ECE566 Enterprise Storage Architecture
Lab #0: Your Server

A major focus of this course is hands-on experience with real hardware. As such, you have been provided with a server recently retired from service here at Duke. You will explore and rejuvenate this server, giving it a new life under your command.

Directions:

- This assignment will be completed in your groups. However, every member of the group must be fully aware of every part of the assignment. Further, while you can discuss concepts with other groups, actual steps and answers should not be shared between groups.
- Format:
 - Physical work: Much of this assignment will be setting up and deploying your server; this will be graded by looking at the server when you’re done.
 - Data recording: Some of the assignment will ask you to collect data and update a Google Sheet. This will include fields in green, yellow, or blue.
 - Written deliverables: Some of the assignment will ask for short answers or screenshots; this material should be collected in a PDF file submitted via GradeScope. Word documents will not be accepted. Anything you need to include in this document is highlighted in cyan.

1 Introduction to server management

Servers are managed very differently than laptops that you’re used to. Before we get started, let’s discuss some key differences.

IF YOUR ENTIRE GROUP IS REMOTE

Spread throughout this document are pink boxes link this one. If your group is fully remote (i.e., no “computer toucher” to set up a physical server), these boxes will tell you what to do; they supersede the regular document for you.

1.1 Management

People don’t work physically near servers except during initial installation or maintenance, so servers do not have a screen or keyboard attached except for initial setup or if things have gone VERY wrong. Because of this, most servers have a mechanism to control them without physically being there. This is called out-of-band management: an embedded microcontroller totally separate from the main CPU that has its own network port and the ability to connect a virtual keyboard, display, and bootable storage over this network port. You can even turn the server on and off. In Dell servers, this is called DRAC (“Dell
Remote Access Console”). This system works even if server OS crashes or the server is powered down. This is in contrast to **in-band management**, which is when you use SSH, remote desktop, or other protocols to connect to the actual running system. We have out-of-band management to recover when things go wrong without physically visiting the data center.

You’ll be configuring the DRAC cards in your servers to allow for this remote access.

1.2 Networking

Another difference is network management. For your laptops, you just need *some* IP address to access the network, and the laptop is generally a client that consumes network resources. The way the laptop gets an IP address is to request one from the network upon first connecting via **DHCP protocol**. The DHCP server on the network picks a free one and assigns it. Further, you generally connect to wireless networks, which are fine for consumer devices.

Servers are the *providers* of resources, so a server usually needs to have a *specific, known* IP address. There are two main ways this is done. First, a server may be assigned a static IP address, which is stored on the server itself. This is simple, but requires you to manually configure each server. As an alternative, you can use DHCP like your laptop uses. The difference is that the DHCP server in these environments doesn’t just hand out a random IP to every random device that gets attached. Rather, the server is informed of what machines it needs to provide IPs to by their **MAC address**: a unique 6-byte number generally burned into the ROM of your network card. It is this second method that we’ll be using, so this guide will have you make note of your MAC addresses (two ‘normal’ Ethernet interfaces plus the DRAC interface).

Related to this, we also need to ensure that **DNS** works. DNS (the “Domain Name System”) is the network protocol that translates human-friendly names (“google.com”) to IP addresses the system can connect to (64.233.177.138). Without getting into too much detail, it will be important for your server to have the correct **hostname** (the leftmost token of a domain name). The way the Duke network works, we’ll be registering your names and MAC addresses together and getting Duke to assign IP addresses accordingly using the asset tracking spreadsheet described below.

1.3 Meet your server

Each group has been issued a Dell storage server (various models). In production IT environments, all equipment is managed in some form of **asset tracking** database. Your first step is to figure out what you have and update such a database with the basic physical info.

Our asset tracking database will be [this simple Google Sheet](#). If you do not have access to modify this sheet, request it.

