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* Problem solved: communication among processes
— Application-level multiplexing (“ports”)
— Error detection, reliability, etc.



Transport Layer

» Typical Goal:

— Provide reliable, cost-effective data transport between different
machines, independent of the physical network

« Again, 2 types of service: connectionless vs. connections
— Why?
— Transport code runs entirely on endpoint machines
— Network layer code runs mostly on routers

— Thus users have no control over network layer, so if want improved
quality of service, must implement in transport layer

« Provides standard set of API primitives to applications
— Independent of issues or differences in underlying networks



Connectionless vs. Connection

« Connectionless transport layer
— Very similar to network layer
— Not much additional service provided on top
— But less networking stack SW overheads as a result
— E.g. UDP

« Connection-oriented transport layer
— Provides error-free, reliable communication

— Can think of communication between two processes on different
machines as just like UNIX pipes or fifos

» One process puts data in one end, other process takes it out
— E.g. TCP



Example Transport Service API

Primitive Packet sent Meaning

LISTEN (none) Block until some process tries to connect
CONNECT CONNECTION REQ  Actively attempt to establish a connection
SEND DATA Send information

RECEIVE (none) Block until a DATA packet arrives

DISCONNECT DISCONNECT REQ This side wants to release the connection

Frame header Packet header Transport header Frame trailer
| / |

T !

h h h Transport payload t




Recall UNIX TCP sockets

Primitive Meaning

SOCKET Create a new communication end point

BIND Attach a local address to a socket

LISTEN Announce willingness to accept connections; give queue size
ACCEPT Block the caller until a connection attempt arrives

CONNECT Actively attempt to establish a connection

SEND Send some data over the connection

RECV Receive some data from the connection

CLOSE

Release the connection




UDP — Connectionless service

« User Datagram Protocol
— Essentially allows applications to send IP datagrams
— With just slightly more encapsulation

« UDP transmits segments
— Simply 8 byte header followed by payload

0 16 31

SrcPort DstPort

Length Checksum




Ports

Allows application-level multiplexing of network services

Processes attach to ports to use network services
— Port attachment is done with "BIND” operation

Destination port

— When a UDP packet arrives, its payload is handed to process attached
to the destination port specified

Source port
— Mainly used when some reply is needed
— Receiver can use the source port as the dest port in reply msg



UDP — What it does NOT do

* Flow control
 Error control
« Retransmission on receipt of bad segment

« User processes must handle this

« For apps needing precise control over packet flow, error
control, or timing, UDP is a great fit

— E.qg. client-server situations where client sends short request and
expects short reply back; client can timeout & retry easily

— DNS (Domain Name System): For looking up IP addr of host name
 Client sends host name, receives IP address response
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TCP — Connection-oriented Service

» Transmission Control Protocol
— Designed for end-to-end byte stream over unreliable network
— Robust against failures and changing network properties

« TCP transport entity
— e.g. Library procedure(s), user processes, or a part of the kernel
— Manages TCP streams and interfaces to the IP layer
— Accepts user data streams from processes
— Breaks up into pieces not larger than 64 KB

« Often 1460 data bytes to fit in 1 Ethernet frame w/ IP + TCP
headers

— Sends each piece separately as IP datagram
— Destination machine TCP entity reconstructs original byte stream
— Handles retransmissions & re-ordering
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TCP Service Model

« TCP service setup as follows:
— Two endpoint processes create endpoints called sockets
— Each socket has an address: IP address of host + 16-bit port
— API functions used to create & communicate on sockets

* Ports

— Numbers below 1024 called “well-known ports”
« Reserved for standard services, like FTP, HTTP, SMTP

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
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TCP Service Model (2)

« TCP connections are full-duplex & point-to-point
— Simultaneous traffic in both directions
— Exactly 2 endpoints (no multicast or broadcast)

« TCP connection is a byte stream, not message stream
— Receiver has no way to know what granularity bytes were sent
— E.g. 4 x 512 byte writes vs. 1 x 2048 byte write
— It can just receive some # of bytes at a time
— Just like UNIX files!

