Includes material adapted from the course “Information Storage and Management v2” (module 13), published by EMC corporation.
CLOUD

• What is it?
 • Most overused and abused buzzword of the 21st century.
Cloud

• What is it?
 • It’s when you borrow a computer over a network.
 • That’s all.

• Lots of ways to “borrow”.
• Lots of kinds of “computer”.
• Lots of kinds of “network”.

• Marketing nonsense was so bad the National Institute of Standards and Technology (NIST) produced a definition which most people go by now
Why do cloud stuff?

• So you don’t have to buy the stuff.
 • Save time and up-front costs.

• So you don’t have to maintain the stuff.
 • Avoid recurring effort and unpredictable expenses (or rather, pay to make them someone else’s problem)

• So you can rent more stuff only when you need to.
 • The “Christmas season” effect – only rent servers to handle 100M hits/day when you actually might get 100M hits in a day.
What is Cloud Computing?

A model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., servers, storage, networks, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. – NIST

• Essential Cloud characteristics
 ▶ On-demand self-service
 ▶ Broad network access
 ▶ Resource pooling
 ▶ Rapid elasticity
 ▶ Measured service
On-demand Self-service

- Enables consumers to unilaterally provision computing capabilities (examples: server time and storage capacity) as needed automatically.
- Consumers view service catalogue via a Web-based user interface and use it to request for a service.

Translation:

Press button → Receive resource
Broad Network Access

• Computing capabilities are available over the network

• Computing capabilities are accessed from a broad range of client platforms such as:
 ▶ Desktop computer
 ▶ Laptop
 ▶ Tablet
 ▶ Mobile device

Translation:

Leasing a physical server doesn’t count.
Resource Pooling

- Provider’s computing resources are pooled to serve multiple consumers using a multitenant model
- Resources are assigned from the pool according to consumer demand
- Consumers have no control or knowledge over the exact location of the provided resources
“Resource pooling”?

- What are some architectures/technologies that pool resources?
 - RAID array and LVM pools raw disks
 - NAS/SAN in general pools storage
 - Server virtualization pools compute
 - End-to-end virtual environment pools them all at once!
Rapid Elasticity

• Computing capabilities can be elastically provisioned and released
• Computing capabilities are scaled rapidly, commensurate with consumer’s demand
 ▸ Provides a sense of unlimited scalability
Rapid elasticity

- How can we scale each layer of this stack?
Measured Service

• Cloud computing provides a metering system that continuously monitors resource consumption and generates reports
 ▶ Helps to control and optimize resource use
 ▶ Helps to generate billing and chargeback reports

Translation:
We watch what you use and, if this is a pay-for-use cloud, charge you for it.
Benefits of Cloud Computing

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced IT cost</td>
<td>• Reduces the up-front capital expenditure (CAPEX)</td>
</tr>
<tr>
<td>Business agility</td>
<td>• Provides the ability to deploy new resources quickly</td>
</tr>
<tr>
<td></td>
<td>• Enables businesses to reduce time-to-market</td>
</tr>
<tr>
<td>Flexible scaling</td>
<td>• Enables consumers to scale up, scale down, scale out, or scale in the demand for computing resources easily</td>
</tr>
<tr>
<td></td>
<td>• Consumers can unilaterally and automatically scale computing resources</td>
</tr>
<tr>
<td>High availability</td>
<td>• Ensures resource availability at varying levels, depending on consumer’s policy and priority</td>
</tr>
</tbody>
</table>
Cloud Service Models

- Infrastructure-as-a-Service (IaaS)
- Platform-as-a-Service (PaaS)
- Software-as-a-Service (SaaS)
- Storage-as-a-Service (StaaS)
- Tons of other stuff -as-a-Service (XaaS)
Infrastructure-as-a-Service

- Consumers deploy their software, including OS and application on provider’s infrastructure
 - Computing resources such as processing power, memory, storage, and networking components are offered as service
 - Example: Amazon Elastic Compute Cloud
- Consumers have control over the OSs and deployed applications
Platform-as-a-Service

• Consumers deploy consumer-created or acquired applications onto provider’s computing platform
 ▪ Computing platform is offered as a service
 ▪ Example: Google App Engine and Microsoft Windows Azure Platform

• Consumer has control over deployed applications
Software-as-a-Service

- Consumers use provider’s applications running on the cloud infrastructure
 - Applications are offered as a service
 - Examples: EMC Mozy and Salesforce.com
- Service providers exclusively manage computing infrastructure and software to support services
Storage as a Service

• Several delivery models:

• “Comes with storage” model: the storage you get is the virtual disk attached to your VM (cheap)

• NAS-type: Can request file-oriented space.
 • Example: Amazon Elastic File System (which is just NFS for money)

• SAN-type: Can request block-oriented space.
 • Example: Amazon Elastic Block System (attaches to VM as virtual disk)
 • Example: Traditional SAN LUNs

• Object storage: A simplified storage interface
 • Example: Amazon S3
 • Need to zoom in...
Object storage

• Insight: if we drop traditional POSIX file interface (open/close/seek/read/write), can make a cheaper/faster/simpler file system

• Simpler verbs: GET and PUT
 • GET: Read the whole thing
 • PUT: Write the whole thing

• Intentionally omitted verbs: SEEK, MODIFY, etc.

