
ECE550
Midterm

Name: NetID:

There are 6 questions, with the point values as shown below. You have 75 minutes with a
total of 75 points. Pace yourself accordingly.

This exam must be individual work. You may not collaborate with your fellow students.
However, this exam is open book and open notes. You may use any printed materials, but
no electronic nor interactice resources.

I certify that the work shown on this exam is my own work, and that I have
neither given nor received improper assistance of any form in the completion of
this work.

Signature:

Question Points Earned Points Possible

1 Combinatorial Logic 10

2 Sequential Logic 10

3 FSMs 10

4 Asm Programming 20

5 Datapaths 10

6 Memory Hierarchy 15

Total 75

Percent 100

1

Question 1 Combinatorial Logic [10 pts]
Given the following truth-table:

a b c x

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

1. Write the sum-of-product formula

2. Simplify the formula

3. Write VHDL that implements the formula

entity q1 is

port (

a : in std_logic;

b : in std_logic;

c : in std_logic;

x : out std_logic);

end q1;

architecture basic of q1 is

begin

end basic;

2

Question 2 Sequential Logic [10 pts]
Consider the following VHDL fragment, in which x, and y are inputs, z is an output, and
there are two DFFs (a and b) whose d inputs are a_d and b_d respectively, and whose q

outputs are a_q and b_q respectively:

b_d <= b_q or x;

a_d <= (b_q xor a_q) nor y;

z <= a_q and (not b_q);

Complete the waveform below (assume that the DFFs are triggered by the rising edge of
clk): Note that a_q is initially 1, and b_q is initially 0:

clk

x

y

a_d

a_q

b_d

b_q

z

3

Question 3 FSMs [10 pts]
Draw a state machine diagram for a finite state machine which accepts a single bit input
(either 0 or 1—you can just label each edge with 0 or 1). This state machine also has a
single bit of output, which is initially 0.

The output of this state machine should be a 1 whenever (the number of 0s input, mod
3) is equal to (the number of 1s input mod 3). For example, if the state machine has received
7 inputs of 0 and 22 inputs of 1, the output would be a 1 (as 7 mod 3 = 22 mod 3). If it
received another 0 (making 22 1s and 8 0s) the output would become 0. If it then receive
another 1 (23 and 8), the output would again be 1.

Label each state with the bit it outputs. Be sure to indicate your start state (with an
arrow to it from nowhere).

4

Question 4 Asm Programming [20 pts]
Translate the following C function to MIPS assembly. Answer on the pages after the
MIPS reference where you have each C-code line written out for you with space to write
the MIPS assembly for that line directly under it.

void * myRealloc(void * ptr, size_t sz) {

void * ans = malloc(sz);

if (ans == NULL || ptr == NULL) {

return ans;

}

sz = limitToAllocSize(sz, ptr);

char * p1 = ptr;

char * p2 = ans;

while (sz > 0) {

*p2 = *p1;

p1++;

p2++;

sz--;

}

free(ptr);

return ans;

}

Answer on next pages after the MIPS reference
The next 3 pages are MIPS reference material for your

benefit.

