
ECE 650
Systems Programming & Engineering

Spring 2018

Networking – Transport Layer

Tyler Bletsch

Duke University

Slides are adapted from Brian Rogers (Duke)

2

TCP/IP Model

3

• Problem solved: communication among processes

– Application-level multiplexing (“ports”)

– Error detection, reliability, etc.

Transport Layer

4

Transport Layer

• Typical Goal:
– Provide reliable, cost-effective data transport between different

machines, independent of the physical network

• Again, 2 types of service: connectionless vs. connections
– Why?

– Transport code runs entirely on endpoint machines

– Network layer code runs mostly on routers

– Thus users have no control over network layer, so if want improved
quality of service, must implement in transport layer

• Provides standard set of API primitives to applications
– Independent of issues or differences in underlying networks

5

Connectionless vs. Connection

• Connectionless transport layer
– Very similar to network layer

– Not much additional service provided on top

– But less networking stack SW overheads as a result

– E.g. UDP

• Connection-oriented transport layer
– Provides error-free, reliable communication

– Can think of communication between two processes on different
machines as just like UNIX pipes or fifos

• One process puts data in one end, other process takes it out

– E.g. TCP

6

Primitive Packet sent Meaning

LISTEN (none) Block until some process tries to connect

CONNECT CONNECTION REQ Actively attempt to establish a connection

SEND DATA Send information

RECEIVE (none) Block until a DATA packet arrives

DISCONNECT DISCONNECT REQ This side wants to release the connection

Transport payload h h h t

Transport header Packet header Frame header Frame trailer

Example Transport Service API

7

Primitive Meaning

SOCKET Create a new communication end point

BIND Attach a local address to a socket

LISTEN Announce willingness to accept connections; give queue size

ACCEPT Block the caller until a connection attempt arrives

CONNECT Actively attempt to establish a connection

SEND Send some data over the connection

RECV Receive some data from the connection

CLOSE Release the connection

Recall UNIX TCP sockets

8

UDP – Connectionless service

• User Datagram Protocol
– Essentially allows applications to send IP datagrams

– With just slightly more encapsulation

• UDP transmits segments
– Simply 8 byte header followed by payload

9

Ports

• Allows application-level multiplexing of network services

• Processes attach to ports to use network services
– Port attachment is done with “BIND” operation

• Destination port
– When a UDP packet arrives, its payload is handed to process attached

to the destination port specified

• Source port
– Mainly used when some reply is needed

– Receiver can use the source port as the dest port in reply msg

10

UDP – What it does NOT do

• Flow control

• Error control

• Retransmission on receipt of bad segment

• User processes must handle this

• For apps needing precise control over packet flow, error
control, or timing, UDP is a great fit

– E.g. client-server situations where client sends short request and
expects short reply back; client can timeout & retry easily

– DNS (Domain Name System): For looking up IP addr of host name

• Client sends host name, receives IP address response

11

TCP – Connection-oriented Service

• Transmission Control Protocol
– Designed for end-to-end byte stream over unreliable network

– Robust against failures and changing network properties

• TCP transport entity
– e.g. Library procedure(s), user processes, or a part of the kernel

– Manages TCP streams and interfaces to the IP layer

– Accepts user data streams from processes

– Breaks up into pieces not larger than 64 KB

• Often 1460 data bytes to fit in 1 Ethernet frame w/ IP + TCP
headers

– Sends each piece separately as IP datagram

– Destination machine TCP entity reconstructs original byte stream

– Handles retransmissions & re-ordering

12

TCP Service Model

• TCP service setup as follows:
– Two endpoint processes create endpoints called sockets

– Each socket has an address: IP address of host + 16-bit port

– API functions used to create & communicate on sockets

• Ports
– Numbers below 1024 called “well-known ports”

• Reserved for standard services, like FTP, HTTP, SMTP
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

13

TCP Service Model (2)

• TCP connections are full-duplex & point-to-point
– Simultaneous traffic in both directions

– Exactly 2 endpoints (no multicast or broadcast)

• TCP connection is a byte stream, not message stream
– Receiver has no way to know what granularity bytes were sent

– E.g. 4 x 512 byte writes vs. 1 x 2048 byte write

– It can just receive some # of bytes at a time

– Just like UNIX files!

