
Process Management & Scheduling

Tyler Bletsch

Duke University

Slides are adapted from Brian Rogers (Duke)

ECE 650
Systems Programming & Engineering

Spring 2018

2

• Process is running instance
of a program
– E.g. program = emacs

– Can run multiple instances

• Process has an ID

• OS supports processes
– Resource management

– Scheduling

Process

3

• OS tracks a state for each process

new

ready

terminated

running

waiting

admitted exit interrupt

scheduler

dispatch

I/O or event wait I/O or event

complete

Process State

4

• How does the OS track & manage processes?

• Process Control Block (PCB)

• Data structure kept by the OS for every process
– Process state

– Program Counter

– CPU registers

– Scheduling information (e.g. priority, pointers to schedule queues)

– Memory information (pointers to page tables, etc.)

– Accounting information (CPU time, process ID, etc.)

– I/O information (lists of open files, I/O devices, etc.)

• Multi-threaded process?
– PCB is expanded to store info for each thread

Process Control Block

5

Process Scheduling

• Every HW thread in the system can execute a process
 “HW thread” = CPU core, or, for multi-threaded (SMT) CPUs, a CPU thread

 It is actually kernel threads that are being scheduled

 Remember at least 1 thread per process

• Likely more processes active than HW threads

• OS schedules processes on HW threads
 Process executes for some amount of time

• Until it needs to block (e.g. for I/O operations)

• Until its time slice (or quantum) (e.g. 100 ms) has elapsed

 For pre-emptive OS schedulers

 Gives appearance that more processes than HW threads can be active at one
time

6

• OS uses queue structures for scheduling
– Linked lists of PCBs

• Created processes are placed on job queue

• Processes ready to execute are placed in “ready queue”

• Processes blocking are placed in “event queues”, e.g.
– Waiting for disk due to a page fault

– Waiting for input I/O from the keyboard

OS Scheduling Queues

7

• Process on ready queue is selected to execute

• Process executes until an event happens
– Waits for I/O request

– Spawns child process and waits for it to complete

– Interrupt requires OS service

– Pre-emption by OS after time slice expires

Scheduling Flow

8

• OS uses context switch to change the running process
– Remove running process from the CPU

– Setup a new process on the CPU to start running

• OS saves all process state from the CPU to PCB
– Registers, PC, stack pointer

• Load state from PCB of new process to run onto CPU

• Return from interrupt: leave privileged mode, restore PC

• Context switch time is performance overhead
– Depends on # of registers, HW support in the processor

Context Switch

9

• Two sources:
– Fine-grained sharing of CPU provides illusion of many tasks executing at the

same time

– Processes alternate between CPU processing and I/O activity

• Many short CPU bursts

• Few long CPU bursts

• Allow maximum utilization of the CPU

CPU

Burst0

CPU

Burst0

I/O Op0
CPU

Burst1

I/O Op1
CPU

Burst2

I/O Op2

P
ro

c
e
s
s
0

I/O Op0 I/O Op1

P
ro

c
e
s
s
1

CPU

Burst1

CPU

Burst2

CPU Scheduling Motivation

10

• Many algorithms for scheduling processes on the CPU

• How to evaluate them?
– CPU utilization: keep the CPU busy as often as possible

– Throughput: number of processes completed per unit time

– Turnaround time: how long to execute a single process

– Waiting time: amount of time spent in the ready queue

– Response time: time until start of first response

• Relevant for interactive jobs

• Typically evaluate based on an average of these metrics

• Some may be more important for certain system uses

Scheduling Criteria

11

• First ready process to arrive gets the CPU

• Implemented with a FIFO of PCBs

• Easy to design and implement

• Possibly poor behavior for certain metrics
– Waiting time

– Turnaround time

– Response time

• Variability causes poor behavior
– Variability in CPU burst times and CPU vs. I/O mix

• Non-preemptive

Scheduler:
First Come, First Serve (FCFS)

12

• Pick the shortest job from the ready queue for the CPU
– Really the shortest next period of CPU activity

– Requires OS to know how long next job is! Not true in general purpose
computing, but it can be true in real-time systems (e.g. an MP3 player).

• Provably optimal for reducing average waiting time
– Moving shorter process before a longer one

• Reduces wait time for shorter process by a large amount

• Increases wait time for the longer process by a small amount

• Sometimes implemented directly (batch job schedulers)
– User-requested run-time limit used as the job execution time

• Not feasible directly for OS CPU scheduling
– Don’t know length of next CPU burst

– But it is possible to try and estimate it

Scheduler:
Shortest Job First (SJF)

13

• OS can track an exponential average of previous bursts
– Tn+1 = α * tn + (1-α)Tn

– Tn+1 = next CPU interval

– tn = most recent CPU interval

– α = weight of most recent recent vs. prior CPU intervals

• CPU burst intervals further in the past have less weight

Estimating Next Compute Burst Length

14

SJF details

• Can be preemptive or non-preemptive
 Non-preemptive: job remains on CPU until it finishes CPU burst

 Preemptive: a new process entering ready queue causes scheduler to run
again and possibly make a context switch

• Example (times in ms) – timeline picture on next page
 P0: Arrival Time = 0, Burst Time = 8

 P1: Arrival Time = 1, Burst Time = 4

 P2: Arrival Time = 2, Burst Time = 9

 P3: Arrival Time = 3, Burst Time = 5

 Wait time average = 6.5 ms for preemptive

 Wait time average = 7.75 ms for non-preemptive

15

Non-preemptive SJF job schedule:
P0

P1

P2

P3

Each block is 1 ms

T=0: P0 scheduled as it is the only arrived job

T=8: P1 scheduled as it is next shortest job

T=12: P3 scheduled as it is next shortest job

T=17: P2 scheduled as it is last job

Average wait time = ((0-0) + (8-1) + (12-3) + (17-2)) / 4 = 7.75ms

T=0: P0 arrives

T=1: P1 arrives

T=2: P2 arrives

T=3: P3 arrives

SJF Example

16

Scheduler:
Priority Scheduling

• A generalization of the SJF algorithm

• Every process has an assigned priority

• Allocate the CPU to the process with the highest priority
 e.g. based on user assignment (priority + ‘nice’ value in linux)

 Or based on process characteristics

• Can also be preemptive or non-preemptive

• Starvation is a problem (for low priority processes)
 Can be solved with an aging technique:

Increase the priority of ready processes over time

17

Scheduler:
Round-Robin Scheduling

• A preemptive scheduling approach

• A process executes until:
 It blocks or ends

 Its time quantum expires

• OS keeps FIFO of PCBs and cycles through them
 Newly ready processes are added to the tail

• Sometimes results in longer wait times

• Performance is heavily tied to the length of quantum
 Too long and it reverts to FCFS

 Too short and context switch time will dominate

 Rule of thumb: 80% of CPU bursts should be less than time quantum

18

Scheduler:
Multi-Level Queue Scheduling

• Instead of a single Ready Queue
 Multiple queues corresponding to different types of processes

• System, Interactive, Batch, Background

 Processes assigned to one queue based on their properties

• E.g. response time requirements

 Each queue can use a different scheduling policy

• Round robin for the interactive queue, FCFS for background, etc.

 Either give each queue an absolute priority or time slice across

19

• Instead of static allocation of processes to queues…

• Dynamically move processes between them
– Move processes with heavy CPU bursts to lower priority queues

– Move I/O & interactive processes to higher priority queues

• Possibly use larger time slices for lower priority queues

• Helps prevent starvation

Scheduler:
Multi-Level Feedback Queue Schedule

This is what many modern OSs use, including Windows and MacOSX.

