Grab bag: Physical security, organizational security, security auditing, and legal/ethical aspects

Tyler Bletsch
Duke University
Physical security

Based on chapter 16
Physical security

• **Physical security**: “what if I just go over there and take it?”

• Systems:
 - **Physical access is root access**! Attackers holding a system can:
 - Apply BIOS or boot loader settings
 - Want access to a Linux machine? Add “single” to the kernel parameters for single-user mode...
 - Pop out drive and mount it in another system
 - Defeats all restrictions except **encryption**
 - Alter the hardware (e.g., reflash firmware, solder a malicious chip, etc.)

• Facilities:
 - Guarding a thousand computers is harder than guarding a perimeter, so let’s guard a perimeter instead.
Facility access control and high availability

• Physical access control
 ▪ **Restrict building access**
 • Locks or screening at entry points
 • Intruder sensors and alarms
 • Controlled areas patrolled or guarded
 • Issues to consider:
 ▪ Mechanisms of identification (security vs convenience)
 ▪ Fail open or fail secure? Don’t forget safety...
 ▪ If fire code says you need more exits than you can guard, alarm some
 ▪ Equip movable resources with a tracking device
 ▪ Surveillance systems with recording and real-time viewing

• Redundancy
 ▪ Allow “fail over” to other facility in the event of a disaster or breach
 ▪ Lots of details here – out of scope for us now.

Adapted from the textbook
Physical security in layers (SP 800-116)

- Four tiers of space priority
- Gates between them with differing credentials
 - CHUID+VIS: Card Holder Unique Identifier (badge) plus Visual identification (guard looks at you)
 - CAK: Card Authentication Key (smart badge)
 - BIO: Biometric (e.g., fingerprint)
 - BIO-A: Biometric with Attendant (a human watches you do it)
 - PKI: PIV Authentication Key (pin-secured public key crypto, counts as multi-factor since you need pin (known) and badge (owned).

(PIV = Personal Identity Verification)
Organizational Security

Based on chapter 17
The human issue

Companies and organizations are made of people; people are the cause of 100% of all security issues. (Also 100% of the fixes)

• People problems:
 ▪ Errors and omissions
 ▪ Manipulation by attackers (discussed in the next lecture)
 ▪ Fraud
 ▪ Sabotage

• People solutions:
 ▪ Inform them
 ▪ Get only good people
 ▪ Get explicit agreement
 ▪ Terminate employment securely
Informing the people

• Informing people takes three forms:
 - **Awareness**: Make people know about threats and issues
 • Broad, short messages and reminders (e.g. emails from IT)
 - **Training**: Tell people what to do in specific situations
 - **Education**: In-depth understanding for security professionals
 • E.g. this course
Security in hiring

- Background checks as part of hiring process – do them in proportion to the sensitivity of the role
 - Screening: Find fraud in credentials and experience
 - Criminal record check: Find records of past crimes or malpractice relevant to the job at hand
 - Credit check: Ensure candidate is not in financial duress
 - People with severe money problems can be plied by attackers to betray an organization
Employees should agree to and sign the terms and conditions of their employment contract, which should include:

I. Employee and organizational responsibilities for information security

II. A confidentiality and non-disclosure agreement

III. Reference to the organization's security policy

IV. Acknowledgement that the employee has reviewed and agrees to abide by the policy
Termination of Employment

• Termination security objectives:
 • Ensure employees, contractors, and third party users exit organization or change employment in an orderly manner
 • The return of all equipment and the removal of all access rights are completed

Critical actions:

• Remove name from all authorized access lists
• Inform guards that ex-employee general access is not allowed
• Remove personal access codes, change physical locks and lock combinations, reprogram access card systems
• Recover all assets, including employee ID, portable USB storage devices, documents, and equipment
• Notify by memo or e-mail appropriate departments
Security Auditing

Based on chapter 18
Security Auditing

• A **security audit** is a review of system records to:
 - Determine if the configuration is adequately secure,
 - Confirm that existing policies are being followed,
 - Detect any previously undetected breaches, and
 - Recommend changes/improvements.

