Introduction

Tyler Bletsch
Duke University

Slides include material from Vince Freeh (NCSU)
Instructor and TAs

• Professor: Tyler Bletsch
 • Office: Hudson Hall 106
 • Email: Tyler.Bletsch@duke.edu
 • Office Hours: See course site

• TA:
 • Bonan Yan (bonan.yan@duke.edu)
MOTIVATION
Average person’s view of storage

storage = computar does it !!
Average engineer’s view of storage

storage = thing inside computer!!
A few enterprise storage architectures (1)

A few enterprise storage architectures (2)

- From: http://wiki.abiquo.com/display/ABI20/Monolithic+Architecture
A few enterprise storage architectures (3)

A few enterprise storage architectures (4)

Why do all this? What problems are we solving?

- **Cost**: Is it cheap enough?
- **Capacity**: Can it hold enough?
- **Performance**: Is it fast enough?
- **Accessibility**: Can the data be accessed by everyone who needs it?
- **Security**: Is data protected from unauthorized access?
- **Reliability**: Is the downtime probability low enough?
- **Integrity**: Is data protected from hardware failures, disasters, and malicious attacks?
- **Compliance**: Do I keep data long enough safely?
- **Accountability**: Can I track all changes?
- **Space efficiency**: How much floor space do I need?
- **Power efficiency**: How many watts do I burn?
Why do all this? What problems are we solving?

- **Cost**: Is it cheap enough?
- **Capacity**: Can it hold enough?
- **Performance**: Is it fast enough?
- **Accessibility**: Can the data be accessed by everyone who needs it?
- **Security**: Is data protected from unauthorized access?
- **Reliability**: Is the downtime probability low enough?
- **Integrity**: Is data protected from hardware failures, disasters, and malicious attacks?
- **Compliance**: Do I keep data long enough safely?
- **Accountability**: Can I track all changes?
- **Space efficiency**: How much floor space do I need?
- **Power efficiency**: How many watts do I burn?
Online course Info

- **Course Web Page**: static info

 https://people.duke.edu/~tkb13/courses/ece566/

 - Syllabus, schedule, slides, assignments, rules/policies, prof/TA info, office hour info

 - Links to useful resources

- **Piazza**: questions/answers

 - Post all of your questions here

 - Questions must be “public” unless good reason otherwise

 - **No code** in public posts!

- **GradeScope**: Submit annotated PDFs for grading

- **Sakai**: just assignment submission and gradebook
Where to get info

• This info is fairly industry-connected, no great textbook
 • Semi-exception: “Evolution of the Storage Brain” by Larry Freeman (not a required text)

• Course material will come from lectures and supplementary readings
 • See course site for resources

• Additional independent research on your part will likely be necessary!
<table>
<thead>
<tr>
<th>Assignment</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project initial proposal</td>
<td>2%</td>
</tr>
<tr>
<td>Project final proposal</td>
<td>3%</td>
</tr>
<tr>
<td>Project status reports</td>
<td>5%</td>
</tr>
<tr>
<td>Project final report</td>
<td>10%</td>
</tr>
<tr>
<td>Project final presentation</td>
<td>5%</td>
</tr>
<tr>
<td>Project final demo</td>
<td>20%</td>
</tr>
<tr>
<td>Homeworks/programs/labs</td>
<td>45%</td>
</tr>
<tr>
<td>Final exam</td>
<td>10%</td>
</tr>
</tbody>
</table>
HOMEWORKS, LABS, AND PROGRAMS
Lab Motivation: What is a computer?

- Computers are:
 - Abstract theoretical math engines that float around on the internet?
 - PHYSICAL OBJECTS
 - MADE OF MATERIALS
 - IN THE REAL WORLD
 - AND YOU CAN TOUCH THEM
 - AND PUT THEM PLACES
 - WITH YOUR ARMS/LEGS/FINGERS/BODY
 - AND LIKE A SCREWDRIVER OR WHATEVER!!!!!!!
Result: this course is HANDS ON

- Historically, the most popular assignments have been the realistic, hands-on ones. So I’ve added a lot of hands-on experience to the course.

- Each student group will be assigned a physical storage server which is upstairs in Hudson 214

- Lab 0 will have you prepare and deploy this server.