5

MIPS Assembly Instructions

 Page 1 of 3

Arithmetic & Logical Instructions
abs Rdest, Rsrc Absolute Value y
add Rdest, Rsrc1, Src2 Addition (with overflow)
addi Rdest, Rsrc1, Imm Addition Immediate (with overflow)
addu Rdest, Rsrc1, Src2 Addition (without overflow)
addiu Rdest, Rsrc1, Imm Addition Immediate (without overflow)
and Rdest, Rsrc1, Src2 AND
andi Rdest, Rsrc1, Imm AND Immediate
div Rsrc1, Rsrc2 Divide (signed)
divu Rsrc1, Rsrc2 Divide (unsigned)
div Rdest, Rsrc1, Src2 Divide (signed, with overflow)
divu Rdest, Rsrc1, Src2 Divide (unsigned, without overflow)
mul Rdest, Rsrc1, Src2 Multiply (without overflow)
mulo Rdest, Rsrc1, Src2 Multiply (with overflow)
mulou Rdest, Rsrc1, Src2 Unsigned Multiply (with overflow)
mult Rsrc1, Rsrc2 Multiply
multu Rsrc1, Rsrc2 Unsigned Multiply
Multiply the contents of the two registers. Leave the low-order word
of the product in register
lo and the high-word in register hi.
neg Rdest, Rsrc Negate Value (with overflow)
negu Rdest, Rsrc Negate Value (without overflow)
nor Rdest, Rsrc1, Src2 NOR
not Rdest, Rsrc NOT y
or Rdest, Rsrc1, Src2 OR
ori Rdest, Rsrc1, Imm OR Immediate
rem Rdest, Rsrc1, Src2 Remainder y
remu Rdest, Rsrc1, Src2 Unsigned Remainder
Put the remainder from dividing the integer in register Rsrc1 by the
integer in Src2 into register Rdest.
rol Rdest, Rsrc1, Src2 Rotate Left
ror Rdest, Rsrc1, Src2 Rotate Right
sll Rdest, Rsrc1, Src2 Shift Left Logical
sllv Rdest, Rsrc1, Rsrc2 Shift Left Logical Variable
sra Rdest, Rsrc1, Src2 Shift Right Arithmetic
srav Rdest, Rsrc1, Rsrc2 Shift Right Arithmetic Variable
srl Rdest, Rsrc1, Src2 Shift Right Logical
srlv Rdest, Rsrc1, Rsrc2 Shift Right Logical Variable
sub Rdest, Rsrc1, Src2 Subtract (with overflow)
subu Rdest, Rsrc1, Src2 Subtract (without overflow)
xor Rdest, Rsrc1, Src2 XOR
xori Rdest, Rsrc1, Imm XOR Immediate

Constant-Manipulating Instructions
li Rdest, imm Load Immediate y
lui Rdest, imm Load Upper Immediate

Comparison Instructions
seq Rdest, Rsrc1, Src2 Set Equal
Set register Rdest to 1 if register Rsrc1 equals Src2 and to be 0
otherwise.
sge Rdest, Rsrc1, Src2 Set Greater Than Equal
sgeu Rdest, Rsrc1, Src2 Set Greater Than Equal Unsigned y
Set register Rdest to 1 if register Rsrc1 is greater than or equal to
Src2 and to 0 otherwise.
sgt Rdest, Rsrc1, Src2 Set Greater Than
sgtu Rdest, Rsrc1, Src2 Set Greater Than Unsigned
Set register Rdest to 1 if register Rsrc1 is greater than Src2 and to 0
otherwise.
sle Rdest, Rsrc1, Src2 Set Less Than Equal y
sleu Rdest, Rsrc1, Src2 Set Less Than Equal Unsigned y

Set register Rdest to 1 if register Rsrc1 is less than or equal to Src2
and to 0 otherwise.
slt Rdest, Rsrc1, Src2 Set Less Than
slti Rdest, Rsrc1, Imm Set Less Than Immediate
sltu Rdest, Rsrc1, Src2 Set Less Than Unsigned
sltiu Rdest, Rsrc1, Imm Set Less Than Unsigned Immediate
Set register Rdest to 1 if register Rsrc1 is less than Src2 (or Imm)
and to 0 otherwise.
sne Rdest, Rsrc1, Src2 Set Not Equal
Set register Rdest to 1 if register Rsrc1 is not equal to Src2 and to 0
otherwise.

