should be tied to 

KEY3, meaning that each press of the button will advance one clock cycle. To allow this to be 

observed, tie LEDG0 to the clock and make LEDR17..LEDR0 show the high 18 bits of the current 

instruction.  (Note: because of the physics involved in the actual button, a single press may be 

registered as more than one cycle; this is okay for our purposes, but in industry, the switch 

would be processed with “debounce” logic to eliminate these oscillations.) 

These are the kinds of things people were doing with the earliest microcomputers, such as the 

Altair 8800 from 1974, which had a physical “stop/run” switch, a “single step” button, and an array of 

switches and LEDs to directly view/set the address and data lines of the CPU. 

NOTE: Do not let your pursuit of extra credit endanger the proper functioning of the main CPU! 

https://en.wikipedia.org/wiki/Altair_8800

