
ECE 650
Systems Programming & Engineering

Spring 2018

Inter-process Communication (IPC)

Tyler Bletsch

Duke University

Slides are adapted from Brian Rogers (Duke)

2

Recall Process vs. Thread

• A process is –

– Execution context

• PC, SP, Regs

– Code

– Data

– Stack

• A thread is –

– Execution context

• Program counter (PC)

• Stack pointer (SP)

• Registers

3

Cooperation

• Two or more threads or processes execute concurrently

• Sometimes cooperate to perform a task

• Sometimes independent; not relevant for IPC discussion

• How do they communicate?

• Threads of the same process: Shared Memory

• Recall they share a process context

• Code, static data, *heap*

• Can read and write the same memory

• variables, arrays, structures, etc.

• What about threads of different processes?

• They do not have access to each other’s memory

4

Models for IPC

• Shared Memory

• E.g. what we’ve discussed for threads of same process

• Also possible across processes

• E.g. memory mapped files (mmap)

• Message Passing

• Use the OS as an intermediary

• E.g. Files, Pipes, FIFOs, Messages, Signals

5

Models for IPC

Thread A

OS Kernel Space

Thread B

e.g. shared heap

Write

value

Read

value

Shared Memory

Thread A

OS Kernel Space

Thread B

Write

value

Read

value

Message Passing

6

Shared Memory vs. Message Passing

• Shared Memory

• Advantages

• Fast

• Easy to share data (nothing special to set up)

• Disadvantages

• Need synchronization! Can be tricky to eliminate race conditions

• Message Passing

• Advantages

• Trust not required between sender / receiver (receiver can verify)

• Set of shared data is explicit

• Is synchronization needed?

• Disadvantages

• Explicit programming support needed to share data

• Performance overhead (e.g. to copy messages through OS space)

7

Shared Memory Across Processes

• Different OSes have different APIs for this

• UNIX

• System V shared memory (shmget)

• Allows sharing between arbitrary processes

• http://www.tldp.org/LDP/lpg/node21.html

• Shared mappings (mmap on a file)

• Different forms for only related processors or unrelated processes
(via filesystem interaction)

• POSIX shared memory (shm_open + mmap)

• Sharing between arbitrary processes; no overhead of filesystem I/O

• Still requires synchronization!

http://www.tldp.org/LDP/lpg/node21.html

8

mmap

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);

• Creates new mapping in virtual address space of caller

• addr: starting address for mapping (or NULL to let kernel decide)

• length: # bytes to map starting at “offset” of the file

• prot: desired memory protection of the mapping

• PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE

• flags: are updates to mapping are visible to other processes?

• MAP_SHARED, MAP_PRIVATE

• Other flags can be added, e.g. MAP_ANON (more later)

• fd: file descriptor for open file

• Can close the “fd” file after calling mmap()

• Return value is the address where the mapping was made

9

mmap operation

• Kernel takes an open file (given by FD)

• Maps that into process address space

• In unallocated space between stack & heap regions

• Thus also maps file into physical memory

• Creates one-to-one correspondence between a memory address and a
word in the file

• Useful even apart from the context of IPC

• Allows programmer to read/write file contents without read(), write()
system calls

• Multiple (even non-related) processes can share mem

• They open & mmap the same file

10

munmap

#include <sys/mman.h>

int munmap(void *addr, size_t length);

• Removes mapping from process address space

• addr: address of the mapping

• length: # bytes in mapped region

#include <sys/mman.h>

int msync(void *addr, size_t length, int flags);

• Flushes file contents in memory back out to disk

• addr: address of the mapping

• length: # bytes in mapped region

• flags: control when the update happens

11

Synchronization

• Semaphores
 #include <fcntl.h> /* For O_* constants */

 #include <sys/stat.h> /* For mode constants */

 #include <semaphore.h>

 sem_t *sem_open(const char *name, int oflag, mode_t mode, int value);

 or

 int sem_init(sem_t *sem, int pshared, unsigned int value);

 sem_t *mutex;

mutex = sem_open(“my_sem_name”, O_CREAT | O_EXCL,

MAP_SHARED, 1);

sem_wait(mutex);

//Critical section

sem_post(mutex);

12

Example

• Show code & run in class

• mmap_basic and mmap_basic2

13

Taking it Further

• This required some work

• Create file in file system

• Open the file & initialize it (e.g. with 0’s)

• There is a better way if just sharing mem across a fork()

• Anonymous memory mapping

• Use mmap flags of MAP_SHARED | MAP_ANON

• File descriptor will be ignored (also offset)

• Memory initialized to 0

• Alternative approach: open /dev/zero & mmap it

• Can anonymous approach work across non-related processes?

