Failures in hard disks and SSDs

Tyler Bletsch
Duke University

Slides include material from Vince Freeh (NCSU), some material adapted from “Hard-Disk Drives: The Good, the Bad, and the Ugly” by Jon Elerath (Comm. ACM, Vol. 52 No. 6, Pages 38-45)
HDD/SSD failures

- Hard disks are the weak link
  - A mechanical system in a silicon world!
- SSDs better, but still fallible

- RAID: Redundant Array of Independent Disks
  - Helps compensate for the device-level problems
  - Increases reliability and performance
  - Will be discussed in depth later
Failure modes

• Failure: cannot access the data
• Operational: faults detected when they occur
  • Does not return data
  • Easy to detect
  • Low rates of occurrence
• Latent: undetected fault, only found when it’s too late
  • Returned data is corrupt
  • Hard to detect
  • Relatively high rates of occurrence
Fault tree for HDD

To learn more about individual failure modes for HDD, see “Hard-Disk Drives: The Good, the Bad, and the Ugly” by Jon Elerath (Comm. ACM, Vol. 52 No. 6, Pages 38-45)
Fault tree for SSD

- Controller failure
- Whole flash chip failure

Operational Failures

- cannot find data

Latent Failures

- data missing

- error during writing
- written but destroyed

Degradation loss due to write cycles (probabilistic) – gate lost ability to ever hold data

Loss of gate state over time (“bit rot”) – gate lost its current data (due to time or adjacent writes)
What to do about failure

- Pull disk out
- Throw away
- Restore its data from parity (RAID) or backup
The danger of latent errors

• Operational errors:
  • Detected as soon as they happen
  • When you detect an operational error, the total number of errors is likely \textbf{one}

• Latent errors:
  • Accrue in secret over time!
  • In the darkness, little by little, your data is quietly corrupted
  • When you detect a latent error, the total number of errors is likely \textbf{many}

• In the intensive I/O of reconstructing data lost due to latent errors, more likely to encounter operational error
  • Now you’ve got multiple drive failure, data loss more likely
Minimizing latent errors

• Catch latent errors earlier (so fewer can accrue) with this highly advanced and complex algorithm known as **Disk Scrubbing**:

  Periodically, read everything
## Disk reliability

- **MTBF (Mean Time Between Failure):** a useless lie you can ignore

<table>
<thead>
<tr>
<th>Specifications</th>
<th>8TB</th>
<th>6TB</th>
<th>5TB</th>
<th>4TB</th>
<th>3TB</th>
<th>2TB</th>
<th>1TB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model number</td>
<td>WD80EFZX</td>
<td>WD60EFRX</td>
<td>WD50EFRX</td>
<td>WD40EFRX</td>
<td>WD30EFRX</td>
<td>WD20EFRX</td>
<td>WD10EFRX</td>
</tr>
<tr>
<td>Formatted capacity</td>
<td>8TB</td>
<td>6TB</td>
<td>5TB</td>
<td>4TB</td>
<td>3TB</td>
<td>2TB</td>
<td>1TB</td>
</tr>
<tr>
<td>Advanced Format (AF)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Native command queuing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RoHs compliant</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

### Performance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface speed</td>
<td>178 MB/s</td>
<td>175 MB/s</td>
<td>170 MB/s</td>
<td>150 MB/s</td>
<td>147 MB/s</td>
<td>150 MB/s</td>
<td>147 MB/s</td>
</tr>
<tr>
<td>Internal transfer rate</td>
<td>128</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
</tbody>
</table>

### Cache (MB)

- 5400 RPM Class

### Reliability/Data Integrity

<table>
<thead>
<tr>
<th>Load/unload cycles</th>
<th>600,000</th>
<th>600,000</th>
<th>600,000</th>
<th>600,000</th>
<th>600,000</th>
<th>600,000</th>
<th>600,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-recoverable read errors per bits read</td>
<td>&lt;1 in 10^14</td>
</tr>
<tr>
<td>MTBF (hours)⁸</td>
<td>1,000,000</td>
<td>1,000,000</td>
<td>1,000,000</td>
<td>1,000,000</td>
<td>1,000,000</td>
<td>1,000,000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Limited warranty (years)⁶</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1,000,000 hours = 114 years

“Our drives fail after around a century of continuous use.”

-- A Huge Liar
Data from BackBlaze

- **BackBlaze**: a large scale backup provider
  - Consumes thousands of hard drives, publishes [health data on all of them publically](https://www.backblaze.com/blog/)
  - **Data presented** is a little old – newer data exists (but didn’t come with pretty graphs)
- Other large-scale studies of drive reliability:
  - “**Failure Trends in a Large Disk Drive Population**” by Pinheiro et al (Google), FAST’07
  - “**Disk Failures in the Real World: What Does an MTTF of 1,000,000 Hours Mean to You?**” by Schroeder et al (CMU), FAST’07
General Predicted Failure Rates

- Decreasing Failure Rate
- Constant Failure Rate
- Increasing Failure Rate

Observed Failure Rate
Early "Infant Mortality" Failure
Constant (Random) Failures
Wear Out Failures

Time

Failure Rate
Interesting observation: The industry standard warranty period is 3 years...
80% of Drives Last Four Years

Hard Drive Survival Rates - Chart 2

Survival Rate

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

1 Year 2 Year 3 Year 4 Year

80% drives live
Annual Failure Rate

- HITACHI
- Seagate
- WD
- Western Digital

Bar chart showing failure rates for different storage capacities.
What about SSDs?

• From recent paper at FAST’16: “Flash Reliability in Production: The Expected and the Unexpected” by Schroeder et al (feat. data from Google)

• **KEY CONCLUSIONS**
  
  • Ignore Uncorrectable Bit Error Rate (UBER) specs. A meaningless number.
  
  • **Good news:** Raw Bit Error Rate (RBER) increases slower than expected from wearout and is not correlated with UBER or other failures.
  
  • High-end SLC drives are no more reliable than MLC drives.
  
  • **Bad news:** SSDs fail at a lower rate than disks, but UBER rate is higher (see below for what this means).

  • **SSD age, not usage, affects reliability.**
  
  • Bad blocks in new SSDs are common, and drives with a large number of bad blocks are much more likely to lose hundreds of other blocks, most likely due to die or chip failure.
  
  • 30-80 percent of SSDs develop at least one bad block and 2-7 percent develop at least one bad chip in the first four years of deployment.

Drive replacements

- Percentage of drives replaced annually due to suspected hardware problems over the first 4 years in the field:

  - Average annual replacement rates for hard disks (2-20%)

  - ~1-2% of drives replaced annually, much lower than hard disks!
  - 0.5-1.5% of drives developed bad chips per year
    - Would have been replaced without methods for tolerating chip failure

Slide from "Flash Reliability in Production: The Expected and the Unexpected" by Schroeder et al. FAST'16.
Errors experienced during a drive’s lifecycle

- **Non-transparent errors common:**
  - 26-60% of drives with uncorrectable errors
  - 2-6 out of 1,000 drive days experience uncorrectable errors
  - Much worse than for hard disk drives (3.5% experiencing sector errors)!
Overall conclusions on drive health

• **HDD:**
  • Usually just die, sometimes have undetected bit errors.
  • Need to protect against drive data loss!

• **SSD:**
  • Usually have undetected bit errors, sometimes just die.
  • Need to protect against drive data loss!

• Overall conclusion?

  Need to protect against drive data loss!