Branch and Jump Instructions
b label Branch instruction y
Unconditionally branch to the instruction at the label.
bczt label Branch Coprocessor z True
bczf label Branch Coprocessor z False
Conditionally branch to the instruction at the label if coprocessor z's
condition flag is true
(false).
beq Rsrc1, Src2, label Branch on Equal
Conditionally branch to the instruction at the label if the contents of
register Rsrc1 equals Src2.
beqz Rsrc, label Branch on Equal Zero y
Conditionally branch to the instruction at the label if the contents of
Rsrc equals 0.
bge Rsrc1, Src2, label Branch on Greater Than Equal
bgeu Rsrc1, Src2, label Branch on GTE Unsigned y
Conditionally branch to the instruction at the label if the contents of
register Rsrc1 are greater
than or equal to Src2.
bgez Rsrc, label Branch on Greater Than Equal Zero
Conditionally branch to the instruction at the label if the contents of
Rsrc are greater than or
equal to 0.
bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
Conditionally branch to the instruction at the label if the contents of
Rsrc are greater than or
equal to 0. Save the address of the next instruction in register 31.
bgt Rsrc1, Src2, label Branch on Greater Than
bgtu Rsrc1, Src2, label Branch on Greater Than Unsigned
Conditionally branch to the instruction at the label if the contents of
register Rsrc1 are greater
than Src2.
bgtz Rsrc, label Branch on Greater Than Zero
Conditionally branch to the instruction at the label if the contents of
Rsrc are greater than 0.
ble Rsrc1, Src2, label Branch on Less Than Equal
bleu Rsrc1, Src2, label Branch on LTE Unsigned
Conditionally branch to the instruction at the label if the contents of
register Rsrc1 are less than or equal to Src2.
blez Rsrc, label Branch on Less Than Equal Zero
Conditionally branch to the instruction at the label if the contents of
Rsrc are less than or equal to 0.
bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
bltzal Rsrc, label Branch on Less Than And Link
Conditionally branch to the instruction at the label if the contents of
Rsrc are greater or equal to 0 or less than 0, respectively. Save the
address of the next instruction in register 31.
blt Rsrc1, Src2, label Branch on Less Than
bltu Rsrc1, Src2, label Branch on Less Than Unsigned

MIPS Assembly Instructions

 Page 2 of 3

Conditionally branch to the instruction at the label if the contents of
register Rsrc1 are less
than Src2.
bltz Rsrc, label Branch on Less Than Zero
Conditionally branch to the instruction at the label if the contents of
Rsrc are less than 0.
bne Rsrc1, Src2, label Branch on Not Equal
Conditionally branch to the instruction at the label if the contents of
register Rsrc1 are not
equal to Src2.
bnez Rsrc, label Branch on Not Equal Zero
Conditionally branch to the instruction at the label if the contents of
Rsrc are not equal to 0.
j label Jump
Unconditionally jump to the instruction at the label.
jal label Jump and Link
jalr Rsrc Jump and Link Register
Unconditionally jump to the instruction at the label or whose
address is in register Rsrc. Save
the address of the next instruction in register 31.
jr Rsrc Jump Register
Unconditionally jump to the instruction whose address is in register
Rsrc.
Load Instructions
la Rdest, address Load Address y
Load computed address, not the contents of the location, into
register Rdest.
lb Rdest, address Load Byte
lbu Rdest, address Load Unsigned Byte
Load the byte at address into register Rdest. The byte is
sign-extended by the lb, but not the
lbu, instruction.
ld Rdest, address Load Double-Word
Load the 64-bit quantity at address into registers Rdest and Rdest +
1.
lh Rdest, address Load Halfword
lhu Rdest, address Load Unsigned Halfword
Load the 16-bit quantity (halfword) at address into register Rdest.
The halfword is sign-extended
by the lh, but not the lhu, instruction
lw Rdest, address Load Word
Load the 32-bit quantity (word) at address into register Rdest.
lwcz Rdest, address Load Word Coprocessor
Load the word at address into register Rdest of coprocessor z (0--3).
lwl Rdest, address Load Word Left
lwr Rdest, address Load Word Right
Load the left (right) bytes from the word at the possibly-unaligned
address into register Rdest.
ulh Rdest, address Unaligned Load Halfword
ulhu Rdest, address Unaligned Load Halfword Unsigned
Load the 16-bit quantity (halfword) at the possibly-unaligned
address into register Rdest. The halfword is sign-extended by the
ulh, but not the ulhu, instruction
ulw Rdest, address Unaligned Load Word
Load the 32-bit quantity (word) at the possibly-unaligned address
into register Rdest.

Store Instructions
sb Rsrc, address Store Byte
Store the low byte from register Rsrc at address.
sd Rsrc, address Store Double-Word y
Store the 64-bit quantity in registers Rsrc and Rsrc + 1 at address.

sh Rsrc, address Store Halfword
Store the low halfword from register Rsrc at address.
sw Rsrc, address Store Word
Store the word from register Rsrc at address.
swcz Rsrc, address Store Word Coprocessor
Store the word from register Rsrc of coprocessor z at address.
swl Rsrc, address Store Word Left
swr Rsrc, address Store Word Right
Store the left (right) bytes from register Rsrc at the
possibly-unaligned address.
ush Rsrc, address Unaligned Store Halfword
Store the low halfword from register Rsrc at the possibly-unaligned
address.
usw Rsrc, address Unaligned Store Word
Store the word from register Rsrc at the possibly-unaligned address.

