
ECE 650
Systems Programming & Engineering

Spring 2018

Programming with Network Sockets

Tyler Bletsch

Duke University

Slides are adapted from Brian Rogers (Duke)

2

Sockets

• We’ve looked at shared memory vs. message passing

• All on a single system (meaning running under a single OS)

• What about communication across distributed processes?

• Running on different systems

• Assume systems are connected by a network (e.g. the internet)

• We can program using network sockets

• For creating connections and sending / receiving messages

• Often follows a client / server pattern

• We will assume basic network knowledge

• E.g. what is an IP address

• We will cover the networking stack in more detail in next lectures

3

Client-Server Model

• Common communication model in networked systems

• Client typically communicates with a server

• Server may connect to multiple clients at a time

• Client needs to know:

• Existence of a server providing the desired service

• Address (commonly IP address) of the server

• Server does not need to know either about the client

4

Client-Server Overview

• Client and Server communicating across Ethernet using TCP/IP

Client app

Ethernet Driver

Ethernet Network

TCP

IP

Server app

Ethernet Driver

Socket API

IP

Application Layer

Kernel

Transport Layer

Network Layer

Data Link Layer

Socket API

TCP

Client side Server side

User process

5

TCP – Connection-oriented Service

• Transmission Control Protocol

• Designed for end-to-end byte stream over unreliable network

• Robust against failures and changing network properties

• TCP transport entity

• e.g. Library procedure(s), user processes, or a part of the kernel

• Manages TCP streams and interfaces to the IP layer

• Accepts user data streams from processes

• Breaks up into pieces not larger than 64 KB

• Often 1460 data bytes to fit in 1 Ethernet frame w/ IP + TCP headers

• Sends each piece separately as IP datagram

• Destination machine TCP entity reconstructs original byte stream

• Handles retransmissions & re-ordering

• Connection-oriented transport layer

• Provides error-free, reliable communication

• Can think of communication between two processes on different machines as
just like UNIX pipes or fifos

• One process puts data in one end, other process takes it out

6

Network Sockets

• Network interface is identified by an IP address

• Or a hostname, which translates into an IP address

• E.g. 127.0.0.1, localhost or login.oit.duke.edu

• Interface has 65536 ports (0-65535)

• Processes attach to ports to use network services
• Port attachment is done with bind() operation

• Allows application-level multiplexing of network services

• E.g. SSH vs. Web vs. Email may all use different ports

• Many ports are standard (e.g. 80 for web server, 22 for SSH)

• You may have seen URLs like http://127.0.0.1:4444

• 127.0.0.1 is the IP, 4444 is the port

7

TCP Service Model

• TCP service setup as follows:

• Two endpoint processes create endpoints (sockets)

• Each socket has an address: IP address of host + 16-bit port

• API functions used to create & communicate on sockets

• Ports

• Numbers below 1024 called “well-known ports”

• Reserved for standard services, like FTP, HTTP, SMTP
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

• But not all services usually used & active all at once

• Don’t want them all active, just waiting for incoming
connections

• Special daemon: inetd (Internet daemon)

• Attaches to multiple ports

• Waits for incoming connection

• fork()’s of the new, appropriate process to handle that
connection

(Still around, but less common nowadays)

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

8

TCP Socket API

socket()

connect()

write()

read()

close()

socket()

bind()

listen()

accept()

read()

write()

read()

close()

TCP Client

TCP Server

Blocks until

connection from client

Do work

Establish TCP connection

Data (request)

Data (response)

EOF notification

9

Example – UNIX TCP sockets

• Let’s look at example code…

• Here is a great reference for use of socket-related calls

• http://beej.us/guide/bgnet/

Primitive Meaning

socket() Create a new communication end point

bind() Attach a local address to a socket

listen() Announce willingness to accept connections; give queue size

accept() Block the caller until a connection attempt arrives

connect() Actively attempt to establish a connection

send() Send some data over the connection

recv() Receive some data from the connection

close() Release the connection

http://beej.us/guide/bgnet/

10

Server-Side Structure

• Often follows a common pattern to serve incoming requests

pid_t pid;

int listenfd, connfd;

listenfd = socket(...);

/***fill the socket address with server’s well known port***/

bind(listenfd, ...);

listen(listenfd, ...);

for (; ;) {

 connfd = accept(listenfd, ...); /* blocking call */

 if ((pid = fork()) == 0) { /* create a child process to service */

 close(listenfd); /* child closes listening socket */

 /***process the request doing something using connfd ***/

 /* */

 close(connfd);

 exit(0); /* child terminates

 }

 close(connfd); /*parent closes connected socket*/

 }

}

