
Protection & Security

Tyler Bletsch

Duke University

Slides are adapted from Brian Rogers (Duke)

ECE 650
Systems Programming & Engineering

Spring 2018

2

• OS manages resources for users & user processes
– Files, memory regions, I/O channels, CPU

• Protection is a critical part of this management
– Ensure that resources can only be used with proper authorization from the OS

• Reasons for protection
– Prevent users from malicious access to resources

– Ensure processes use system resources only as consistent with allowed policies

• Protection is a mechanism
– Mechanism to enforce policies that define how resources should be used

– As opposed to a policy (definition of how resources should be used)

– Policies may adapt and change over time (or between different applications)

– Thus mechanisms should be general to allow flexibility

Protection

Engineering wisdom:
Always separate mechanism and policy

3

• Most protection mechanisms based on key principle
– Principle of least privilege

– Users, processes, etc. have the minimum level of access to resources and
privileges needed to accomplish intended task

– “Need to know basis”

• Minimizes damage from failed or compromised pieces
– They can only affect a minimal set of components in the system

• OS designs provide support for this
– System calls and services for apps to specify fine-grained permissions &

controls

– Apps enable and disable permissions as needed

– Also applies to users (separate accounts, permissions)

Basics of Protection

4

Subjects, Objects, Actions, and Rights

Subject
(initiator)

• The thing
making the
request (e.g.
the user)

Verb
(request)

• The
operation to
perform
(e.g., read,
delete, etc.)

Right
(permission)

• A specific
ability for the
subject to do
the action to
the object.

Object
(target)

• The thing
that’s being
hit by the
request (e.g.,
a file).

5

• Think of all resources as an object
– E.g., in UNIX – “everything is a file”

– Hardware objects: CPU, memory spaces, disk, keyboard, display

– Software objects: files, directories, programs

• Different objects have different possible operations, e.g.
– Read & write memory regions; Read from a keyboard input

– Execute on a CPU

– Create, delete, open, close, read, write, append files

• Protection mechanism operates based on rules
– Application or user (the subject) has permission to perform certain operations

on certain objects

Protection Rules

6

• Rules specifies objects (resources) the process has permission to
access

• Access Right
– A permission for a process to perform an operation on an object

• Access rights can be static or dynamic for a process
– Dynamic rights achieved via either:

• A mechanism to change an object’s access rights

• A mechanism for subject switching
– Create new subject with desired access rights; then switch to it

– For example, the user/supervisor mode we discussed for interrupts

Protection Rules (2)

$ whoami
tkb13
$ sudo whoami
[sudo] password for tkb13: ************
root

7

• Happens via a protection mechanism using the file system
– Remember, in UNIX, “everything” is a file

– Every file has an owner ID and a setuid bit
• "set user ID upon execution“

• Set just like file read/write/execute permissions

– When a user executes a file:

• If setuid bit is on, user ID is changed to the owner of the file

• If setuid bit is off, user ID does not change

– Temporary user ID change ends after process exits

• Allows a privileged component to be used by general users
– E.g. an application that accesses the network or change user password

• What if a user creates a file with user ID of root & setuid on?

UNIX Example

8

• Protection model maps nicely to a matrix

• Rows = subjects; columns = objects

• A matrix entry lists the access rights

• Provides a general mechanism for specifying policies
– Enforce specific access rights for a user or process

Access Matrix

9

Access Matrix – Additional Functions

• Base access matrix allows
 Defining and enforcing strict access control policy

• How can we provide dynamic rights?
 Subject switching

• Add access matrix entries to enforce “switch” operation rights

• Examples: sudo, setuid

 Allow controlled changing of the access matrix entries

• Encode this permission in the access matrix as well!