1 Link updated 2020-08-24
Note: Some of the servers were used last year and have already been assigned names. As some network configs are already set up for these servers, we want to assign the same name as last year. To this end, servers are pre-populated in the sheet up to the serial number (also known as service tag). Check to see if your server’s serial number matches the ones pre-populated, and if so, use that row of the spreadsheet – you’ll populate the rest of the cells per normal. If your server is new, add a row for it and record all fields.

The name of your server is “esa<NUM>” where <NUM> is your group number.

By examining the server, identify the columns highlighted in green. Manufacturer and Model should be easy (see front bezel). For height, you have to understand how servers are measured in Rack Units (simply written as ‘U’), see this article for details. For the serial number, note that on Dell servers this is also known as the service tag, and is a seven-character alphanumeric string².

IF YOUR ENTIRE GROUP IS REMOTE
You’ll be assigned an already-racked server, and you can find your service tag already filled in the spreadsheet.

2 Poké around inside

IF YOUR ENTIRE GROUP IS REMOTE
Instead of the physical steps below, we can do this virtually:

For the photos, look up maintenance documentation for your model, e.g. “Dell R710 components” on google image search. Be sure to credit your source.

For type, speed, size, and number of RAM sticks installed, once the OS is installed, run “sudo dmidecode” and read through the results.

Let’s see the guts. Open the chassis and examine the interior. Take one or more photographs for PDF submission. Annotate the photograph(s) to indicate the location of the CPU heatsink (under which sits the CPU), the RAM, the storage controller card (if separate from the mainboard), the power supply(s). You may need to temporarily remove plastic cowlings or covers to see everything. The chassis may contain a map to help identify parts, and the instructor can help guide you.

Let’s check how much RAM we have. Ground yourself by touching the chassis, and then eject a single stick of RAM (push on the side-levers around it). Examine the label on it to determine the following for your write-up:

² One thing that Dell does well is track the hardware configuration of things they sell. If you like, you can put that service tag into support.dell.com and it will tell you exactly how the system was shipped when Duke originally purchased it. Of course, it may have been upgraded or modified since then, but this resource can provide helpful clues regarding a system’s history.
(a) **The type of RAM** (DDR1, DDR2, DDR3, etc.; this may be indicated by the prefix “PC1-”, “PC2-“, etc.; see [here](#) for details),

(b) **The speed of the RAM** (e.g. “PC2-3200”, “PC3-6400”, etc.; the latter gives the peak transfer rate in MB/s).

(c) **The size of the RAM stick** (e.g. 1GB, 2GB, etc.)

(d) **The number of RAM sticks installed**

Compute the total RAM installed by multiplying the size of the stick by the number of sticks, and document this in your write-up. (It is possible that you may have a mix of sizes installed, but this is fairly uncommon.) Reinstall the stick in the same slot it came from, ensuring the orientation is correct (to install, just slot it in and push down until it clicks).

Replace any cowlings or covers you removed and close the chassis.

3 Boot your server

IF YOUR ENTIRE GROUP IS REMOTE

We’ll go a bit out of order. The remote access card covered in section 4 is already set up for you. Follow the pink box in section 4 and get remote access going, then come back here to use the remote console to get this info.

In this phase, we’ll be recording some hardware details: the yellow columns in our asset database spreadsheet.

Hook up a monitor, keyboard, and power cable to the server (you only need one power cable even if you have two power supplies). In Hudson 01A, you may borrow a monitor/keyboard from a workstation, but **you must restore the keyboard/monitor to the workstation before you leave!**

Once connected, even though the system has no hard drives so far, we can still boot into the firmware and check it out. Unlike a laptop or desktop machine, a server has many different modules, each with firmware that initializes during boot, including:

- **The BIOS (Basic Input Output System)**, the basic firmware of the system
- **The storage controller card(s)**, which typically provides RAID functionality (Redundant Array of Independent Disks), which we’ll learn a lot about in class.
- **The network card(s)**, which are equipped with PXE (Preboot Execution Environment), the ability to boot an operating system over the network as opposed to from a local storage device.
- **A remote access card** (also known as a RAC, a management card, a Baseboard Management Controller (BMC), or some vendor-specific name, such as the Dell Remote Access Card (DRAC)), which is a separate processor that allows network-based control of the server in a manner almost equivalent to physical access; this is to allow for “lights-out” datacenters where all non-physical server maintenance is done over the network, even when a server is severely
misconfigured or malfunctioning. (HINT: you’ll want to become familiar with your server’s remote access capability to avoid in-person trips to the datacenter once you rack your server).