• Based on an **audit trail**: the chronological record of available **events** and data woven together from multiple sources

• **Events** are found via *instrumentation* or *logging*. They include:
 - Creation/deletion of objects
 - Changes to access rights
 - Authentication events
 - Policy checks performed by the security software
 - Security-related actions taken by an operator/user
 - Import/export of significant data from/to removable media or network
Table 18.3
Monitoring Areas Suggested in ISO 27002

a) user IDs	h) use of privileges
b) system activities	i) use of system utilities and applications
c) dates, times and details of key events, e.g. log-on and log-off	j) files accessed and the kind of access
d) device identity or location if possible and system identifier	k) network addressees and protocols
e) records of successful and rejected system access attempts	l) alarms raised by the access control system
f) records of successful and rejected data and other resource access attempts	m) activation and de-activation of protection systems, such as anti-virus systems and intrusion detection systems
g) changes to system configuration	n) records of transactions executed by users in applications
(a) Sample system log file showing authentication messages

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Host</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 27</td>
<td>17:14:04</td>
<td>host1</td>
<td>login: ROOT LOGIN console</td>
</tr>
<tr>
<td>Jan 27</td>
<td>17:15:04</td>
<td>host1</td>
<td>shutdown: reboot by root</td>
</tr>
<tr>
<td>Jan 27</td>
<td>17:18:38</td>
<td>host1</td>
<td>login: ROOT LOGIN console</td>
</tr>
<tr>
<td>Jan 27</td>
<td>17:19:37</td>
<td>host1</td>
<td>reboot: rebooted by root</td>
</tr>
<tr>
<td>Jan 28</td>
<td>09:46:53</td>
<td>host1</td>
<td>su: 'su root' succeeded for user1 on /dev/ttyp0</td>
</tr>
<tr>
<td>Jan 28</td>
<td>09:47:35</td>
<td>host1</td>
<td>shutdown: reboot by user1</td>
</tr>
<tr>
<td>Feb 12</td>
<td>08:53:22</td>
<td>host1</td>
<td>su: 'su root' succeeded for user1 on /dev/ttyp1</td>
</tr>
<tr>
<td>Feb 17</td>
<td>08:57:50</td>
<td>host1</td>
<td>date: set by user1</td>
</tr>
<tr>
<td>Feb 12</td>
<td>08:53:22</td>
<td>host1</td>
<td>su: 'su root' succeeded for user1 on /dev/ttyp1</td>
</tr>
<tr>
<td>Feb 17</td>
<td>13:22:52</td>
<td>host1</td>
<td>su: 'su root' succeeded for user1 on /dev/ttyp0</td>
</tr>
</tbody>
</table>

(b) Application-level audit record for a mail delivery system

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Host</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr 9</td>
<td>11:20:22</td>
<td>host1</td>
<td>AA06370: from=user2@host2, size=3355, class=0</td>
</tr>
<tr>
<td>Apr 9</td>
<td>11:20:23</td>
<td>host1</td>
<td>AA06370: to=user1@host1, delay=00:00:02, stat=Sent</td>
</tr>
<tr>
<td>Apr 9</td>
<td>11:59:51</td>
<td>host1</td>
<td>AA06436: from=user4@host3, size=1424, class=0</td>
</tr>
<tr>
<td>Apr 9</td>
<td>11:59:52</td>
<td>host1</td>
<td>AA06436: to=user1@host1, delay=00:00:02, stat=Sent</td>
</tr>
<tr>
<td>Apr 9</td>
<td>12:43:52</td>
<td>host1</td>
<td>AA06441: from=user2@host2, size=2077, class=0</td>
</tr>
<tr>
<td>Apr 9</td>
<td>12:43:53</td>
<td>host1</td>
<td>AA06441: to=user1@host1, delay=00:00:01, stat=Sent</td>
</tr>
</tbody>
</table>

