ECE 650
Systems Programming & Engineering

Spring 2018
Programming with Network Sockets

Tyler Bletsch
Duke University

Slides are adapted from Brian Rogers (Duke)

Sockets

e We've looked at shared memory vs. message passing
o All on a single system (meaning running under a single OS)

e What about communication across distributed processes?
e Running on different systems
e Assume systems are connected by a network (e.g. the internet)
e We can program using network sockets
e For creating connections and sending / receiving messages
o Often follows a client / server pattern
e We will assume basic network knowledge

e E.g. what is an IP address
e We will cover the networking stack in more detail in next lectures

Client-Server Model

e Common communication model in networked systems
e Client typically communicates with a server
e Server may connect to multiple clients at a time

e (Client needs to know:
e Existence of a server providing the desired service
o Address (commonly IP address) of the server

e Server does not need to know either about the client

Client-Server Overview

<—— Application Layer

<— Transport Layer

Client side Server side
Client app User process ————> Server app
Socket API Socket API
A 4 <—— Kernel —> v
TCP TCP
IP P

Ethernet Driver

i

<— Network Layer

Ethernet Driver

<—Data Link Layer

/'

Ethernet Network

Client and Server communicating across Ethernet using TCP/IP

TCP — Connection-oriented Service

e Transmission Control Protocol
e Designed for end-to-end byte stream over unreliable network
e Robust against failures and changing network properties
e TCP transport entity
e e.g. Library procedure(s), user processes, or a part of the kernel
Manages TCP streams and interfaces to the IP layer
Accepts user data streams from processes
Breaks up into pieces not larger than 64 KB
e Often 1460 data bytes to fit in 1 Ethernet frame w/ IP + TCP headers
Sends each piece separately as IP datagram
Destination machine TCP entity reconstructs original byte stream
e Handles retransmissions & re-ordering
e Connection-oriented transport layer
e Provides error-free, reliable communication

e Can think of communication between two processes on different machines as
just like UNIX pipes or fifos

e One process puts data in one end, other process takes it out

Network Sockets

e Network interface is identified by an IP address
e Or a hostname, which translates into an IP address
e E.g. 127.0.0.1, localhost or login.oit.duke.edu

e Interface has 65536 ports (0-65535)

e Processes attach to ports to use network services
e Port attachment is done with bind () operation

e Allows application-level multiplexing of network services
e E.g. SSH vs. Web vs. Email may all use different ports
e Many ports are standard (e.g. 80 for web server, 22 for SSH)
e You may have seen URLs like http://127.0.0.1:4444
e 127.0.0.1 is the IP, 4444 is the port

TCP Service Model

e TCP service setup as follows:
e Two endpoint processes create endpoints (sockets)
e Each socket has an address: IP address of host + 16-bit port
e API functions used to create & communicate on sockets

e Ports

e Numbers below 1024 called “well-known ports”
e Reserved for standard services, like FTP, HTTP, SMTP

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

e But not all services usually used & active all at once
e Don't want them all active, just waiting for incoming

connections
e Special daemon: inetd (Internet daemon)
e Attaches to multiple ports S

(Still around, but less common nowadays)

e Waits for incoming connection

o fork()’s of the new, appropriate process to handle that
connection

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

TCP Soc

ket API

TCP Server

TCP Client

socket()

A 4

connect()

4

A 4

write()

| Data (request)

- Data (response)

EOF notification

socket()

A

y

bin

d()

A

y

listen()

A

y

accept()

Establish TCP connection \

| Blocks until
connection from client

A

y

\

read()

A

, Do work

[

write()

Example — UNIX TCP sockets

e Let's look at example code...

e Here is a great reference for use of socket-related calls
e http://beej.us/quide/bgnet/

socket () Create a new communication end point

bind () Attach a local address to a socket

listen () Announce willingness to accept connections; give queue size
accept () Block the caller until a connection attempt arrives

connect () Actively attempt to establish a connection

send () Send some data over the connection

recv () Receive some data from the connection

close () Release the connection

http://beej.us/guide/bgnet/

Server-Side Structure

e Often follows a common pattern to serve incoming requests

pid t pid;
int listenfd, connfd;
listenfd = socket(...);

/***fi111 the socket address with server’s well known port***/

bind(listenfd, ...);
listen(listenfd, ...);

for (7 7+) |
connfd = accept(listenfd, ...); /* blocking call */
if ((pid = fork()) ==) { /* create a child process to service */
close(listenfd); /* child closes listening socket */

/***process the request doing something using connfd ***/

[e */

close (connfd) ;
exit (0); /* child terminates
}

close (connfd) ; /*parent closes connected socket*/

10