- Labs 1+ will have you do realistic storage tasks on it.
Labs vs Homeworks

Labs
- Group work
- Hands-on
- Usually on your server
- Submitted via GradeScope (and Sakai for code)
- Can discuss concepts with other groups, but not answers

Homeworks
- Individual work
- Pen-and-paper questions
- Submitted via GradeScope (and Sakai for code)
- Can discuss concepts with others, but not answers
Also: a few “Program” assignments

- Project will involve writing filesystem code using FUSE

- Assignments “Program 0”, “Program 1”, “Program 2” are **individual**
 - Introduce you to FUSE
 - Work you through writing a basic filesystem
 - Prepare you for the project
Late penalties

- Late homework/lab/program incur penalties as follows:
 - Submission is 0-24 hours late: total score is multiplied by 0.9
 - Submission is 24-48 hours late: total score is multiplied by 0.8
 - Submission is more than 48 hours late: total score is multiplied by the Planck constant (in J·s)

- NOTE: If you feel in advance that you may need an extension, contact the instructor.
Labs are group work

- Lab assignments – _done together_ as a group

- What does “together” mean?

- It means that everyone must understand all of it

- If I ask “How did this part work?”, you cannot answer “I didn’t work on that part”!

- How do we check? **Lab quizzes**: Quick in-class assignments that are easy to answer if you were involved in the lab work.
Class lab sessions to kickstart homework

- We’re going to schedule a few **class-wide lab sessions** so everyone can start to work on their server with instructor support
 - Why not a separate lab section? We don’t need every week...

- Be sure to respond to the **scheduling survey** that I sent; deadline is end of today!
You will eventually deploy your server in a real datacenter:
the FitzWest server room in the CIEMAS basement

- This means you’ll have **badge access** to a real datacenter

Datacenter rules (you need to sign this to get access):

1. **Don’t touch other people’s stuff.** Includes other racks, other equipment, and other group’s servers in this course. You can touch your server, its cables, and shared tools.

2. **Respect shared resources.** The room has LCD monitors, keyboards, carts, screwdrivers, etc., which you can use. You must not interfere with IT operations and you must put stuff away when done.

3. **Report issues promptly.** Tell me if anything’s wrong.

< Print, sign, and turn in to gain access
THE PROJECT
The Project

- **Initial proposal**: Say what you’re going to do and how.
 - Write-up plus 60-minute meeting scheduled out of class.
 - Must include weekly schedule!
 - Get feedback
- **Final proposal**: Incorporate feedback from above.
- **Weekly status reports**: Small report that shows progress vs proposed schedule.
- **Workdays**: Time to meet with me in class to steer your project.
- **Final report**: Describe your work (max 8 pages).
- **Final presentation**: Demo your work and explain the implementation process to the class (15 min).
- **Final demo**: Defend your project to the instructor.
 - 60+ minute meeting scheduled out of class.

- *Read course page for details!*
The project is also group work

- Project work – also done *together* as a group

- The word “*together*” still means that everyone must understand all of it!

- Again, you can’t say “I didn’t work on that part”!
POLICIES
Grade Appeals

• All regrade requests must be in writing
 • Email the TA who graded the question
 (we’ll indicate who graded what)

• After speaking with the TA, if you still have concerns, contact the instructor

• All regrade requests must be submitted no later than 1 week after the assignment was returned to you.
Academic Misconduct

- Academic Misconduct
 - Refer to Duke Community Standard
 - Labs are groupidual – everyone works on it
 - Common examples of cheating:
 - Running out of time and using someone else's output
 - Borrowing code from someone who took course before
 - Using solutions found on the Web
 - Having a friend help you to debug your program

- **I will not tolerate any academic misconduct!**
 - Software for detecting cheating is very, very good ... and I use it

- “But I didn’t know that was cheating” is not a valid excuse
Our Responsibilities

• The instructor and TA will...
 • Provide lectures/recitations at the stated times
 • Set clear policies on grading
 • Provide timely feedback on assignments
 • Be available out of class to provide reasonable assistance
 • Respond to comments or complaints about the instruction provided

• Students are expected to...
 • Receive lectures/recitations at the stated times
 • Turn in assignments on time
 • Seek out of class assistance in a timely manner if needed
 • Provide frank comments about the instruction or grading as soon as possible if there are issues
 • Assist each other within the bounds of academic integrity
Course summary

- We have **hard disks** and **solid-state drives (SSDs)**
- We can use **RAID** to combine performance and capacity while masking effects of drive failure
- The concept of files and directories comes from **File Systems**, a rich field of study.
- We can provide virtual disks to users over **Storage Area Network (SAN)** protocols
- We can provide file access to users using **Network-Attached Storage (NAS)** protocols
- We can provide **storage as a service (SaaS)** via cloud-type protocols.
- Storage efficiency can be improved with **data deduplication** and **compression**.
- We need to preserve **business continuity**: avoid downtime and lost data through **backups** and **high availability**
- Storage arrays are deployed based on **workload sizing**.
- Storage is often folded into a complete hardware/software stack: **converged architecture**.
- Storage systems are large enough that **management/monitoring** is its own challenge.
- Storage architects need to understand **basic finance** and **legal/compliance issues**