• Example: Amazon S3
 • GET/PUT stuff to URLs
 • All storage details behind that hidden from user
 • Cloud provider can migrate/replicate data and redesign back end
 • No changes means no consistency issues!
Cloud Deployment Models

- Public
- Private
- Community
- Hybrid
Public Cloud

Enterprise P

Enterprise Q

Cloud Service Provider’s Resources

User R

Example
Amazon AWS, Microsoft Azure, etc.
Private Cloud

On-Premise Private Cloud

Enterprise P

Resources of Enterprise P

Externally Hosted Private Cloud

Enterprise P

Cloud Service Provider’s Resources

Example

Duke managed VM portal
Community Cloud

Example

I was going to reference one of the academic shared compute clusters that were popular a while ago, but it seems like Amazon ate all of them.
Hybrid Cloud

Example

Amazon Direct Connect to a hosted data center (e.g. Equinix)
Hybrid example with “bursting”

• Amazon has a program called Direct Connect
 • They have fast network lines at each Amazon AWS datacenter to nearby **colocation facilities**
 • **Colocation:** When you lease space for your server in someone else’s datacenter. (Colocation by itself isn’t considered ‘cloud’.)
 • You put up resources needed for your average workload
 • Run exclusively on your own gear most of the time
 • When demand grows past capacity, rent cloud services
 • Can start immediately; data comes from YOUR storage, not theirs
 • No migration
Side benefit to direct-connect to cloud

- If your storage is directly connected to cloud, you still own your data, but can benefit from cloud’s compute.

- Important for regulations or concerns of liability/privacy
 - Financial/medical generally can’t use any public cloud otherwise
 - Legal discovery: want to know if your data is being inspected/subpoenaed by authorities (or the NSA without a warrant)
Cloud Challenges – Consumer’s Perspective

• Security and regulation
 ▶ Consumers are indecisive to transfer control of sensitive data
 ▶ Regulation may prevent organizations to use cloud services

• Network latency
 ▶ Real time applications may suffer due to network latency and limited bandwidth

• Supportability
 ▶ Service provider might not support proprietary environments
 ▶ Incompatible hypervisors could impact VM migration

• Vendor lock-in
 ▶ Restricts consumers from changing their cloud service providers
 ▶ Lack of standardization across cloud-based platforms
Cloud Challenges – Provider’s Perspective

• Service warranty and service cost
 ▸ Resources must be kept ready to meet unpredictable demand
 ▸ Hefty penalty, if SLAs are not fulfilled

• Complexity in deploying vendor software in the cloud
 ▸ Many vendors do not provide cloud-ready software licenses
 ▸ Higher cost of cloud-ready software licenses

• No standard cloud access interface
 ▸ Cloud consumers want open APIs
 ▸ Need agreement among cloud providers for standardization
What Deployment Model Fits for You?

Public cloud
- Convenience outweighs risk
- Low cost or free
- Ex: Picasa, Google apps

Hybrid cloud
- Tier 1 apps: private cloud
- Tier 2-4 apps (backup, archive, testing): public cloud

Private cloud
- Tier 2-4: private cloud
- Tier 1: may continue to run in a traditional data center environment
Brief sideline: CAPEX and OPEX

- CAPEX = Capital Expenditure
 - Big investments
 - E.g., buying land, constructing buildings, ordering IT gear, etc.

- OPEX = Operating Expenditure
 - Money paid over time (financial obligations)
 - E.g., payroll, electricity, lease payments

- On **high-risk** projects, want ways to turn CAPEX into OPEX
 - “This project might not work, so I don’t want to buy a rack of gear to support it; better to lease gear or use cloud.”

- On **low-risk** projects, want to invest CAPEX to stop unending OPEX payments
 - “The project was a success, and we’ll be running this app for at least 10 years, it makes sense to buy servers/storage for it and stop paying a premium to the cloud provider to host it.”
QoS Considerations

• Consumers should check whether the QoS attributes meet their requirements
• SLA is a contract between the cloud service provider and consumers that defines QoS attributes
 ▶ Attributes examples: throughput, uptime, and so on
Quality of Service (QoS)

- As engineers, that previous slide is actually HUGE
- Want to set **performance guarantees and priorities**

- For CPU, prioritization/minimums are easy:
 - “If X is higher priority than Y and both X and Y are ready to run, run X”
 - “If X hasn’t gotten it’s minimum CPU time and X is ready to run, run X”

- For storage, it’s hard; open field of research

- Challenges to storage QoS:
 - Allocation of cache?
 - Lots of implied reads/writes; how to prioritize?
 - Backup/replication IO
 - Journaling effects
 - Multiple metrics (IOPS for random, throughput for sequential)
 - If we guarantee a certain number of IOPS for a process, that could be most of our disk performance if we’re doing random IO, or very little if we’re doing sequential IO.
Multi-tenant virtual environments

- **Virtualize** into VMs
- **Aggregate** servers into hypervisor cluster
- **Virtualize** with VLAN segmentation
- **Aggregate** links with trunking
- **Virtualize** management domains (e.g. NetApp “Storage Virtual Machines”)
- **Virtualize** into volumes
- **Aggregate** with RAID/LVM