Each piece of hardware will appear in turn during boot, most flashing up their own prompt to allow for user setup (e.g. “Press F2 for menu”). At any point, you can restart the computer by pressing Ctrl+Alt+Delete. Try to visit each boot-time configuration menu, but don’t make any changes. While doing so, the storage controller may complain that all its drives are gone; press whatever keys needed to ignore this for now.

You’ll need to specifically visit the main BIOS menu and the remote access card setup menu to make note of the MAC address (the physical Ethernet identifier) for each Ethernet port. Specifically, your server probably has four general onboard Gigabit Ethernet ports and a management Ethernet port (marked with a wrench icon) which is managed by the remote access card. We’ll just be using the first two normal ports plus the management port; you can ignore the latter two normal ports as well as any additional add-on Ethernet cards your server may have. We need the MAC addresses of the ports to register them on the Duke network (for use in the lab), and later we’ll turn them over to Duke IT so our servers can be registered in the Datacenter network.

While you’re in the BIOS (pictured below), you can also confirm the amount of installed RAM and the type and speed of CPU. Note the MAC addresses and hardware stats in the yellow tabs of the asset database.

![A typical (if old) server BIOS interface](image-url)
4 Set up remote access

IF YOUR ENTIRE GROUP IS REMOTE
Much if this is already done on your server. You can find remote access details in the spreadsheet. Jump down to where it says “At this point” below and proceed from there to get remote console access going.

Recall that the remote access card will allow us to manage the server over the network, once it’s configured. The first step is the network configuration.

Connect an Ethernet cable between an internet-connected switch and the management port (marked with a wrench). If in Hudson 01A, you may borrow the Ethernet cable from a workstation but you must put it back when you’re done.

Reboot (Ctrl+Alt+Del) and get into the remote access card setup menu when prompted. In this interface, do the following:

- Enable DHCP so the card automatically gets an IP address from the Duke network (e.g. set the IP Address Source to DHCP, though this procedure may differ depending on the exact hardware/firmware you have).
- Set the DHCP hostname to esa<NUM>-oob (e.g. “esa00-oob”); we’ll adopt a naming standard where the hostname of the out-of-band management interface is the same as the host, but with ‘-oob’ appended (it stands for ‘out of band’).
- Lastly, configure with username “root” and the password provided by the instructor.

What does this mean? **DHCP** is a protocol that allows a machine to get an IP address from the network itself when it boots. The DHCP server that gives out such addresses typically tracks clients via their MAC address, which is associated with the physical interface (i.e. burned into the chip). These requests may also contain a requested hostname, which, if available, is associated with whatever IP address the server is assigned by **DNS** servers, which translate names (e.g. “esa00-oob.egr.duke.edu”) to IP addresses (e.g. 10.22.34.55). Note: it may take up to an hour DNS to sync up, so plan to use the bare IP address in the near term.

At Duke, the network environment is set up so that hosts must be registered on the Duke network, which we’ll do next. Visit https://dukereg.duke.edu and login with your Duke NetID. Paste in the MAC address for the remote access card, set description to “esa<NUM>-oob”, set type to “other devices”, and click Register.

While we’re here, go ahead and paste in the MAC address for the first Ethernet port, set description to “esa<NUM>”, set type to “Fedora/Ubuntu/Debian”, and click Register.