• New operations for owner of an object to allow creation of new rights in
the access matrix

• Examples: chmod, Google Drive sharing settings

10

• In a real system, the matrix will be very sparse
– But the way it is accessed & used cause special considerations

• Global Table
– List of <subject, object, rights> tuples

– Search for “right” when “subject” accesses “object”

– Drawbacks:

• Table is huge

• Objects may have “global” rights, but still listed for every subject

• Access Lists
– Maintain a list per object with <subject, rights> (column-based)

– Can extend with a “default” set of rights for each object

Access Matrix Implementation

11

• Protection is a mechanism for internal problem
– Controlled access to programs, data

• Security deals with the external environment
– Protection can be thwarted if security is compromised

– Protection works well only if users behave as intended

– E.g., what if a user password is stolen or cracked?

• In a secure system…
– All resources (objects) are used only according to policy

– Cannot be achieved in reality, but strive to limit violations

Security

12

• Why is security important for systems programming?

• Many attacks target an “escalation of privilege”
– This often involves attempting to gain “root” privilege in a system

– For purposes of reading or tampering with data

• Data not otherwise accessible via protection mechanism

– Systems programmers should be aware of:

• Types of attacks

• Mechanisms by which attacks are attempted and operate

Security and the OS

13

• Threat: potential for a security violation
– E.g. a vulnerability in a program

• Attack: attempt to break security
– E.g. an exploit is an attempt to utilize a program vulnerability

• Categories of security violations
– Confidentiality breach: data theft

• E.g. credit card, account information; very common goal

– Integrity breach: unauthorized modification of code or data

– Availability breach: unauthorized destruction of data

• E.g. deleting customer account info or defacing a website

– Theft of service: unauthorized use of resources

– Denial of service: prevent legitimate use of a system

Some Definitions

14

• Physical
– Need to secure the sites where computer systems reside

– Only authorized administrators / users have physical access

• Human
– Social engineering may trick authorized users into performing an inadvertent

breach of security

– Phishing obtain information

– Executing malicious code

• OS
– Mechanisms to protect from accidental or purposeful breaches

• Network
– Protect network-transmitted data from interception or tampering

Domains of Security Measures

15

• Threats to Running Programs
– Trojan Horse

– Trap Door

– Logic Bomb

– Stack (or Buffer) Overflow

– Viruses

• Threats to System and Network Resources
– Worms

– Port Scanning

– Denial of Service

Types of Threats

16

Trojan Horse

• Malware code that misuses its environment
 Often disguised as legitimate software

 User unknowingly is tricked into executing the malware code

 Often takes advantage of access rights of the executing user

• Example: Take advantage of search paths on UNIX OS
 PATH environment variable specifies order of locations to search for

executable files (e.g. ‘ls’ command)

 PATH usually has things like: /bin:/usr/bin/:/usr/local/bin

 Sometimes also has things like “.” (current directory)

 Malicious user creates a Trojan program (e.g. with a common name like ‘cd’)

 Unknowing user goes into the directory with this program and executes what
they think is the “normal” cd command

 Executes Trojan code

• NOTE: This is why ‘.’ is not in the PATH by default, and therefore
why you have to say ./myprogram to run a program you just built

17

Trojan Horse (2)

• Emulate a login prompt
 User enters a login ID and password

 Trojan code captures user ID and password

 Trojan code prints a login failure message & exits

• Returning to the real login prompt

 User thinks they have mistyped password; suspects nothing

 Reason behind the <ctrl>+<alt>+<delete> Windows

• Non-trappable key sequence

• Trojan code cannot intercept this signal and ignore it

• Spyware
 Code contained along with software to display ads

 Or capture information and send it somewhere for mining

• This is called a covert channel (e.g. by opening a network daemon)

 Fundamental violation of principle of least privilege

18

• A security hole purposely left in legitimate software
– Can be exploited by those with knowledge of the vulnerability

• Financial code might include tiny rounding errors
– Route rounded money to a specific bank account

Trap Door

19

• Tweak authentication procedures for an application
– E.g. obscure user name and ID password combo is always valid

• Extra sneaky scenario:
– Embed the trap door for an application in compiler(s)

– Compiler checks to see if it is compiling the specific application

– If so, it inserts the trap door code

– Inspection of the application source code reveals no issues!

