ECE590
Computer and Information Security

Fall 2018

Introduction and Course Policies

Tyler Bletsch
Duke University
Instructor and TAs

• Professor: Tyler Bletsch
 ▪ Office: Hudson Hall 106
 ▪ Email: Tyler.Bletsch@duke.edu
 ▪ Office Hours: see course site

• Teaching Assistants:
 ▪ Neil Dhar
 ▪ Rui Zhang
Course objective: Evolve your understanding of security

• Theory:
 ▪ How do I think systematically about security?
 ▪ What constructs are available for me to use?
 ▪ How do I understand *new* threats and defenses not covered in the course?

• Skills:
 ▪ What tools are commonly used to do the above?
 ▪ How can I manipulate data and automate things to make the above practical?

• Practice:
 ▪ “Stick time”: Actually doing it.
 ▪ Both attacking and defending.
Getting Info

• **Course Web Page**: static info
 - Syllabus, schedule, slides, assignments, rules/policies, prof/TA info, office hour info
 - Links to useful resources

• **Piazza**: questions/answers
 - Post all of your questions here
 - Questions must be “public” unless good reason otherwise
 - **No code or copyable answers** in public posts!

• **Sakai**: just assignment submission and gradebook
Textbook

 - Get the **GLOBAL EDITION**, it’s the EXACT SAME BOOK for cheaper.

- The course uses the textbook highly out-of-order, see course site for readings.

If you go to addall.com, you can search all online booksellers at once.
Workload

• Homework assignments – **discussed collaboratively, done individually**
 ▪ Pencil and paper problems
 ▪ Programming problems
 ▪ Technical exercises
 ▪ Attack and defense scenarios
 ▪ Data manipulation and automation tasks

 ▪ *Security is broad and diverse field* →
 Lots of different things to practice →
 Lots of work!!

 Some collaboration is allowed

ALLOWED: Collaboration on *approach* or *concepts*.
DISALLOWWED: Collaboration on *answers*.

All artifacts you submit must be entirely your own.
Grading Breakdown

<table>
<thead>
<tr>
<th>Assignment</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeworks</td>
<td>60%</td>
</tr>
<tr>
<td>Exam 1</td>
<td>10%</td>
</tr>
<tr>
<td>Exam 2</td>
<td>10%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20%</td>
</tr>
</tbody>
</table>

Partial credit is available – provide detail in your answers to seek it!

Late homework submissions incur penalties as follows:
- Submission is 0-24 hours late: total score is multiplied by 0.9
- Submission is 24-48 hours late: total score is multiplied by 0.8
- Submission is more than 48 hours late: total score is multiplied by the Planck constant (in J·s)

NOTE: If you feel in advance that you may need an extension, contact the instructor.

These assignments are looooooollllllloooong. START EARLY.
Homework Zero

• Due Thursday night

• Designed to get you familiar with UNIX in general and Linux in particular

• UNIX skills are for more than this course – there’s a reason people use these tools!

• If you’re having trouble, post on Piazza and we can help you.

This is the same Homework 0 sometimes given in ECE/COMPSCI 250. If you’ve already done it there, you don’t need to do it again – just submit the screenshot from the training system.
Grade Appeals

• All regrade requests must be in writing to the TA

• After speaking with the TA, if you still have concerns, contact the instructor

• All regrade requests must be submitted no later than 1 week after the assignment was returned to you.
Academic Misconduct

• Academic Misconduct
 ▪ Refer to Duke Community Standard
 ▪ Homework content is individual – you do your own work
 ▪ Common examples of cheating:
 • Copying and rephrasing written answers from another student
 • Using code or answers from an outside source
 • I will not tolerate any academic misconduct!

• “But I didn’t know that was cheating” is not a valid excuse

Some collaboration is allowed

ALLOWED: Collaboration on approach or concepts.
DISALLOWED: Collaboration on answers.

All artifacts you submit must be entirely your own.
Goals of This Course

- Things you will understand after this course:
 - Fundamental security objectives: Confidentiality, Integrity, and Availability
 - How to develop and describe a threat model
 - The types of security threats and attacks that must be dealt with
 - How to distinguish among various types of intruders and their behavior patterns
 - The poor programming practices that cause many security vulnerabilities
 - Major networking protocols, standards, and tools
 - Symmetric and asymmetric cryptography including message authentication
 - User authentication
 - How to reason about and implement security policies
 - How to secure operating systems, databases, hypervisors, and cloud environments
 - The role of firewalls, intrusion detection, and intrusion prevention systems
 - Security auditing and forensics
 - Social engineering attacks
 - Ethical and legal aspects of security
Our Responsibilities

• The instructor and TA will...
 ▪ Provide lectures/recitations at the stated times
 ▪ Set clear policies on grading
 ▪ Provide timely feedback on assignments
 ▪ Be available out of class to provide reasonable assistance
 ▪ Respond to comments or complaints about the instruction provided

• Students are expected to...
 ▪ Receive lectures/recitations at the stated times
 ▪ Turn in assignments on time
 ▪ Seek out of class assistance in a timely manner if needed
 ▪ Provide frank comments about the instruction or grading as soon as possible if there are issues
 ▪ Assist each other within the bounds of academic integrity
Computing resources

• We’ll make extensive use of VMs from the Duke Virtual Computing Manager: https://vcm.duke.edu/
 ▪ Students in this course will have their VM limit raised to 4
 ▪ These VMs have public internet IP addresses – practice good security!

• Later, you will be given access to VMs running Kali Linux (a distribution of Linux with many security tools pre-installed)
 ▪ Take care of these – if you blow one up, IT has to rebuild it.

• We will use shared target machines from time to time
 ▪ Treat these with respect – unless otherwise noted, you should ONLY do the prescribed actions to them. Do not “attack” systems you are not explicitly told to.
Ethics in Security

- There are three flavors of security practitioner in the world:
 - **White hat**: Obey the law, work to make systems secure
 - **Black hat**: Break the law, infiltrate (usually for profit)
 - **Grey hat**: Does both (so still super unethical)

- There is ONE flavor of security practitioner in this course:

- All students must sign and turn in an **ethics pledge** in order to receive credit on any assignments (see course site!)