Introduction

Tyler Bletsch
Duke University

Slides include material from Vince Freeh (NCSU)
Instructor and TAs

- **Professor: Tyler Bletsch**
 - Office: Hudson Hall 106
 - Email: Tyler.Bletsch@duke.edu
 - Office Hours: Mon/Wed, 11AM - 12PM in Hudson 106

- **TA:**
 - David Landry (david.landry@duke.edu)
MOTIVATION
Average person’s view of storage

storage = computar does it !!
Average engineer’s view of storage

storage = thing inside computer!!
A few enterprise storage architectures (1)

A few enterprise storage architectures (2)

- From: http://wiki.abiquo.com/display/ABI20/Monolithic+Architecture
A few enterprise storage architectures (3)

A few enterprise storage architectures (4)

Why do all this? What problems are we solving?

- **Capacity**: Can it hold enough?
- **Performance**: Is it fast enough?
- **Cost**: Is it cheap enough?
- **Accessibility**: Can the data be accessed by everyone who needs it?
- **Security**: Is data protected from unauthorized access?
- **Reliability**: Is the downtime probability low enough?
- **Integrity**: Is data protected from hardware failures, disasters, and malicious attacks?
- **Compliance**: Do I keep data long enough safely?
- **Accountability**: Can I track all changes?
- **Space efficiency**: How much floor space do I need?
- **Power efficiency**: How many watts do I burn?
Why do all this? What problems are we solving?

- **Capacity**: Can it hold enough?
- **Performance**: Is it fast enough?
- **Cost**: Is it cheap enough?
- **Accessibility**: Can the data be accessed by everyone who needs it?
- **Security**: Is data protected from unauthorized access?
- **Reliability**: Is the downtime probability low enough?
- **Integrity**: Is data protected from hardware failures, disasters, and malicious attacks?
- **Compliance**: Do I keep data long enough safely?
- **Accountability**: Can I track all changes?
- **Space efficiency**: How much floor space do I need?
- **Power efficiency**: How many watts do I burn?
Online course Info

- Course Web Page: static info
 - http://people.duke.edu/~tkb13/courses/ece590/
 - Syllabus, schedule, slides, assignments, rules/policies, prof/TA info, office hour info
 - Links to useful resources

- Piazza: questions/answers
 - Post all of your questions here
 - Questions must be “public” unless good reason otherwise
 - **No code** in public posts!

- Sakai: just assignment submission and gradebook
Where to get info

• This info is fairly industry-connected, no great textbook
 • Semi-exception: “Evolution of the Storage Brain” by Larry Freeman (not a required text)

• Course material will come from lectures and supplementary readings
 • See course site for resources

• Additional independent research on your part will likely be necessary!
Grading Breakdown

- **Assignment**
 - Homework: 45%
 - Project proposal: 2%
 - Project outline: 3%
 - Project milestone presentation: 5%
 - Project final presentation: 15%
 - Project demo: 20%
 - Final exam: 10%

Project: 45%
THE HOMEWORK
Homework Motivation: What is a computer?

• Computers are:
 • Abstract theoretical math engines that float around on the internet?
 • PHYSICAL OBJECTS
 • MADE OF MATERIALS
 • IN THE REAL WORLD
 • AND YOU CAN TOUCH THEM
 • AND PUT THEM PLACES
 • WITH YOUR ARMS/LEGGS/FINGERS/BODY
 • AND LIKE A SCREWDRIVER OR WHATEVER!!!!!!!!!!!
Result: this course is HANDS ON

- Last time I taught this, the most popular assignment was a homework where students made and tested a RAID in a VM
 - It was real experience that connected to the theory
 - People liked it, so I’ve added a *lot* of hands-on experience to the course

- Each student group will be assigned a physical storage server which is downstairs in Hudson 01A
- **Homework 1** will have you prepare and deploy this server.
- **Homeworks 2+** will have you do realistic storage tasks on it.
Homework

- Late homework submissions incur penalties as follows:
 - Submission is 0-24 hours late: total score is multiplied by 0.9
 - Submission is 24-48 hours late: total score is multiplied by 0.8
 - Submission is more than 48 hours late: total score is multiplied by the Planck constant (in J·s)

- NOTE: If you feel *in advance* that you may need an extension, contact the instructor.
Homework is group work

- Homework assignments – done *together* as a group

- What does “together” mean?