• TCP may buffer data or send it immediately
– PUSH flag indicates to TCP not to delay transmission

– TCP tries to make a latency vs. bandwidth tradeoff

14

TCP Protocol

• TCP sequence number underlies much of the protocol
– Every byte sent has its own 32-bit sequence number

• TCP exchanges data in segments
– 20-byte fixed header (w/ optional part)

– Followed by 0 or more data bytes

– TCP can merge writes into one segment or split a write up

– Segment size limitations:

• Must fit (including header) inside 65,515 byte IP payload

• Networks have a MTU (max transfer unit)
– e.g. 1500 bytes for Ethernet payload size

• Uses a sliding window protocol (acks + timeout + seq #)
– Ack indicates the next seq # the receiver expects to get

– May be piggy-backed with data going in the other direction

15

• Up to 65,536 – 20 – 20 = 65,495 data bytes may be included

• 20 for IP header and 20 for TCP header

• Segments with no data are legal (used for ACK and control msgs)

TCP Header

16

TCP Header Fields

• Source and destination ports
– Similar to what we discussed for UDP

• Sequence number
– Corresponds to bytes not packets

• Acknowledgement number
– Specifies the next byte expected by receiver

• Data offset (or TCP header length)
– # of 32-bit words contained in the TCP header

– Needed because length of “Options” field is variable

17

TCP Header Fields (2)

• Six 1-bit flags
– ACK: indicates whether acknowledgement number is valid

– RST: reset a connection

• E.g. due to host crash, or refuse a connection open attempt

– SYN: used to establish connections

• Connection requests uses SYN=1, ACK=0

• Connection reply uses SYN=1, ACK=1

– FIN: used to release a connection

– URG: set to 1 if urgent pointer is in use

• Points to a byte offset from current SN where there is urgent data
– Receiver will be interrupted so it can find urgent data and handle it

– PSH: indicates PUSHed data

• Receiver is requested to deliver this data immediately to a process

• i.e. do not buffer it, as may be done for efficiency

18

TCP Header Fields (3)

• Window
– For flow control in TCP – variable-sized sliding window

– Indicates how many bytes may be sent

• Starting at the byte acknowledged

– Decouples ACKs from permission to send more data

• Checksum
– For reliability; checksum over header and data

– Add up all 16-bit words in one’s complement

• Then take one’s complement of sum

– When receiver recomputes, result should be 0

19

TCP Header Fields (4)

• Options field
– Way to add facilities not covered by regular header

– Most widely used option allows host to specify max TCP payload it is
willing to accept (MSS: max segment size)

• Large segments are more efficient, but may not work for small
hosts

• During connection setup, each side announces its max size

• If host does not use the option, it defaults to 536 byte payload
– TCP hosts required to accept 536 + 20 = 556 bytes

• More on window size
– Max window size is 64KB (2^16)

• Problem for high bandwidth or high delay channels

• On T3 line (44.736 Mbps), takes 12msec to output full 64KB
– If round-trip propagation delay is 50ms, sender will be idle ¾ of time

– Satellite connection even worse

• Window scale option now commonly supported
– Both sides shift window up to 14 bits left (up to 2^30 bytes)

20

Listen,

Accept…

Accept

returns

Connect

TCP Connection

• Three-way handshake
– Two sides agree on respective initial sequence nums

• If no one is listening on port: server sends RST

• If server is overloaded: ignore SYN

• If no SYN+ACK: retry, timeout

21

• FIN bit says no more data to send
– Caused by close or shutdown

– Both sides must send FIN to close a connection

• Typical close

 Close

Close

CLOSED

CLOSED

…

I’m done. good bye

I’m done. Good bye

No, I didn’t get all

your data

Sure stop talking

Sure stop

talking

TCP Connection Release

22

Flow Control

• We should not send more data than the receiver can take

• When to send data?
– Sender can delay sends to get larger segments

• How much data to send?
– Data is sent in MSS-sized segments

• Chosen to avoid fragmentation

• Receiver uses window header field to tell sender how much
space it has

23

TCP Flow Control

• Receiver: AdvertisedWindow (how much room left)

 = MaxRcvBuffer – ((NextByteExpected-1) – LastByteRead)

• Sender: LastByteSent – LastByteAcked <= AdvertisedWindow

24

TCP Flow Control

• Advertised window can fall to 0
– Sender eventually stops sending, blocks application

25

When to Transmit?

• Nagle’s algorithm

• Goal: reduce the overhead of small packets
If available data and window >= MSS

 Send a MSS segment

else

 If there is unAcked data in flight

 buffer the new data until ACK arrives

 else

 send all the new data now

• Receiver should avoid advertising a window <= MSS after
advertising a window of 0

26

Delayed Acknowledgements

• Goal: Piggy-back ACKs on data
– Delay ACK for 200ms in case application sends data

– If more data received, immediately ACK second segment

– Note: never delay duplicate ACKs (if missing a segment)

• Warning: can interact very badly with Nagle
– Temporary deadlock

– Can disable Nagle with TCP_NODELAY

– Application can also avoid many small writes