(c) User log showing a chronological list of commands executed by users

<table>
<thead>
<tr>
<th>Command</th>
<th>User</th>
<th>Terminal</th>
<th>Duration</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>rcp</td>
<td>user1</td>
<td>ttyp0</td>
<td>0.02 secs</td>
<td>Fri Apr 8 16:02</td>
</tr>
<tr>
<td>ls</td>
<td>user1</td>
<td>ttyp0</td>
<td>0.14 secs</td>
<td>Fri Apr 8 16:01</td>
</tr>
<tr>
<td>clear</td>
<td>user1</td>
<td>ttyp0</td>
<td>0.05 secs</td>
<td>Fri Apr 8 16:01</td>
</tr>
<tr>
<td>rpcinfo</td>
<td>user1</td>
<td>ttyp0</td>
<td>0.20 secs</td>
<td>Fri Apr 8 16:01</td>
</tr>
<tr>
<td>nroff</td>
<td>user2</td>
<td>ttyp2</td>
<td>0.75 secs</td>
<td>Fri Apr 8 16:00</td>
</tr>
<tr>
<td>sh</td>
<td>user2</td>
<td>ttyp2</td>
<td>0.02 secs</td>
<td>Fri Apr 8 16:00</td>
</tr>
<tr>
<td>mv</td>
<td>user2</td>
<td>ttyp2</td>
<td>0.02 secs</td>
<td>Fri Apr 8 16:00</td>
</tr>
<tr>
<td>sh</td>
<td>user2</td>
<td>ttyp2</td>
<td>0.03 secs</td>
<td>Fri Apr 8 16:00</td>
</tr>
<tr>
<td>col</td>
<td>user2</td>
<td>ttyp2</td>
<td>0.09 secs</td>
<td>Fri Apr 8 16:00</td>
</tr>
<tr>
<td>man</td>
<td>user2</td>
<td>ttyp2</td>
<td>0.14 secs</td>
<td>Fri Apr 8 15:57</td>
</tr>
</tbody>
</table>

Figure 18.4 Examples of Audit Trails
Protecting the audit trail

How is the audit trail stored?

- Read/write file on host
 - Easy, least resource intensive, instant access
 - Vulnerable to attack by intruder

- Write-once/read-many device (e.g. dedicated log server)
 - More secure but less convenient
 - Need steady supply of recordable media
 - Access may be delayed and not available immediately

- Must protect both integrity and confidentiality
 - Encryption, digital signatures, access controls
Windows Event Log

- Event is an entity that describes some interesting occurrence
 - Contains:
 - A numeric identification code
 - A set of attributes
 - Optional user-supplied data

- Three types of event logs:
 - System: system related apps and drivers
 - Application: user-level apps
 - Security: Windows LSA

Example log entry

<table>
<thead>
<tr>
<th>Event Type:</th>
<th>Success Audit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Source:</td>
<td>Security</td>
</tr>
<tr>
<td>Event Category:</td>
<td>(1)</td>
</tr>
<tr>
<td>Event ID:</td>
<td>517</td>
</tr>
<tr>
<td>Date:</td>
<td>3/6/2006</td>
</tr>
<tr>
<td>Time:</td>
<td>2:56:40 PM</td>
</tr>
<tr>
<td>User:</td>
<td>NT AUTHORITY\SYSTEM</td>
</tr>
<tr>
<td>Computer:</td>
<td>KENT</td>
</tr>
<tr>
<td>Description:</td>
<td>The audit log was cleared</td>
</tr>
<tr>
<td>Primary User Name:</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>Primary Logon ID:</td>
<td>(0x0,0x3F7)</td>
</tr>
<tr>
<td>Client User Name:</td>
<td>userk</td>
</tr>
<tr>
<td>Client Domain:</td>
<td>KENT</td>
</tr>
<tr>
<td>Client Logon ID:</td>
<td>(0x0,0x28BFD)</td>
</tr>
</tbody>
</table>
UNIX Syslog

- **UNIX's general-purpose logging mechanism**
- **Found on all UNIX / Linux variants**

Elements:

<table>
<thead>
<tr>
<th>syslog()</th>
<th>logger</th>
<th>/etc/syslog.conf</th>
<th>syslogd</th>
</tr>
</thead>
<tbody>
<tr>
<td>API referenced by several standard system utilities and available to application programs</td>
<td>Command used to add single-line entries to the system log</td>
<td>Configuration file used to control the logging and routing of system log events</td>
<td>Daemon to receive/route log events</td>
</tr>
</tbody>
</table>
Syslog service

