ECE 650
Systems Programming & Engineering

Spring 2018
Networking — Transport Layer

Tyler Bletsch
Duke University

Slides are adapted from Brian Rogers (Duke)

TCP/IP Model

OSil TCP/IP

T Application Application

6 Presentation T~ Not present

5 Session f,/”’ in the model
/ﬁ\

(Transport Transport D)
¥ ﬁ—é

3 Network Internet

2 Data link Host-to-network

1 Physical

Transport Layer

ARy Ay Ay ALy
HTTP TFTP

&4 }./
R

|P

NET, NET, ~~ NET,

* Problem solved: communication among processes
— Application-level multiplexing (“ports”)
— Error detection, reliability, etc.

Transport Layer

» Typical Goal:

— Provide reliable, cost-effective data transport between different
machines, independent of the physical network

« Again, 2 types of service: connectionless vs. connections
— Why?
— Transport code runs entirely on endpoint machines
— Network layer code runs mostly on routers

— Thus users have no control over network layer, so if want improved
quality of service, must implement in transport layer

« Provides standard set of API primitives to applications
— Independent of issues or differences in underlying networks

Connectionless vs. Connection

« Connectionless transport layer
— Very similar to network layer
— Not much additional service provided on top
— But less networking stack SW overheads as a result
— E.g. UDP

« Connection-oriented transport layer
— Provides error-free, reliable communication

— Can think of communication between two processes on different
machines as just like UNIX pipes or fifos

» One process puts data in one end, other process takes it out
— E.g. TCP

Example Transport Service API

Primitive Packet sent Meaning

LISTEN (none) Block until some process tries to connect
CONNECT CONNECTION REQ Actively attempt to establish a connection
SEND DATA Send information

RECEIVE (none) Block until a DATA packet arrives

DISCONNECT DISCONNECT REQ This side wants to release the connection

Frame header Packet header Transport header Frame trailer
| / |

T !

h h h Transport payload t

Recall UNIX TCP sockets

Primitive Meaning

SOCKET Create a new communication end point

BIND Attach a local address to a socket

LISTEN Announce willingness to accept connections; give queue size
ACCEPT Block the caller until a connection attempt arrives

CONNECT Actively attempt to establish a connection

SEND Send some data over the connection

RECV Receive some data from the connection

CLOSE

Release the connection

UDP — Connectionless service

« User Datagram Protocol
— Essentially allows applications to send IP datagrams
— With just slightly more encapsulation

« UDP transmits segments
— Simply 8 byte header followed by payload

0 16 31

SrcPort DstPort

Length Checksum

Ports

Allows application-level multiplexing of network services

Processes attach to ports to use network services
— Port attachment is done with "BIND” operation

Destination port

— When a UDP packet arrives, its payload is handed to process attached
to the destination port specified

Source port
— Mainly used when some reply is needed
— Receiver can use the source port as the dest port in reply msg

UDP — What it does NOT do

* Flow control
 Error control
« Retransmission on receipt of bad segment

« User processes must handle this

« For apps needing precise control over packet flow, error
control, or timing, UDP is a great fit

— E.qg. client-server situations where client sends short request and
expects short reply back; client can timeout & retry easily

— DNS (Domain Name System): For looking up IP addr of host name
 Client sends host name, receives IP address response

10

TCP — Connection-oriented Service

» Transmission Control Protocol
— Designed for end-to-end byte stream over unreliable network
— Robust against failures and changing network properties

« TCP transport entity
— e.g. Library procedure(s), user processes, or a part of the kernel
— Manages TCP streams and interfaces to the IP layer
— Accepts user data streams from processes
— Breaks up into pieces not larger than 64 KB

« Often 1460 data bytes to fit in 1 Ethernet frame w/ IP + TCP
headers

— Sends each piece separately as IP datagram
— Destination machine TCP entity reconstructs original byte stream
— Handles retransmissions & re-ordering

11

TCP Service Model

« TCP service setup as follows:
— Two endpoint processes create endpoints called sockets
— Each socket has an address: IP address of host + 16-bit port
— API functions used to create & communicate on sockets

* Ports

— Numbers below 1024 called “well-known ports”
« Reserved for standard services, like FTP, HTTP, SMTP

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

12

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

TCP Service Model (2)

« TCP connections are full-duplex & point-to-point
— Simultaneous traffic in both directions
— Exactly 2 endpoints (no multicast or broadcast)

« TCP connection is a byte stream, not message stream
— Receiver has no way to know what granularity bytes were sent
— E.g. 4 x 512 byte writes vs. 1 x 2048 byte write
— It can just receive some # of bytes at a time
— Just like UNIX files!

« TCP may buffer data or send it immediately
— PUSH flag indicates to TCP not to delay transmission
— TCP tries to make a latency vs. bandwidth tradeoff

13

TCP Protocol

« TCP sequence number underlies much of the protocol
— Every byte sent has its own 32-bit sequence number

« TCP exchanges data in segments
— 20-byte fixed header (w/ optional part)
— Followed by 0 or more data bytes
— TCP can merge writes into one segment or split a write up
— Segment size limitations:
« Must fit (including header) inside 65,515 byte IP payload

« Networks have a MTU (max transfer unit)
— e.g. 1500 bytes for Ethernet payload size

« Uses a sliding window protocol (acks + timeout + seq #)
— Ack indicates the next seq # the receiver expects to get
— May be piggy-backed with data going in the other direction

14

TCP Header

0 1 2 3

0123456 7890123456789 012345678901
(IR RN BRI WU BRI SRR NUI SRS SRR RYUIS BYUUN BYRU RUS SR RIS RUSS YRR U SYRY RSN MRS SRS RS SR YU EJUIS SYREN PR MU SRR Spue B

