Failures in hard disks and SSDs

Tyler Bletsch
Duke University

Slides include material from Vince Freeh (NCSU), some material adapted from “Hard-Disk Drives: The Good, the Bad, and the Ugly” by Jon Elerath (Comm. ACM, Vol. 52 No. 6, Pages 38-45)
HDD/SSD failures

- Hard disks are the weak link
 - A mechanical system in a silicon world!
- SSDs better, but still fallible

- RAID: Redundant Array of Independent Disks
 - Helps compensate for the device-level problems
 - Increases reliability and performance
 - Will be discussed in depth later
Failure modes

• Failure: cannot access the data
• Operational: faults detected when they occur
 • Does not return data
 • Easy to detect
 • Low rates of occurrence
• Latent: undetected fault, only found when it’s too late
 • Returned data is corrupt
 • Hard to detect
 • Relatively high rates of occurrence
Fault tree for HDD

To learn more about individual failure modes for HDD, see "Hard-Disk Drives: The Good, the Bad, and the Ugly" by Jon Elerath (Comm. ACM, Vol. 52 No. 6, Pages 38-45)
Fault tree for SSD

- Controller failure
- Whole flash chip failure

Operational Failures

Cannot find data

Latent Failures

Data missing

Loss of gate state over time ("bit rot") – gate lost its current data (due to time or adjacent writes)

Degradation loss due to write cycles (probabilistic) – gate lost ability to ever hold data

Error during writing

Written but destroyed
What to do about failure

- Pull disk out
- Throw away
- Restore its data from parity (RAID) or backup
The danger of latent errors

• Operational errors:
 • Detected as soon as they happen
 • When you detect an operational error, the total number of errors is likely one

• Latent errors:
 • Accrue in secret over time!
 • In the darkness, little by little, your data is quietly corrupted
 • When you detect a latent error, the total number of errors is likely many

• In the intensive I/O of reconstructing data lost due to latent errors, more likely to encounter operational error
 • Now you’ve got multiple drive failure, data loss more likely
Minimizing latent errors

- Catch latent errors earlier (so fewer can accrue) with this highly advanced and complex algorithm known as **Disk Scrubbing**:

 Periodically, read everything
Disk reliability

- **MTBF (Mean Time Between Failure):** a useless lie you can ignore

Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>8TB</th>
<th>6TB</th>
<th>5TB</th>
<th>4TB</th>
<th>3TB</th>
<th>2TB</th>
<th>1TB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model number</td>
<td>WD80EFZX</td>
<td>WD60EFRX</td>
<td>WD50EFRX</td>
<td>WD40EFRX</td>
<td>WD30EFRX</td>
<td>WD20EFRX</td>
<td>WD10EFRX</td>
</tr>
<tr>
<td>Formatted capacity</td>
<td>8TB</td>
<td>6TB</td>
<td>5TB</td>
<td>4TB</td>
<td>3TB</td>
<td>2TB</td>
<td>1TB</td>
</tr>
<tr>
<td>Form factor</td>
<td>3.5-inch</td>
<td>3.5-inch</td>
<td>3.5-inch</td>
<td>3.5-inch</td>
<td>3.5-inch</td>
<td>3.5-inch</td>
<td>3.5-inch</td>
</tr>
<tr>
<td>Advanced Format (AF)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Native command queuing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RoHS compliant</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Performance

- **Data transfer rate (max)**
 - Interface speed: 6 Gb/s
 - Internal transfer rate: 178 MB/s
- **Cache (MB)**: 128
- **Performance Class**: 5400 RPM Class
- **Reliability/Data Integrity**
 - Load/unload cycles: 600,000
 - Non-recoverable read errors per bits read:
 - <1 in 10^14
- **MTBF (hours)**: 1,000,000
- **Limited warranty (years)**: 3

Example Calculation

$1,000,000 \text{ hours} = 114 \text{ years}$

“**Our drives fail after around a century of continuous use.**”

-- A Huge Liar
Data from BackBlaze

- **BackBlaze**: a large scale backup provider
 - Consumes thousands of hard drives, publishes *health data on all of them publically*
 - **Data presented** is a little old – newer data exists (but didn’t come with pretty graphs)
- Other large-scale studies of drive reliability:
 - “Failure Trends in a Large Disk Drive Population” by Pinheiro et al (Google), FAST’07
 - “Disk Failures in the Real World: What Does an MTTF of 1,000,000 Hours Mean to You?” by Schroeder et al (CMU), FAST’07
General Predicted Failure Rates

- Decreasing Failure Rate
- Constant Failure Rate
- Increasing Failure Rate

Failure Rate

- Observed Failure Rate
- Early "Infant Mortality" Failure
- Constant (Random) Failures
- Wear Out Failures

Time
Annual Failure Rate Each Quarter

![Graph showing annual failure rate per quarter. The x-axis represents the quarter, and the y-axis represents the annual failure rate. The highest failure rate is in the third quarter.]
Interesting observation: The industry standard warranty period is 3 years...
80% of Drives Last Four Years

Hard Drive Survival Rates - Chart 2

Survival Rate

80% drives live

Year

1

2

3

4
Annual Failure Rate

- HITACHI
- Seagate
- WD
- Western Digital

Storage Capacity (TB): 2TB, 3TB, 4TB, 1.5TB, 3TB, 4TB, 1TB, 3TB
What about SSDs?

- From recent paper at FAST’16: “Flash Reliability in Production: The Expected and the Unexpected” by Schroeder et al (feat. data from Google)

KEY CONCLUSIONS

- Ignore Uncorrectable Bit Error Rate (UBER) specs. A meaningless number.
- **Good news:** Raw Bit Error Rate (RBER) increases slower than expected from wearout and is not correlated with UBER or other failures.
- High-end SLC drives are no more reliable that MLC drives.
- **Bad news:** SSDs fail at a lower rate than disks, but UBER rate is higher (see below for what this means).

SSD age, not usage, affects reliability.

- Bad blocks in new SSDs are common, and drives with a large number of bad blocks are much more likely to lose hundreds of other blocks, most likely due to die or chip failure.
- 30-80 percent of SSDs develop at least one bad block and 2-7 percent develop at least one bad chip in the first four years of deployment.

Drive replacements

- Percentage of drives replaced annually due to suspected hardware problems over the first 4 years in the field:

\[\text{Average annual replacement rates for hard disks} \ (2\% - 20\%) \]

- ~1-2% of drives replaced annually, much lower than hard disks!
- 0.5-1.5% of drives developed bad chips per year
 - Would have been replaced without methods for tolerating chip failure
Errors experienced during a drive’s lifecycle

- Non-transparent errors common:
 - 26-60% of drives with uncorrectable errors
 - 2-6 out of 1,000 drive days experience uncorrectable errors
 - Much worse than for hard disk drives (3.5% experiencing sector errors)
Overall conclusions on drive health

• HDD:
 • Usually just die, sometimes have undetected bit errors.
 • Need to protect against drive data loss!

• SSD:
 • Usually have undetected bit errors, sometimes just die.
 • Need to protect against drive data loss!

• Overall conclusion?

 Need to protect against drive data loss!