- Basic syslog service provides:
 - A means of **capturing** relevant events
 - A **storage** facility
 - A protocol for **transmitting** syslog messages from other machines to a central machine that acts as a **syslog server**

```
Mar 1 06:25:43 server1 sshd[23170]: Accepted publickey for server2 from 172.30.128.115 port 21011 ssh2
Mar 1 07:16:42 server1 sshd[9326]: Accepted password for murugiah from 10.20.30.108 port 1070 ssh2
Mar 1 07:16:53 server1 sshd[22938]: reverse mapping checking getaddrinfo for ip10.165.nist.gov failed - POSSIBLE BREAKIN ATTEMPT!
Mar 1 07:26:28 server1 sshd[22572]: Accepted publickey for server2 from 172.30.128.115 port 30606 ssh2
Mar 1 07:28:33 server1 su: BAD SU kent to root on /dev/ttyp2
Mar 1 07:28:41 server1 su: kkent to root on /dev/ttyp2
```

Figure 18.6 Examples of Syslog Messages

Example log entry

Figure from [here](#)
Audit analysis

• So you have all this data...now what? Apply human brain to it. There’s lots of ways to proceed...
 ▪ Some examples...

 Basic alerting
 • Indicate interesting type of event has occurred

 Baselining
 • Define normal versus unusual events/patterns
 • Compare with new data to detect changes
 • Thresholding is the identification of data that exceed a particular baseline value

 Windowing
 • Detection of events within a given set of parameters

 Correlation
 • Seeks relationships among events
Audit conclusion

• Most common mistake: doing all of this, then taking no action because of it!

• End of audit should be a set of **concrete recommended actions**

• Should flow directly into project management for taking action
Legal Aspects

Based on chapter 19
Types of Computer Crime

- The U.S. Department of Justice categorizes computer crime based on the role that the computer plays in the criminal activity:

 Computers as targets
 - Involves an attack on data integrity, system integrity, data confidentiality, privacy, or availability

 Computers as storage devices
 - Using the computer to store stolen password lists, credit card or calling card numbers, proprietary corporate information, pornographic image files, or pirated commercial software

 Computers as communications tools
 - Crimes that are committed online, such as fraud, gambling, child pornography, and the illegal sale of prescription drugs, controlled substances, alcohol, or guns
Article 2 Illegal access
The access to the whole or any part of a computer system without right.

Article 3 Illegal interception
The interception without right, made by technical means, of non-public transmissions of computer data to, from or within a computer system, including electromagnetic emissions from a computer system carrying such computer data.

Article 4 Data interference
The damaging, deletion, deterioration, alteration or suppression of computer data without right.

Article 5 System interference
The serious hindering without right of the functioning of a computer system by inputting, transmitting, damaging, deleting, deteriorating, altering or suppressing computer data.

Article 6 Misuse of devices
a The production, sale, procurement for use, import, distribution or otherwise making available of:
 i A device, including a computer program, designed or adapted primarily for the purpose of committing any of the offences established in accordance with the above Articles 2 through 5;
 ii A computer password, access code, or similar data by which the whole or any part of a computer system is capable of being accessed, with intent that it be used for the purpose of committing any of the offences established in the above Articles 2 through 5; and
b The possession of an item referred to in paragraphs a.i or ii above, with intent that it be used for the purpose of committing any of the offences established in the above Articles 2 through 5. A Party may require by law that a number of such items be possessed before criminal liability attaches.

Article 7 Computer-related forgery
The input, alteration, deletion, or suppression of computer data, resulting in inauthentic data with the intent that it be considered or acted upon for legal purposes as if it were authentic, regardless whether or not the data is directly readable and intelligible.

Article 8 Computer-related fraud
The causing of a loss of property to another person by:
a Any input, alteration, deletion or suppression of computer data;
b Any interference with the functioning of a computer system, with fraudulent or dishonest intent of procuring, without right, an economic benefit for oneself or for another person.
Article 9 Offenses related to child pornography

- a. Producing child pornography for the purpose of its distribution through a computer system;
- b. Offering or making available child pornography through a computer system;
- c. Distributing or transmitting child pornography through a computer system;
- d. Procuring child pornography through a computer system for oneself or for another person;
- e. Possessing child pornography in a computer system or on a computer-data storage medium.