Data Movement Instructions
move Rdest, Rsrc Move y
Move the contents of Rsrc to Rdest.
The multiply and divide unit produces its result in two additional
registers, hi and lo. These instructions move values to and from
these registers. The multiply, divide, and remainder instructions
described above are pseudoinstructions that make it appear as if this
unit operates
on the general registers and detect error conditions such as divide by
zero or overflow.
mfhi Rdest Move From hi
mflo Rdest Move From lo
Move the contents of the hi (lo) register to register Rdest.
mthi Rdest Move To hi
mtlo Rdest Move To lo
Move the contents register Rdest to the hi (lo) register.
Coprocessors have their own register sets. These instructions move
values between these registers and the CPU's registers.
mfcz Rdest, CPsrc Move From Coprocessor z
Move the contents of coprocessor z's register CPsrc to CPU register
Rdest.
mfc1.d Rdest, FRsrc1 Move Double From Coprocessor 1
Move the contents of floating point registers FRsrc1 and FRsrc1 + 1
to CPU registers Rdest
and Rdest + 1.
mtcz Rsrc, CPdest Move To Coprocessor z
Move the contents of CPU register Rsrc to coprocessor z's register
CPdest.

System Call Interface
print int 1 $a0 = integer
print float 2 $f12 = float
print double 3 $f12 = double
print string 4 $a0 = string
read int 5 integer (in $v0)
read float 6 float (in $f0)
read double 7 double (in $f0)
read string 8 $a0 = buffer, $a1 = length
sbrk 9 $a0 = amount address (in $v0)
exit 10

.align n
Align the next datum on a 2 n byte boundary. For example, .align 2
aligns the next value on a word boundary. .align 0 turns off

MIPS Assembly Instructions

 Page 3 of 3

automatic alignment of .half, .word, .float, and .double directives
until the next .data or .kdata directive.
.ascii str
Store the string in memory, but do not null-terminate it.
.asciiz str
Store the string in memory and null-terminate it.
.byte b1, ..., bn
Store the n values in successive bytes of memory.
.data <addr>
The following data items should be stored in the data segment. If the
optional argument addr is present, the items are stored beginning at
address addr .
.double d1, ..., dn
Store the n floating point double precision numbers in successive
memory locations.
.extern sym size
Declare that the datum stored at sym is size bytes large and is a
global symbol. This directive enables the assembler to store the
datum in a portion of the data segment that is efficiently accessed
via register $gp.
.float f1, ..., fn
Store the n floating point single precision numbers in successive
memory locations.
.globl sym
Declare that symbol sym is global and can be referenced from other
files.
.half h1, ..., hn
Store the n 16-bit quantities in successive memory halfwords.
.space n
Allocate n bytes of space in the current segment (which must be the
data segment in SPIM).
.text <addr>
The next items are put in the user text segment. In SPIM, these
items may only be instructions or words (see the .word directive
below). If the optional argument addr is present, the items are stored
beginning at address addr .
.word w1, ..., wn
Store the n 32-bit quantities in successive memory words.

void * myRealloc(void * ptr, size_t sz) {

void * ans = malloc(sz);

if (ans == NULL || ptr == NULL) { //NULL is 0

return ans;

}

sz = limitToAllocSize(sz, ptr);

char * p1 = ptr;

9

char * p2 = ans;

while (sz > 0) {

*p2 = *p1;

p1++;

p2++;

sz--;

}

free(ptr);

return ans;

}

10

Question 5 Datapaths [10 pts]
Consider the following multi-cycle data path:

PC IMEM IW RegFile

A

B

+4

DMEM

O

SX

<<2

D

AND
Br

BS

V
Op

PCwe
DMwe

RFwe Rdst

Suppose we wanted to add support for a (CISC-style) instruction, lwadd $rt, imm($rs).
This instruction loads a word from memory (at address $rs + imm) then adds imm to that
result. It then writes the result of the addition to register $rt.