Now reboot your server, and enter the remote access card menu again. You should now see a valid IP address for remote access, e.g. 10.22.34.45 – **Note this in your write-up** and keep it handy for later testing!
At this point, you should be able to navigate your web browser to the IP address and/or hostname of the remote access card and see the remote access interface. When this is working, do the following:

- Use the power control to power the server off and on.
- Access the remote console. Take a screenshot and include this in your write-up.

NOTE: If the remote access console doesn’t work and you’re on an R710 or similar server with an iDRAC6, follow the “iDRAC6 setup” guide linked from the course site.

Once remote access is working, note this in the blue “Remote access setup?” column in the asset management spreadsheet.

5 Install drives

5.1 Physical installation

IF YOUR ENTIRE GROUP IS REMOTE
Your drives have already been installed and recorded in the spreadsheet. Instead, consult the spreadsheet and make note of the hardware installed.

All storage devices in the servers have been removed by Duke IT for privacy reasons. You will replace these drives with spares acquired for this course. Each student server will end up with:

- Four traditional spinning-platter hard disk drives (HDDs): SAS protocol, either 73 or 146 GB, either 10k or 15k RPM. Note: These hard drives are pretty old, so drive failures are anticipated. This is a good thing, as tolerating drive failure is a big part of the course!
- One solid state drive (SSD): Kingston SATA 120GB, new.

See the instructor to obtain your drives. For HDDs, be sure to end up with a matched set, where each drive has the same capacity and speed.

Install all drives into Dell drive trays.

Power off your server, and install the drives into the front of your server, with the SSD going first (top left), then the HDDs. Remove any blanking panels as needed.

Note the quantity (4), size, and rotational speed of your hard drives in the yellow HDDs column of the asset tracking sheet.

5.2 Storage card setup

IF YOUR ENTIRE GROUP IS REMOTE
This step has already been done for you. Instead, using the remote console, get to the
ABOUT RAID AND STORAGE ADAPTERS: Your server is equipped with a high performance storage adapter card, which is what connects the front-mounted drives to the system. This card typically handles drive redundancy via RAID (Redundant Array of Independent Drives, which will be covered in detail in class) in hardware. This is a good thing, but for this course, we want to do the RAID stuff ourselves, so we can experiment with it. Therefore, we will be handling the drives in software instead, bypassing the RAID features of the storage adapter card.

To make this possible, we need to tell the card to do nothing but expose the drives directly to the operating system. Reboot and enter the storage card’s configuration menu by pressing the appropriate key (e.g. Ctrl+R) when prompted (it may vary depending on your exact hardware). Note: for Dell servers, the storage card is often called a PERC (PowerEdge Expandable RAID Card). The PERC 6 interface is shown below.

![The PERC 6 interface](image)

Once in the configuration tool, create a single virtual device (VD) for each physical drive (PD). For example, the shot below shows the creation of a virtual device with just the attached SSD (as indicated by the size of ~120GB):

![The PERC 6 interface when creating a single-drive VD](image)

Proceed to make 5 total VDs: one for the SSD, and one for each of the four HDDs.
NOTE: Some disks may appear as “Foreign”, meaning they were part of a RAID array on a Dell server before we got to them. In this case, go to the “Foreign View” tab, and in Controller 0, use F2 to see operations, and select Foreign Config -> Clear. Then you can make VDs out of them as described above.

When done, take a remote screenshot or local photograph of the PERC configuration interface showing your VDs and include it in your write-up.

6 Operating System Installation

IF YOUR ENTIRE GROUP IS REMOTE
The OS has already been installed for you. However, FULLY read through this section, as it includes facts and setup details that will be critical to understand going forward! Ask the instructor if you have any questions.

We’re going to install Linux as our operating system, specifically Ubuntu Linux Server. There are many trade-offs between operating systems in general and Linux distributions specifically, but Ubuntu Linux Server should work well for us as it combines decent ease of use with a rich software library.

We’ll be installing **Ubuntu server 18.04.1**. NOTE: It’s important that you use 18.04.1 and not later versions of the 18.04 installer; those versions had a bug where network firmware was missing for our network card. We will update to the latest version of 18.04 after installation is complete.