- It means that everyone must understand all of it

- If I ask “How did this part work?”, you cannot answer “I didn’t work on that part”!
Class lab sessions to kickstart homework

- We’re going to schedule a few **class-wide lab sessions** so everyone can start to work on their server with instructor support
 - Why not a separate lab section? We don’t need every week...

- Be sure to respond to the **scheduling survey** that will go out
• You will eventually deploy your server in a real datacenter: the FitzWest server room in the CIEMAS basement
 • This means you’ll have **badge access** to a real datacenter

• Datacenter rules (you need to sign this to get access):
 1. **Don’t touch other people’s stuff.** Includes other racks, other equipment, and other group’s servers in this course. You can touch your server, its cables, and shared tools.
 2. **Respect shared resources.** The room has LCD monitors, keyboards, carts, screwdrivers, etc., which you can use. You must not interfere with IT operations and you must put stuff away when done.
 3. **Report issues promptly.** Tell me if anything’s wrong.

< Print, sign, and turn in to gain access
THE PROJECT
The Project

• **Proposal**: Group up and say what you’re going to do.
 • Write-up plus 30-minute meeting scheduled out of class.

• **Outline**: Add detail. Say how you’re going to do it.
 • Write-up plus 60-minute meeting scheduled out of class.

• **Milestone presentation**: Present work done so far to class.
 • 5-minute talk in class.

• **Final presentation**: Present complete project to class.
 • 15-minute talk in class.

• **Final demo**: Defend your project to the instructor.
 • 60+ minute meeting scheduled out of class.

• **Read course page for details!**
The project is also group work

- Project work – also done *together* as a group

- The word “*together*” still means that everyone must understand all of it!

- Again, you can’t say “I didn’t work on that part”!
Grade Appeals

- All regrade requests must be in writing
 - Email the TA who graded the question
 (we’ll indicate who graded what)

- After speaking with the TA, if you still have concerns, contact the instructor

- All regrade requests must be submitted no later than 1 week after the assignment was returned to you.
Academic Misconduct

- **Academic Misconduct**
 - Refer to Duke Community Standard
 - Homework is groupividual – you do your own work
 - Common examples of cheating:
 - Running out of time and using someone else's output
 - Borrowing code from someone who took course before
 - Using solutions found on the Web
 - Having a friend help you to debug your program

- **I will not tolerate any academic misconduct!**
 - Software for detecting cheating is very, very good ... and I use it
 - 8 students were busted on Homework #1 in spring 2013, and 2 of them were referred to the Office of Student Conduct

- “But I didn’t know that was cheating” is not a valid excuse
Our Responsibilities

• The instructor and TA will...
 • Provide lectures/recitations at the stated times
 • Set clear policies on grading
 • Provide timely feedback on assignments
 • Be available out of class to provide reasonable assistance
 • Respond to comments or complaints about the instruction provided

• Students are expected to...
 • Receive lectures/recitations at the stated times
 • Turn in assignments on time
 • Seek out of class assistance in a timely manner if needed
 • Provide frank comments about the instruction or grading as soon as possible if there are issues
 • Assist each other within the bounds of academic integrity
Course summary

- We have **hard disks** and **solid-state drives (SSDs)**
- We can use **RAID** to combine performance and capacity while masking effects of drive failure
- The concept of files and directories comes from **File Systems**, a rich field of study.
- We can provide virtual disks to users over **Storage Area Network (SAN)** protocols
- We can provide file access to users using **Network-Attached Storage (NAS)** protocols
- We can provide **storage as a service (SaaS)** via cloud-type protocols.
- Storage efficiency can be improved with **data deduplication** and **compression**.
- We need to preserve **business continuity**: avoid downtime and lost data through **backups** and **high availability**
- Storage arrays are deployed based on **workload sizing**.
- Storage is often folded into a complete hardware/software stack: **converged architecture**.
- Storage systems are large enough that **management/monitoring** is its own challenge.
- Storage architects need to understand **basic finance** and **legal/compliance issues**