« TCP may buffer data or send it immediately
— PUSH flag indicates to TCP not to delay transmission
— TCP tries to make a latency vs. bandwidth tradeoff
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TCP Protocol

« TCP sequence number underlies much of the protocol
— Every byte sent has its own 32-bit sequence number

« TCP exchanges data in segments
— 20-byte fixed header (w/ optional part)
— Followed by 0 or more data bytes
— TCP can merge writes into one segment or split a write up
— Segment size limitations:
« Must fit (including header) inside 65,515 byte IP payload

« Networks have a MTU (max transfer unit)
— e.g. 1500 bytes for Ethernet payload size

« Uses a sliding window protocol (acks + timeout + seq #)
— Ack indicates the next seq # the receiver expects to get
— May be piggy-backed with data going in the other direction
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TCP Header
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Up to 65,536 — 20 — 20 = 65,495 data bytes may be included

20 for IP header and 20 for TCP header
Segments with no data are legal (used for ACK and control msgs)
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TCP Header Fields

Source and destination ports
— Similar to what we discussed for UDP

Sequence number
— Corresponds to bytes not packets

Acknowledgement number
— Specifies the next byte expected by receiver

Data offset (or TCP header length)
— # of 32-bit words contained in the TCP header
— Needed because length of "Options” field is variable
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TCP Header Fields (2)

* Six 1-bit flags
— ACK: indicates whether acknowledgement number is valid
— RST: reset a connection
» E.g. due to host crash, or refuse a connection open attempt
— SYN: used to establish connections
« Connection requests uses SYN=1, ACK=0
» Connection reply uses SYN=1, ACK=1
— FIN: used to release a connection
— URG: set to 1 if urgent pointer is in use

 Points to a byte offset from current SN where there is urgent data
— Receiver will be interrupted so it can find urgent data and handle it

— PSH: indicates PUSHed data
« Receiver is requested to deliver this data immediately to a process
* i.e. do not buffer it, as may be done for efficiency
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TCP Header Fields (3)

« Window
— For flow control in TCP — variable-sized sliding window
— Indicates how many bytes may be sent
« Starting at the byte acknowledged
— Decouples ACKs from permission to send more data

* Checksum
— For reliability; checksum over header and data
— Add up all 16-bit words in one’s complement
« Then take one’s complement of sum
— When receiver recomputes, result should be 0
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TCP Header Fields (4)

« Options field
— Way to add facilities not covered by regular header

— Most widely used option allows host to specify max TCP payload it is
willing to accept (MSS: max segment size)

« Large segments are more efficient, but may not work for small
hosts

« During connection setup, each side announces its max size

« If host does not use the option, it defaults to 536 byte payload
— TCP hosts required to accept 536 + 20 = 556 bytes

« More on window size
— Max window size is 64KB (2 16)
» Problem for high bandwidth or high delay channels
* On T3 line (44.736 Mbps), takes 12msec to output full 64KB

— If round-trip propagation delay is 50ms, sender will be idle 34 of time
— Satellite connection even worse

« Window scale option now commonly supported
— Both sides shift window up to 14 bits left (up to 2730 bytes)
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TCP Connection

Active participant Passive participant
(client) (server)
Connect Listen,
Accept...
Accept
returns

Three-way handshake
— Two sides agree on respective initial sequence nums

If no one is listening on port: server sends RST
If server is overloaded: ignore SYN
If no SYN+ACK: retry, timeout
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TCP Connection Release

« FIN bit says no more data to send
— Caused by close or shutdown
— Both sides must send FIN to close a connection

« Typical close

No, | didn’t get all

Close . your data
I’m done. good bye N
pCK Sure stop talking
| Close
< I'm done. Good bye
Sure stop ACk CLOSED

talking

CLOSED
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Flow Control

We should not send more data than the receiver can take

When to send data?
— Sender can delay sends to get larger segments

How much data to send?

— Data is sent in MSS-sized segments
» Chosen to avoid fragmentation

Receiver uses window header field to tell sender how much
space it has
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TCP Flow Control

Sending application Receiving application

TCP / TCP
LastByteWritten LastByteRead
i

Y

¢ é : :

A A A A
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

(a) (b)

« Receiver: AdvertisedWindow (how much room left)
= MaxRcvBuffer — ((NextByteExpected-1) — LastByteRead)

« Sender: LastByteSent — LastByteAcked <= AdvertisedWindow
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TCP Flow Control

Sending application Receiving application

TCP / TCP
LastByteWritten LastByteRead
i

Y

¢ é : :

A A A A
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

(a) (b)

« Advertised window can fall to 0
— Sender eventually stops sending, blocks application
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When to Transmit?

* Nagle’s algorithm

« Goal: reduce the overhead of small packets
If available data and window >= MSS
Send a MSS segment
else
If there is unAcked data in flight
buffer the new data until ACK arrives
else
send all the new data now

« Receiver should avoid advertising a window <= MSS after
advertising a window of 0

25



Delayed Acknowledgements

» Goal: Piggy-back ACKs on data
— Delay ACK for 200ms in case application sends data
— If more data received, immediately ACK second segment
— Note: never delay duplicate ACKs (if missing a segment)

« Warning: can interact very badly with Nagle
— Temporary deadlock
— Can disable Nagle with TCP_NODELAY
— Application can also avoid many small writes
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