Note that the install process for a server OS includes more steps than a traditional desktop OS (including even Ubuntu Desktop), as server admins (like you!) need more fine-grain control of the installation.

Before proceeding, ensure that the first regular Ethernet port is connected (if you have only one Ethernet uplink cable, move it from the management port).

6.1 Basic installation steps

Obtain an Ubuntu Server 18.04.1 DVD or USB stick, and boot from it. Proceed to install Ubuntu Server when prompted. Navigate through the installation prompts per usual (defaults are fine for most of it; please keep the language settings set to English so the instructor can assist with the server if needed).

Select the first network interface when prompted, and because you registered this interface’s MAC address in DukeReg back in section 4, it should get an IP address successfully – **Note this in your write-up** and keep it handy for later testing!

6.2 Partitioning

ABOUT PARTITIONING: Hard drives are commonly divided by into very large chunks called partitions to logically divide the storage. For example, desktop Linux systems commonly have a partition for the root directory (e.g. byte locations 0 through 110GB) and a separate smaller partition for swap space (e.g.
byte locations 110GB through 120GB). At this point in the installation, we’ll be partitioning drives as we see fit, and selecting which partitions will hold the operating system.

When prompted to pick a partitioning method, choose Manual, as shown below:

On a production server, you would always have the OS on redundant storage (e.g. a pair of hard drives configured for mirroring), either in hardware (using the storage adapter’s hardware RAID functionality) or in software (by setting up OS-managed RAID at install time).

However, our goal is to learn about storage systems, so we want raw block-level access to our hard drives, so we’re going to deviate from the standard practice, and install the OS to a partition on the single SSD (while reserving some of the SSD space for experimentation as well).
Therefore, when presented with the partitioner interface, just select the ~120GB SSD shown first:

Let’s make a partition for the OS root directory. Add a partition by pressing Enter and choosing “Add Partition” as shown:
Make the new partition **40 GB**, formatted with the **ext4** filesystem, mounted as `/` (root):

![Partitioning Interface](image)

Now we'll set up some swap space, as even though these servers have tons of RAM, the Linux kernel still prefers to have some. Since we don't anticipate needing virtual memory swapping, it need not be large; just 2GB will suffice. Select the SSD and make a **2GB** partition whose format is set to “**swap**” instead of ext4.

At this point, we’re done partitioning, and you should see something like this:

![Swap Setup](image)

Note that we did not touch any of the HDDs: we’ll worry about them much later, after the OS is installed. We could have created additional partitions to divide the operating system (such as making a separate area for `/home`, where user home directories live) or create partitions not in the normal UNIX naming scheme (such as `/movies` or `/music`). However, a simple single root is good enough for us. This setup leaves us 120-42 = 78GB of free raw SSD space for later experimentation. Ensure your partitioner view looks like above, **take a screenshot or photograph for your write-up**, then and select “**Done**”, and confirm when prompted.

Footnote: Filesystems are what translate raw block locations into the concept of files and directories we’re familiar with. Ext4 is a particular filesystem commonly used in Linux. Filesystems will be covered in great detail later in the course.
6.3 OS configuration

In the subsequent steps:

- Set the machine’s hostname to “esa<NUM>”, where <NUM> is your group number.
- For user setup, set the username to localadmin and use the password provided by the instructor.
- Enable “Install OpenSSH server”.
- You need not install any “Snaps” when prompted.

6.4 Operating system data is copied; updates applied

Time passes.

6.5 Reboot

Once the install and updates are complete, your display will look like this and you can choose Reboot!

Remove the install disc or USB key when prompted.
7 OS checkup

IF YOUR ENTIRE GROUP IS REMOTE
Do this as documented.

Ensure that you can login to your management interface (esa##-oob) via a web browser, and that remote console works. Take a screenshot for your write-up.

Ensure that you can SSH to your primary interface (esa##) with the login and password you created – use the IP address you noted earlier.

