Introduction and Course Policies

Tyler Bletsch
Duke University
Instructor and TAs

• Professor: Tyler Bletsch
 - Office: Hudson Hall 106
 - Email: Tyler.Bletsch@duke.edu
 - Office Hours: see course site

• Teaching Assistant:
 - TBD
Course objective: Evolve your understanding of security

- **Theory:**
 - How do I think systematically about security?
 - What constructs are available for me to use?
 - How do I understand *new* threats and defenses not covered in the course?

- **Skills:**
 - What tools are commonly used to do the above?
 - How can I manipulate data and automate things to make the above practical?

- **Practice:**
 - “Stick time”: Actually doing it.
 - Both attacking and defending.
Getting Info

• **Course Web Page**: static info
 - Syllabus, schedule, slides, assignments, rules/policies, prof/TA info, office hour info
 - Links to useful resources

• **Piazza**: questions/answers
 - Post all of your questions here
 - Questions must be “public” unless good reason otherwise
 - **No code or copyable answers** in public posts!

• **Sakai**: just assignment submission and gradebook
Textbook

TBD

• Text:

• We will not cover material in the textbook in a strictly linear fashion.

If you go to addall.com, you can search all online booksellers at once.
Workload

• Homework assignments – discussed collaboratively, done individually
 ▪ Pencil and paper problems
 ▪ Programming problems
 ▪ Technical exercises
 ▪ Attack and defense scenarios
 ▪ Data manipulation and automation tasks

 ▪ Security is broad and diverse field → Lots of different things to practice → Lots of work!!

Some collaboration is allowed

ALLOWED: Collaboration on approach or concepts.
DISALLOWED: Collaboration on answers.

All artifacts you submit must be entirely your own.
Grading Breakdown

<table>
<thead>
<tr>
<th>Assignment</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeworks</td>
<td>60%</td>
</tr>
<tr>
<td>Exam 1</td>
<td>10%</td>
</tr>
<tr>
<td>Exam 2</td>
<td>10%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20%</td>
</tr>
</tbody>
</table>

Partial credit is available – provide detail in your answers to seek it!

Late homework submissions incur penalties as follows:
- Submission is 0-24 hours late: total score is multiplied by 0.9
- Submission is 24-48 hours late: total score is multiplied by 0.8
- Submission is more than 48 hours late: total score is multiplied by the Planck constant (in J·s)

NOTE: If you feel *in advance* that you may need an extension, contact the instructor.

These assignments are loooooooooooong. START EARLY.
Homework Zero

• Due Friday night

• Designed to get you familiar with UNIX in general and Linux in particular

• UNIX skills are for more than this course – there’s a **reason** people use these tools!

• If you’re having trouble, post on Piazza and we can help you.

This is the same Homework 0 sometimes given in ECE/COMPSCI 250.

If you’ve already done it there, you don’t need to do it again – just submit the screenshots from before (or reproduce them if needed).
All regrade requests must be in writing to the TA.

After speaking with the TA, if you still have concerns, contact the instructor.

All regrade requests must be submitted no later than 1 week after the assignment was returned to you.
Academic Misconduct

• Academic Misconduct
 ▪ Refer to Duke Community Standard
 ▪ Homework content is individual – you do your own work
 ▪ Common examples of cheating:
 • Copying and rephrasing written answers from another student
 • Using code or answers from an outside source
• I will not tolerate any academic misconduct!

• “But I didn’t know that was cheating” is not a valid excuse

Some collaboration is allowed

ALLOWED: Collaboration on approach or concepts.
DISALLOWED: Collaboration on answers.

All artifacts you submit must be entirely your own.
Goals of This Course

• Things you will understand after this course:
 ▪ Fundamental security objectives: Confidentiality, Integrity, and Availability
 ▪ How to develop and describe a threat model
 ▪ The types of security threats and attacks that must be dealt with
 ▪ How to distinguish among various types of intruders and their behavior patterns
 ▪ The poor programming practices that cause many security vulnerabilities
 ▪ Major networking protocols, standards, and tools
 ▪ Symmetric and asymmetric cryptography including message authentication
 ▪ User authentication
 ▪ How to reason about and implement security policies
 ▪ How to secure operating systems, databases, hypervisors, and cloud environments
 ▪ The role of firewalls, intrusion detection, and intrusion prevention systems
 ▪ Security auditing and forensics
 ▪ Social engineering attacks
 ▪ Ethical and legal aspects of security
Our Responsibilities

• The instructor and TA will...
 ▪ Provide lectures/recitations at the stated times
 ▪ Set clear policies on grading
 ▪ Provide timely feedback on assignments
 ▪ Be available out of class to provide reasonable assistance
 ▪ Respond to comments or complaints about the instruction provided

• Students are expected to...
 ▪ Receive lectures/recitations at the stated times
 ▪ Turn in assignments on time
 ▪ Seek out of class assistance in a timely manner if needed
 ▪ Provide frank comments about the instruction or grading as soon as possible if there are issues
 ▪ Assist each other *within the bounds of academic integrity*
Computing resources

• TBD