Article 10 Infringements of copyright and related rights

Article 11 Attempt and aiding or abetting

Aiding or abetting the commission of any of the offences established in accordance with the above Articles 2 through 10 of the present Convention with intent that such offence be committed. An attempt to commit any of the offences established in accordance with Articles 3 through 5, 7, 8, and 9.1.a and c. of this Convention.
Law enforcement challenges

• Law enforcement deterrent is based on probability of being caught/prosecuted. For computer crime, this number is... low.

• Challenges to law enforcement.
 ▪ Law enforcement is usually behind the times (lack of knowledge/tools)
 ▪ Criminals are probably out of jurisdiction (lack of global cooperation)
 ▪ Suspects are diverse and difficult to profile
 ▪ Cycle:
 1. Police have low success rate at solving cyber crime, so...
 2. Victims often don’t bother reporting it, so...
 3. Police don’t invest more in it, so #1
Key laws/agreements affecting computer security (Focused on United States)

- **Computer Fraud and Abuse Act**: “Prohibits accessing a computer without authorization, or in excess of authorization”\(^\text{src}\). 1984.
- **Digital Millennium Copyright Act**: Implements intellectual property treaties in U.S., allows copyright owners to use technology to protect works and prohibits bypasses of such measures. 1998.
 - Exemptions for: Fair use, reverse engineering, research, testing, and privacy
- **Convention on Cybercrime**: Broad agreement among western nations that cybercrime is bad. 2001.
- **Patriot Act**: Broadened surveillance abilities of government (affecting privacy); codified cyber-terrorism (“to cause a person to be injured, a threat to public health or safety, or damage to a governmental computer that is used as a tool to administer justice, national defense or national security”\(^\text{src}\)). 2001.
European General Data Protection Regulation (GDPR)

• If you operate in Europe, you gotta do it. Requirements:
 1. **Explicit consent** is needed for any data collection, must explain how it’s used
 2. Must collect **minimum data** needed for stated objectives
 3. People can **review** that data and make you **erase** it
 4. You’re on the hook for **securing** it
 5. Violate any of the above, **pay a fine**

• Results:
 - Lots of scummy companies with loose practices suddenly having to straighten up or die 😊
 - Lots of “consent mining” (email and web requests asking you to click yes)
 - Most legit
 - Some done in a shady way...
Privacy

• Overlaps with computer security
• Dramatic increase in scale of information collected and stored
 • Motivated by law enforcement, national security, economic incentives
• Individuals have become increasingly aware of access and use of personal information and private details about their lives
• Concerns about extent of privacy compromise have led to a variety of legal and technical approaches to reinforcing privacy rights
Privacy and Data Surveillance

- Business, government, and law enforcement have created new threats to personal privacy
 - Scientific and medical research data collection for analysis
 - Law enforcement data surveillance
 - Private organizations profiling
 - Creates tension between enabling beneficial outcomes while respecting an individual’s right to privacy

- Rapid rise in the use of public social media sites
 - They gather large amounts of data on individuals
 - People willingly upload large amounts of personal information
 - The data could be used by employers, insurance companies, private investigators, and others...
Ethical Aspects

Based on chapter 19
• **Ethics**: A system of principles relating the benefits and harms of human actions so that their morality and the morality of their motivations can be assessed.

• Computers introduce new challenge:
 Those who understand technology and have access permission (or the ability to bypass such permission), have power to read and change information and affect undue change.
Real ethics are proactive

- Rare: An ethical dilemma where you have a clear choice to make.
 - “Trolley problem”
- Common: An unfolding situation where you can elect to take proactive action.
 - May not be in your personal best interest.
 - Examples:
 - Ethical duty conflicts with loyalty to employer, e.g., “blowing the whistle”
 - Expose a situation that can harm the public or a company’s customers
 - Potential conflict of interest

- #1 source: **personal ethics**
- #2 source: professional ethics (can be guided by code of conduct)
Codes of conduct

- Can’t solve all ethical questions, but can be useful
- Textbook compares three codes of conduct and finds common themes:
 - Dignity of other people
 - Personal integrity and honesty
 - Responsibility for work
 - Confidentiality of information
 - Public safety and health
 - Participation in professional societies to improve standards of the profession
 - Public knowledge and access to technology is equivalent to social power
Conclusion

• One day you will be in a situation where:
 - **Inaction** is feasible, safe, and **wrong**
 - **Action** is difficult, risky, but **right**.

• Ethics is taking action.

 Take action.