Source Port | Destination Port |
—+ =+ttt -+ -+ttt —F —F —F—+ —+ —+ —+—F —F —F —F—F —F —F —F—F —+ -
| Sequence Number
+-+—+-+—+—+—+—-+—+-+-+-+-+—+-+—+ -+ —+—+ -+ -+ —+—+ -+ -+ —+—+ -+ —+—+—+—+—+
| Acknowledgment Number
s s s s s Tt L T T S St SR A A T A T S A e
+

| Data |IUIAIPIRI|SIF|
| Offset| Reserved |RICI|IS|IS|IYII]| Window
I |IGIK|IH|T|N|N|

i i e e A A s s s s s s S S S S e S e

=t =+ =t ==t = —F = = —F —F = —F —F =~~~ —f —f —p i mcp —p o —fmp -

| Options Padding

+—t—t—+—F—F—+ —+ — ——F — — —t— —+ —F —F—+ —F —F — —F —F —f ——f —p —f —f—f —f —}

I
I
|
I
I
| Checksum | Urgent Pointer |
|
|
|

Up to 65,536 — 20 — 20 = 65,495 data bytes may be included

20 for IP header and 20 for TCP header
Segments with no data are legal (used for ACK and control msgs)

15

TCP Header Fields

Source and destination ports
— Similar to what we discussed for UDP

Sequence number
— Corresponds to bytes not packets

Acknowledgement number
— Specifies the next byte expected by receiver

Data offset (or TCP header length)
— # of 32-bit words contained in the TCP header
— Needed because length of "Options” field is variable

16

TCP Header Fields (2)

* Six 1-bit flags
— ACK: indicates whether acknowledgement number is valid
— RST: reset a connection
» E.g. due to host crash, or refuse a connection open attempt
— SYN: used to establish connections
« Connection requests uses SYN=1, ACK=0
» Connection reply uses SYN=1, ACK=1
— FIN: used to release a connection
— URG: set to 1 if urgent pointer is in use

 Points to a byte offset from current SN where there is urgent data
— Receiver will be interrupted so it can find urgent data and handle it

— PSH: indicates PUSHed data
« Receiver is requested to deliver this data immediately to a process
* i.e. do not buffer it, as may be done for efficiency

17

TCP Header Fields (3)

« Window
— For flow control in TCP — variable-sized sliding window
— Indicates how many bytes may be sent
« Starting at the byte acknowledged
— Decouples ACKs from permission to send more data

* Checksum
— For reliability; checksum over header and data
— Add up all 16-bit words in one’s complement
« Then take one’s complement of sum
— When receiver recomputes, result should be 0

18

TCP Header Fields (4)

« Options field
— Way to add facilities not covered by regular header

— Most widely used option allows host to specify max TCP payload it is
willing to accept (MSS: max segment size)

« Large segments are more efficient, but may not work for small
hosts

« During connection setup, each side announces its max size

« If host does not use the option, it defaults to 536 byte payload
— TCP hosts required to accept 536 + 20 = 556 bytes

« More on window size
— Max window size is 64KB (2 16)
» Problem for high bandwidth or high delay channels
* On T3 line (44.736 Mbps), takes 12msec to output full 64KB

— If round-trip propagation delay is 50ms, sender will be idle 34 of time
— Satellite connection even worse

« Window scale option now commonly supported
— Both sides shift window up to 14 bits left (up to 2730 bytes)

19

TCP Connection

Active participant Passive participant
(client) (server)
Connect Listen,
Accept...
Accept
returns

Three-way handshake
— Two sides agree on respective initial sequence nums

If no one is listening on port: server sends RST
If server is overloaded: ignore SYN
If no SYN+ACK: retry, timeout

20

TCP Connection Release

« FIN bit says no more data to send
— Caused by close or shutdown
— Both sides must send FIN to close a connection

« Typical close

No, | didn’t get all

Close . your data
I’m done. good bye N
pCK Sure stop talking
| Close
< I'm done. Good bye
Sure stop ACk CLOSED

talking

CLOSED

21

Flow Control

We should not send more data than the receiver can take

When to send data?
— Sender can delay sends to get larger segments

How much data to send?

— Data is sent in MSS-sized segments
» Chosen to avoid fragmentation

Receiver uses window header field to tell sender how much
space it has

22

TCP Flow Control

Sending application Receiving application

TCP / TCP
LastByteWritten LastByteRead
i

Y

¢ é : :

A A A A
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

(a) (b)

« Receiver: AdvertisedWindow (how much room left)
= MaxRcvBuffer — ((NextByteExpected-1) — LastByteRead)

« Sender: LastByteSent — LastByteAcked <= AdvertisedWindow

23

TCP Flow Control

Sending application Receiving application

TCP / TCP
LastByteWritten LastByteRead
i

Y

¢ é : :

A A A A
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

(a) (b)

« Advertised window can fall to 0
— Sender eventually stops sending, blocks application

24

When to Transmit?

* Nagle’s algorithm

« Goal: reduce the overhead of small packets
If available data and window >= MSS
Send a MSS segment
else
If there is unAcked data in flight
buffer the new data until ACK arrives
else
send all the new data now

« Receiver should avoid advertising a window <= MSS after
advertising a window of 0

25

Delayed Acknowledgements

» Goal: Piggy-back ACKs on data
— Delay ACK for 200ms in case application sends data
— If more data received, immediately ACK second segment
— Note: never delay duplicate ACKs (if missing a segment)

« Warning: can interact very badly with Nagle
— Temporary deadlock
— Can disable Nagle with TCP_NODELAY
— Application can also avoid many small writes

26

