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Sockets 

• We’ve looked at shared memory vs. message passing 

• All on a single system (meaning running under a single OS) 

• What about communication across distributed processes? 

• Running on different systems 

• Assume systems are connected by a network (e.g. the internet) 

• We can program using network sockets 

• For creating connections and sending / receiving messages 

• Often follows a client / server pattern 

• We will assume basic network knowledge 

• E.g. what is an IP address 

• We will cover the networking stack in more detail in next lectures 
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Client-Server Model 

• Common communication model in networked systems 

• Client typically communicates with a server 

• Server may connect to multiple clients at a time 

• Client needs to know: 

• Existence of a server providing the desired service 

• Address (commonly IP address) of the server 

• Server does not need to know either about the client 
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Client-Server Overview 

• Client and Server communicating across Ethernet using TCP/IP 

Client app 
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TCP – Connection-oriented Service 

• Transmission Control Protocol 

• Designed for end-to-end byte stream over unreliable network 

• Robust against failures and changing network properties 

• TCP transport entity 

• e.g. Library procedure(s), user processes, or a part of the kernel 

• Manages TCP streams and interfaces to the IP layer 

• Accepts user data streams from processes 

• Breaks up into pieces not larger than 64 KB 

• Often 1460 data bytes to fit in 1 Ethernet frame w/ IP + TCP headers 

• Sends each piece separately as IP datagram 

• Destination machine TCP entity reconstructs original byte stream 

• Handles retransmissions & re-ordering 

• Connection-oriented transport layer 

• Provides error-free, reliable communication 

• Can think of communication between two processes on different machines as 
just like UNIX pipes or fifos 

• One process puts data in one end, other process takes it out 
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Network Sockets 

• Network interface is identified by an IP address 

• Or a hostname, which translates into an IP address 

• E.g. 127.0.0.1, localhost or login.oit.duke.edu 

• Interface has 65536 ports (0-65535) 

• Processes attach to ports to use network services 
• Port attachment is done with bind() operation 

• Allows application-level multiplexing of network services 

• E.g. SSH vs. Web vs. Email may all use different ports 

• Many ports are standard (e.g. 80 for web server, 22 for SSH) 

• You may have seen URLs like http://127.0.0.1:4444 

• 127.0.0.1 is the IP, 4444 is the port 
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TCP Service Model 

• TCP service setup as follows: 

• Two endpoint processes create endpoints (sockets) 

• Each socket has an address: IP address of host + 16-bit port 

• API functions used to create & communicate on sockets 

• Ports 

• Numbers below 1024 called “well-known ports” 

• Reserved for standard services, like FTP, HTTP, SMTP 
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml 

• But not all services usually used & active all at once 

• Don’t want them all active, just waiting for incoming 
connections 

• Special daemon: inetd (Internet daemon)  

• Attaches to multiple ports 

• Waits for incoming connection 

• fork()’s of the new, appropriate process to handle that 
connection 

(Still around, but less common nowadays) 
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TCP Socket API 
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Example – UNIX TCP sockets 

• Let’s look at example code… 

• Here is a great reference for use of socket-related calls 

• http://beej.us/guide/bgnet/  

Primitive Meaning 

socket() Create a new communication end point 

bind() Attach a local address to a socket 

listen() Announce willingness to accept connections; give queue size 

accept() Block the caller until a connection attempt arrives 

connect() Actively attempt to establish a connection 

send() Send some data over the connection 

recv() Receive some data from the connection 

close() Release the connection 

http://beej.us/guide/bgnet/
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Server-Side Structure 

• Often follows a common pattern to serve incoming requests 

pid_t pid; 

int listenfd, connfd; 

listenfd = socket(...); 

 

/***fill the socket address with server’s well known port***/ 

 

bind(listenfd, ...); 

listen(listenfd, ...); 

 

for ( ; ; ) { 

 

   connfd = accept(listenfd, ...); /* blocking call */ 

 

   if ( (pid = fork()) == 0 ) { /* create a child process to service */ 

 

      close(listenfd); /* child closes listening socket */ 

 

      /***process the request doing something using connfd ***/ 

      /* ................. */ 

 

      close(connfd); 

      exit(0);  /* child terminates 

    } 

    close(connfd);  /*parent closes connected socket*/ 

  } 

} 