Look at the “/proc/meminfo” and “/proc/cpuinfo” files and/or run the “top” command to verify your CPU/memory stats.

Run “sudo fdisk -l /dev/sd?” to look at the drive info and partition tables of all our drives. Use the “lsblk” command to view this info in abbreviated form. Take a screenshot for your write-up.

Once all this is done, note this in the blue “OS install ok?” column in the asset management spreadsheet.

If everything seems to be in order, then it’s time to send this server to its new home: the FitzWest Datacenter.

8 Rackmount installation

IF YOUR ENTIRE GROUP IS REMOTE
Unfortunately, there’s no way I can properly provide this experience remotely.

Servers such as these are meant to live in racks. As discussed in section 1, the width and height of the server is standardized so it can be packed with total density into racks with dozens of other systems from various vendors. Servers are mounted in with rails.

8.1 The FitzWest Datacenter

At some point, after a tour and some training, you will be granted access to the FitzWest Datacenter.

DO NOT TOUCH ANYTHING THAT’S NOT YOUR SERVER IN THERE!

A rack has been set aside for use by this course; you’ll be installing your server in there. Rolling carts are available to help transport your server to there, and a day will be arranged where most if not all groups will be expected to do the move with instructor support.
8.2 Rails?

A selection of Dell-style rails has been procured, but unfortunately, there is no guarantee that the rails present are compatible with our servers. So our first step is to look up the physical mounting guide for these servers and compare it to the rails on hand.

Take the service tag you identified in section 1 and put it into support.dell.com. Under “Manuals and Documents”, find the “Rack Installation Instructions” for sliding rails. Grab the rails on hand and see if they match. Indicate the answer in the blue “Rails ok?” column in the asset management spreadsheet.

If you found good rails, you’ll use them (see section 8.3). If not, see section 8.4.

8.3 If you have matching rails

When you move your server to FitzWest, install the rails and your server per the manual. Servers should be installed at the bottom-most free spot in the rack!

8.4 If you do not have matching rails

If your server is small enough (1U or 2U), we can just have it sit on top of a server that does have rails. This is not ideal, and would not be accepted in a production datacenter, but it won’t affect us for this course.

If your server is big (4U+) or if there are not enough rail-having servers available, you can use universal rails. See the instructor if this is the case; additional universal rails may have to be ordered, so see if you need them ASAP.

8.5 Cabling

Run Ethernet cables from the network switch “esa-sw1” to your management Ethernet port and your first regular Ethernet port. The exact switch port you should use is documented in the “Cabling” tab of the asset management spreadsheet; only make the connections noted in red. (We’ll add network connection redundancy later in the course.)

Run a power cable from the Power Distribution Unit (PDU) on the left of the rack to the left power supply of your server. Similarly, run a power cable from the right PDU to your server’s right power supply. Each PDU is fed from a different power company substation, and therefore this provides power redundancy in the event of a power failure.

Note that this is a different network from the one in Hudson 01A, so the IP addresses you had before will not work. Temporarily connect a keyboard and monitor to your server and collect the management IP address (shown at boot time) and the system IP address (available via the ip addr command after logging in). Ensure you can access these addresses from another system (such as your laptop).
Remove the keyboard and monitor: this is a lights-off server, so you should be able to do everything over the network from now on. If you do everything right, you should never have to come back to the datacenter except for cabling-related issues or hardware failures.

Once system is racked and working, update the blue “Location” column in the asset management spreadsheet to indicate the FitzWest datacenter and U position (written on the rack itself) of the bottom of the server.

9 You did it!

Congratulations, you now have an enterprise-class server online, logged in our asset tracker, and ready for work!

Take a photograph of your group with your server and include it in your write-up! 😊

IF YOUR ENTIRE GROUP IS REMOTE
Find a picture of your server model in a rack and photoshop your group onto it.
Example:

Note: you don’t need actual photoshop – any free image editing app will do.