– Additionally, if the application is re-compiled, problem still exists!

Trap Door (2)

20

• Malware that is triggered only under certain conditions
– E.g. causes a security incident only at a particular time

– Application may run normally for a long period of time

• What kind of conditions? Almost anything…
– Certain year, month, day, time

– If certain information is present on the system

– Check a database to see if the programmer is still employed

Logic Bomb

21

• Previous threats involve:
– A programmer that can create malicious programs

– A way to install or place malicious code in the system

• What if this is not possible?
– How could an attacker execute malicious code?

• By far the most common way is through stack overflow
– Takes advantage of the stack mechanism to:

• Allow injection of malicious code

• Force a process to execute the code

• As we will see, specific to architecture, OS, & application

Stack (Buffer) Overflow

22

• Stack organized as frames
– Every function call creates &

pushes a new frame on stack

– Function return pops frame from
stack

• Frames may contain
– Return address (PC)

– Address of previous frame

– Space for function args

– Space for function local vars

Stack

Code

Static Data

Heap

SP

PC

Process
0x00…0

0xFF…F

Stack Overflow Mechanism

23

void func(int a, int b, char *c) {

 char buff1[5];

 char buff2[10];

 strcpy(buff2, c);

}

int main(int argc, char *argv[]) {

 func(1, 2,argv[1]);

}

compile

main:

 <snip>

 0x4 push $1

 0x8 push $2

 0xC push $3

 0x10 call func #pushes pc=0x14

<snip>

Stack

Old

SP a

b

c

Return PC

Saved Frame Ptr

buff1

buff2

buff2[0]

buff2[9]

New

SP

N
e

w
 S

ta
c
k
 F

ra
m

e

Stack After Calling func()

Stack Overflow Mechanism

24

void func(int a, int b, char *c) {

 char buff1[5];

 char buff2[10];

 strcpy(buff2, c);

}

int main(int argc, char *argv[]) {

 func(1, 2,argv[1]);

}

Stack

Old

SP a

b

c

Return PC

Saved Frame Ptr

buff1

buff2

buff2[0]

buff2[9]

New

SP

N
e

w
 S

ta
c
k
 F

ra
m

e

Stack After Calling func()

• What if buffer c has more than 10 bytes?

• Lack of bounds checking means other stack

addresses will be overwritten

• Including the Return PC!!!

• When a function exits (‘ret’ instruction)

• This “Return PC” is placed in the CPU

program counter

Stack Overflow Mechanism (2)

25

• If a stack buffer is filled based on user input:
– A lack of bounds checking means the return PC can be changed

• What can the PC be changed to?
– Where have we learned about PCs that point to specific code?

– Or the attacker can fill the buffer with code!

– Return PC will point back to the written buffer

• For example, code to execute a shell:

• If this is interesting, read “Smashing the Stack for Fun and Profit”:
http://insecure.org/stf/smashstack.html

int main(int argc, char *argv[]) {

 execvp(“/bin/sh”, “/bin /sh”, NULL);

 return 0;

}

Stack Overflow

http://insecure.org/stf/smashstack.html
http://insecure.org/stf/smashstack.html

26

• Historically this type of attack has dominated incidents
– Lack of bounds checking is the vulnerability

– Stack overflow is the exploit

• What can be done? Lots of R&D on this:
– strncpy()!! (i.e. more careful programming)

– Non-executable stacks

• But attackers just become more sophisticated

• Use chains of system calls to perform attacks

– Address space randomization

– Stack meta-data to record modifications to stack information

– And on and on

Prevention Mechanisms

27

• Malware embedded in a legitimate program

• Replicates itself and actively spreads
– Key distinction from the threats we have thus far seen

• Typically spread via social engineering
– Users execute programs via spam email or internet downloads