14

Message Passing

• Messages between processes, facilitated by OS

• Several approaches:

• Files

• Can open the same file between processes

• Communicate by reading and writing info from the file

• Can be difficult to coordinate

• Pipes

• FIFOs

• Messages (message passing)

15

Pipes

#include <unistd.h>

int pipe(int pipefd[2]);

• Creates a unidirectional channel (pipe)

• Can be used for IPC between processes / threads

• Returns 2 file descriptors

• pipefd[0] is the read end

• pipefd[1] is the write end

• Kernel support

• Data written to write end is buffered by kernel until read

• Data is read in same order as it was written

• No synchronization needed (kernel provides this)

• Must be related processes (e.g. children of same parent)

16

Example

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define N 1024

int main(int argc, char *argv[]) {

 int pipefd[2];

 char data_buffer[N];

 pipe(pipefd);

 int id = fork();

 if (id == 0) { //child

 write(pipefd[1], “hello”, 6);

 } else {

 read(pipefd[0], data_buffer, 6);

 printf(“Received data: %s\n”, data_buffer);

 }

 return 0;

}

17

More Complex Uses of Pipes

• Can use pipes to coordinate processes

• For example, chain output of one process to input of next

• E.g. command pipes in UNIX shell!

• Requires 1 additional (very useful) piece
#include <unistd.h>

int dup2(int oldfd, int newfd);

• Creates a copy of an open file descriptor into a new one

• After closing the new file descriptor if it was open

18

UNIX Pipes Example

• Show code & run in class

• pipe_basic

19

UNIX FIFOs

• Similar to a pipe

• Also called a “named pipe”

• Persist beyond lifetime of the processes that create them

• Exist as a file in the file system
#include <sys/types.h>

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

• pathname points to the file

• Mode specifies the FIFO’s permissions (similar to a file)

20

UNIX FIFOs (2)

• After FIFO is created, processes must open it

• By default, first open blocks until a second process also opens

• One process opens for reading and the other process for writing

• Since FIFOs persist, they can be re-used

• No synchronization needed (like pipes, OS handles it)

21

Playing with FIFOs on the shell

• Can create a FIFO using mkfifo command
• Note: need to be in a UNIX-style filesystem to do this. Your shared Duke home directory

is a Windows-style filesystem, so try this in /tmp if using the Duke Linux environment

• Can read/write fifo using normal commands.

• “tail -f” will monitor a file (or fifo) over time

22

Multiple Producers

• Multiple producers problem:

• What if >1 producers and 1 consumer

• Producers are performing write(…)

• Consumer is performing (blocking) read(…)

• What if consumer is blocked, but other IPC channels have data?

• Would like to be notified if one channel is ready

23

Select

 #include <sys/select.h>

 int select(int nfds, fd_set *readfds, fd_set *writefds,

 fd_set *exceptfds, struct timeval *timeout);

• nfds = number of file descriptors to monitor

• readfds, writefds, exceptfds are bit vectors of file descriptors
to check

• timeout is a maximum time to wait

• Macros are available to work with bit sets:

• FD_ZERO(&fds), FD_SET(n, &fds), FD_CLEAR(n, &fds)

• int FD_ISSET(n, &fds); //useful after select() returns

24

Poll

 #include <poll.h>

 int poll(struct pollfd *fds, nfds_t nfds, int timeout);

• nfds = number of file descriptors to monitor

• fds is an array of descriptor structures

• File descriptors, desired events, returned events

• timeout is a maximum time to wait

• Returns number of descriptors with events

