
Assignment #5: Rootkit

 ECE 650 – Fall 2018

See course site for due date

Updated 4/10/2018, changes noted in green

General Instructions

1. You will work individually on this assignment.

2. The code for this assignment should be developed and tested using a Linux Virtual

machine that you may create at the following location:

 https://vm-manage.oit.duke.edu/vm_manage

 Select following image: Ubuntu 16.04

 Other environments, unfortunately due to complexity, will not be supported.

3. You must follow this assignment spec carefully, and turn in everything that is asked (and

in the proper formats, as described). Due to the large class size, this is required to make

grading more efficient.

https://vm-manage.oit.duke.edu/vm_manage

Overview

In this assignment, you will implement a portion of Rootkit functionality to gain:

1. Hands-on practice with kernel programming

2. A detailed understanding of the operation of system calls within the kernel

3. Practice with fork/exec to launch child processes

4. An understanding of the types of malicious activities that attackers may attempt against

a system (particularly against privileged systems progams).

Our assumption will be that via a successful exploit of a vulnerability, you have gained the ability

to execute privileged code in the system. Your “attack” code will be represented by a small

program that you will write, which will (among a few other things, described below) load a kernel

module that will conceal the presence of your attack program as well as some of its malicious

activities. The specific functionality required of the attack program and kernel module (as well as

helpful hints about implementing this functionality) are described next.

Tips on Working with the Virtual Machine
When you create your virtual machine and log-in for the first time, you will notice there may be

few programs installed (e.g. no gcc, emacs, vim, etc.). You can download your choice of

software easily using the command: sudo apt-get install <package name>. For example:

 sudo apt install build-essential emacs

Detailed Submission Instructions

Your submission will include 3 (and only 3) files:

1. sneaky_mod.c – The source code for your sneaky module with functionality as

described below.

2. sneaky_process.c – The source code for your sneaky (attack) program with

functionality as described below.

3. Makefile – A makefile that will compile “sneaky_process.c” into “sneaky_process”, and

will compile “sneaky_mod.c” into “sneaky_mod.ko”. In most cases, this will simply be

the example Makefile provided with the skeleton module example code.

You will submit a single zip file named “hw5.zip” to your sakai dropbox location, e.g.:

 zip hw5.zip sneaky_mod.c sneaky_process.c Makefile

Attack Program

Your attack program (named sneaky_process.c) will give you practice with executing system

calls by calling relevant APIs (for process creation, file I/O, and receiving keyboard input from

standard input) from a user program. Your program should operate in the following steps:

1. Your program should print its own process ID to the screen, with exactly following

message (the print command in your code may vary, but the printed text should match):

printf(“sneaky_process pid = %d\n”, getpid());

2. Your program will perform 1 malicious act. It will copy the /etc/passwd file (used for user

authentication) to a new file: /tmp/passwd. Then it will open the /etc/passwd file and print

a new line to the end of the file that contains a username and password that may allow a

desired user to authenticate to the system. Note that this won’t actually allow you to

authenticate to the system as the ‘sneakyuser’, but this step illustrates a type of

subversive behavior that attackers may utilize. This line added to the password file

should be exactly the following:

sneakyuser:abc123:2000:2000:sneakyuser:/root:bash

3. Your program will load the sneaky module (sneaky_mod.ko) using the “insmod”

command. Note that when loading the module, your sneaky program will also pass its

process ID into the module. You may reference the following page for an understanding

of how to pass arguments to a kernel module upon loading it:

http://www.tldp.org/LDP/lkmpg/2.6/html/x323.html

4. Your program will then enter a loop, reading a character at a time from the keyboard

input until it receives the character ‘q’ (for quit). Then the program will exit this waiting

loop. Note this step is here so that you will have a chance to interact with the system

while: 1) your sneaky process is running, and 2) the sneaky kernel module is loaded.

This is the point when the malicious behavior will be tested.

5. Your program will unload the sneaky kernel module using the “rmmod” command

6. Your program will restore the /etc/passwd file (and remove the addition of “sneakyuser”

authentication information) by copying /tmp/passwd to /etc/passwd.