The following three pages show three different proposed modifications to the datapath.
For each you will select one of the following four options (you clearly will not use all four
options. You may use an option multiple times if needed):

Does not implement this instruction. Select this option if the proposed design does not
provide a way to execute the proposed instruction.

Breaks other functionality. Select this option if the proposed design implements the
lwadd instruction, but makes the datapath incapable of correctly executing some other
instruction. Give an example of an instruction that breaks.

Functionally correct, but impacts clock frequency. Select this option if the proposed
design implements the lwadd instruction and does not break any other instructions,
but the implementation would have a dramatically bad impact on the clock frequency
of the design.

Correct. Select this option if the proposed design is the correct way to implement the lwadd
instruction. If you select this option, fill in the control signals required to
execute the lwadd instruction.

11

Option 1:

PC IMEM IW RegFile

A

B

+4

DMEM

O

SX

<<2

D

AND
Br

BS

V
Op

PCwe
DMwe

RFwe Rdst

Does not implement this instruction.

Breaks other functionality. Which instruction breaks?

Functionally correct, but impacts clock frequency.

Correct. If you select this option, fill in the table of control signals below:

Cyc PCwe RFwe BS Op DMwe Br V Rdst

1
2
3
4
5
6

A few notes about filling in the table:

• Mux selectors have 0 for the top or left input, 1 for the bottom or right.

• Write enables (we) are 0 for disabled, 1 for enabled

• For Op, you can write down the symbol for the mathematical operation you want
(+, -, *, <<,etc).

• You should write X for “dont care” if (and only if) that control signal does not
matter.

12

Option 2:

PC IMEM IW RegFile

A

B

+4

DMEM

O

SX

<<2

D

AND
Br

BS

V
Op

PCwe
DMwe

RFwe Rdst

AS

Does not implement this instruction.

Breaks other functionality. Which instruction breaks?

Functionally correct, but impacts clock frequency.

Correct. If you select this option, fill in the table of control signals below:

Cyc PCwe RFwe BS Op DMwe Br V Rdst AS

1
2
3
4
5
6

A few notes about filling in the table:

• Mux selectors have 0 for the top or left input, 1 for the bottom or right.

• Write enables (we) are 0 for disabled, 1 for enabled

• For Op, you can write down the symbol for the mathematical operation you want
(+, -, *, <<,etc).

• You should write X for “dont care” if (and only if) that control signal does not
matter.

13

Option 3:

ASPC IMEM IW RegFile

A

B

+4

DMEM

O

SX

<<2

D

AND
Br

BS

V
Op

PCwe
DMwe

RFwe Rdst

Does not implement this instruction.

Breaks other functionality. Which instruction breaks?

Functionally correct, but impacts clock frequency.

Correct. If you select this option, fill in the table of control signals below:

Cyc PCwe RFwe BS Op DMwe Br V Rdst AS

1
2
3
4
5
6

A few notes about filling in the table:

• Mux selectors have 0 for the top or left input, 1 for the bottom or right.

• Write enables (we) are 0 for disabled, 1 for enabled

• For Op, you can write down the symbol for the mathematical operation you want
(+, -, *, <<,etc).

• You should write X for “dont care” if (and only if) that control signal does not
matter.

14

Question 6 Memory Hierarchy [15 pts]

A processor uses 16-bit addresses, and has a direct-mapped cache with 4 sets, and 4 byte
blocks. The contents of the cache are (for the data, lower addresses are to the right and
higher addresses to the left):

Set Number Valid Tag Data
0 1 123 AB CD EF 10
1 0 ABC 56 78 90 1A
2 1 123 99 22 33 55
3 1 456 32 93 24 56

For each of the following addresses, (a) split the address into Tag, Index, and Offset (b)
Indicate if the access is a hit or a miss and (c) Indicate what data value would be obtained
by a 1-byte (lbu) to that address:

1. For address 0x1234

Tag: Index: Offset:

Hit or Miss? Data Value?

2. For address 0x1232

Tag: Index: Offset:

Hit or Miss? Data Value?

3. For address 0x456A

Tag: Index: Offset:

Hit or Miss? Data Value?

4. For address 0xABC5

Tag: Index: Offset:

Hit or Miss? Data Value?

15