• One common source
– Microsoft office files, as they can execute macros

– Attacker can embed malicious macro code in a file

• A delivery program (usually a Trojan horse) contains a program
called a virus dropper

– Virus dropper executes and injects virus into the system

– E.g. copies to memory & starts executing virus program

Virus

28

Some Common Virus Categories

• File
 Virus appends to a file

 Changes start of program to jump to virus

 After executing, returns control to program so virus is not noticed

• Boot
 Infect boot sector; execute every time system is booted

 Also infects other bootable media such as USB

 Viruses don’t appear in the file system

• Macro
 Macro: programming language available in some document formats,

e.g. Microsoft office files

 Attacker can embed malicious macro code in a file,
have it add same macro to other files

• Source code
 Modifies source of programs to include the virus & help spread

29

• Lots of variants geared to avoiding detection

• Polymorphic
– Changes each time it is installed to change its “signature”

– Helps defeat virus scanners that look for patterns in code

• Stealth
– Virus modifies parts of a system that check for virus existence

– E.g. modify the read() system call

• Tunneling
– Virus bypasses detection by installing itself in interrupt handler or device

drivers

• Encrypted
– Virus includes decryption code to decrypt itself and then execute

More Common Virus Categories

30

• Essentially a virus that uses network resources to spread

• Does not attach to existing program like a virus

• Often consist of 2 pieces
– “Grappling hook”

• Initial code that is established and executes on a machine

• It communicates with an established machine & requests the worm

– Main worm malware

Worms

31

• Robert Morris – 1998, graduate student at Cornell

• First internet worm

• Worm attempted 3 network attack methods
– Try to exploit ‘rsh’ to execute a task remotely

• Searched for host-login name pairs in special files

– Exploit vulnerability in ‘finger’ program

• Buffer overflow of a stack frame to execute /bin/sh

– Exploit vulnerability in ‘sendmail’ program

• Debugging option commonly left enabled by system admins

• Worm mailed itself & executed grappling hook program

Morris Worm

32

• Attempt TCP/IP connections to host on range of ports

• Each attempt tries to connect to a vulnerable service
– E.g. sendmail

• If successful, this indicates an exploit opportunity
– E.g. to exploit a buffer overflow

Port Scanning

33

• Not aimed at stealing or modifying information

• Goal is to disrupt legitimate use of a system or service

• Usually network-based attacks
– E.g. initiate but do not complete many TCP/IP connections

– Results in no new legitimate connections being serviced

• Distributed Denial of Service (DDOS)
– Launched from multiple sites at a common target

– Sometimes the multiple sites are infected machines (zombies)

• Sometimes security measures introduce DOS vulnerabilities
– E.g. increasing delays between unsuccessful login attempts

Denial of Service

34

• Malware that acquires privileged access to the OS
– Also maintains that access

– By hiding its presence from normal OS activity

• Goals of a rootkit
– Run (without restriction) on a target system

• Use social engineering or vulnerabilities in protection (e.g. ACLs)

– Remain invisible to security software, OS, users

– Perform malicious action (called the payload)

• Steal information or access to resources; install other malware

Rootkits

35

• Processes (including security software) depend on the OS to provide
information about the environment

– E.g. through APIs that expose system calls

• Rootkit software can monitor these API questions to OS
– Rootkit intercepts questions related to its existence

• E.g. an ‘ls’ of the directory where the rootkit program exists

• E.g. an ‘ls’ of the /proc/ directory containing info on all processes

• E.g. a ‘read’ request on a file modified by the Rootkit

How do Rootkits Hide?

36

• “Hooking” OS APIs
– Change address of OS APIs by pointing to own malware code

– Can be done for user or supervisor mode

– In response to system calls, the code at modified address is run

• Hide in unused disk space
– Unused disk space is not visible to normal file system APIs

– Modify device driver(s) to execute rootkit code when loaded

• Infect the Master Boot Record (MBR)
– Control what is loaded into memory before OS is even booted

Rootkit Subversion Mechanisms