Recall that a process can execute a new program by: 1) using fork() to create a child process

and 2) the child process can use some flavor of the exec*() system call to execute a new

program. You will want your parent attack process to wait on the new child process (e.g. using

the waitpid(…) call) after each fork() of a child.

Sneaky Kernel Module (a Linux Kernel Module – LKM)

Your sneaky kernel module will implement the following subversive actions:

1. It will hide the “sneaky_process” executable file from both the ‘ls’ and ‘find’ UNIX

commands. For example, if your executable file named “sneaky_process” is located in

/home/userid/hw5:

a. “ls /home/userid/hw5” should show all files in that directory except for

“sneaky_process”.

b. “cd /home/userid/hw5; ls” should show all files in that directory except for

“sneaky_process”

c. “find /home/userid -name sneaky_process” should not return any

results

2. In a UNIX environment, every executing process will have a directory under /proc that is

named with its process ID (e.g /proc/1480). This directory contains many details about

the process. Your sneaky kernel module will hide the /proc/<sneaky_process_id>

directory (note hiding a directory with a particular name is equivalent to hiding a file!).

For example, if your sneaky_process is assigned process ID of 500, then:

a. “ls /proc” should not show a sub-directory with the name “500”

b. “ps -a -u <your_user_id>” should not show an entry for process 500

named “sneaky_process” (since the ‘ps’ command looks at the /proc directory to

examine all executing processes).

3. It will hide the modifications to the /etc/passwd file that the sneaky_process made. It will

do this by opening the saved “/tmp/passwd” when a request to open the “/etc/passwd” is

seen. For example:

a. “cat /etc/passwd” should return contents of the original password file without

the modifications the sneaky process made to /etc/passwd.

4. It will hide the fact that the sneaky_module itself is an installed kernel module. The list of

active kernel modules is stored in the /proc/modules file. Thus, when the contents of that

file are read, the sneaky_module will remove the contents of the line for “sneaky_mod”

from the buffer of read data being returned. For example:

a. “lsmod” should return a listing of all modules except for the “sneaky_mod”

Your overall submission will be tested by compiling your kermel module and sneaky process,

running the sneaky process, and then executing commands as described above to make sure

your module is performing the intended subversive actions.

Helpful Hints and Tips for Implementing sneaky_mod.c

 This assignment should not require a tremendous amount of code. For example, in my

sample solution, the sneaky_process.c file has approximately 120 lines of code, and the

sneaky_mod.c file has approximately 200 lines.

 You can inspect the system calls that are made by a command using the “strace” UNIX

command, e.g. “strace ls”.

 For these subversive actions in the sneaky kernel module, you will need to hijack (and

possibly modify the contents being returned by) system calls.

o For #1 and #2, read up on the “getdents” system call (get directory entries): int

getdents(unsigned int fd, struct linux_dirent *dirp,

unsigned int count). I would highly recommend reading the ‘man getdents’

page (including code sample). It will fill in an array of “struct linux_dirent” objects,

one for each file or directory found within a directory. You should also place the

following struct definition at the top of your sneaky_mod.c code to make sure that

the “struct linux_dirent” is interpreted correctly:

struct linux_dirent {

 u64 d_ino;

 s64 d_off;

 unsigned short d_reclen;

 char d_name[BUFFLEN];

};

o For #2, you can know the “sneaky_process” pid by using the module_param(…)
technique described here: http://www.tldp.org/LDP/lkmpg/2.6/html/x323.html

o For #3, you should check out the “open” system call (as in the skeleton kermel
module posted). Note that if, say, you wanted to pass a new string filename to
the open system call function, that string has to be in “user space” and not
something defined in your kernel space module. You can use the
“copy_to_user(…)” function to achieve that:

copy_to_user(void __user *to, const void *from, unsigned

long nbytes)

Hint, for the user buffer, could you use the character buffer passed into the
open(…) call?

o For #4, you may want to check out the “read” system call.

 If there are pieces of the skeleton module code that you are interested to understand

more deeply, please ask on piazza! I’d be glad to give detailed descriptions.

 Have fun with this assignment! Try out other sneaky actions, if you’d like, once you get

the hang of it.

http://www.tldp.org/LDP/lkmpg/2.6/html/x323.html

