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Protection

OS manages resources for users & user processes
— Files, memory regions, /0 channels, CPU

Protection is a critical part of this management
— Ensure that resources can only be used with proper authorization from the OS

Reasons for protection
— Prevent users from malicious access to resources
— Ensure processes use system resources only as consistent with allowed policies

Protection is a mechanism
— Mechanism to enforce policies that define how resources should be used
— As opposed to a policy (definition of how resources should be used)
— Policies may adapt and change over time (or between different applications)
— Thus mechanisms should be general to allow flexibility

Engineering wisdom:
Always separate mechanism and policy




Basics of Protection

* Most protection mechanisms based on key principle

— Principle of least privilege

— Users, processes, etc. have the minimum level of access to resources and
privileges needed to accomplish intended task

— “Need to know basis”

* Minimizes damage from failed or compromised pieces
— They can only affect a minimal set of components in the system

* OS designs provide support for this

— System calls and services for apps to specify fine-grained permissions &
controls

— Apps enable and disable permissions as needed
— Also applies to users (separate accounts, permissions)



Subjects, Objects, Actions, and Rights

Subject Verb Right Object
(initiator) (request) (permission) (target)
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making the operation to ability for the that’s being
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Protection Rules

* Think of all resources as an object
— E.g., in UNIX — “everything is a file”
— Hardware objects: CPU, memory spaces, disk, keyboard, display
— Software objects: files, directories, programs

* Different objects have different possible operations, e.g.
— Read & write memory regions; Read from a keyboard input
— Execute on a CPU
— Create, delete, open, close, read, write, append files

* Protection mechanism operates based on rules

— Application or user (the subject) has permission to perform certain operations
on certain objects



Protection Rules (2)

* Rules specifies objects (resources) the process has permission to
access

* Access Right

— A permission for a process to perform an operation on an object

* Access rights can be static or dynamic for a process
— Dynamic rights achieved via either:
* A mechanism to change an object’s access rights

* A mechanism for subject switching
— Create new subject with desired access rights; then switch to it

— For example, the user/supervisor mode we discussed for interrupts

S whoami
tkb13

$ sudo whoami
[sudo] password for tkh13; ** %k ks x sk
root




* Happens via a protection mechanism using the file system
— Remember, in UNIX, “everything” is a file

— Every file has an owner ID and a setuid bit
e "set user ID upon execution”
» Set just like file read/write/execute permissions

— When a user executes a file:
 If setuid bit is on, user ID is changed to the owner of the file
* If setuid bit is off, user ID does not change

— Temporary user ID change ends after process exits

* Allows a privileged component to be used by general users
— E.g. an application that accesses the network or change user password

e What if a user creates a file with user ID of root & setuid on?



Access Matrix

Protection model maps nicely to a matrix

* Rows = subjects; columns = objects

A matrix entry lists the access rights

Provides a general mechanism for specifying policies
— Enforce specific access rights for a user or process



Access Matrix — Additional Functions

e Base access matrix allows

= Defining and enforcing strict access control policy

e How can we provide dynamic rights?
= Subject switching
e Add access matrix entries to enforce “switch” operation rights
e Examples: sudo, setuid

= Allow controlled changing of the access matrix entries
e Encode this permission in the access matrix as well!

* New operations for owner of an object to allow creation of new rights in
the access matrix

e Examples: chmod, Google Drive sharing settings



Access Matrix Implementation

* In areal system, the matrix will be very sparse
— But the way it is accessed & used cause special considerations

 Global Table

— List of <subject, object, rights> tuples
— Search for “right” when “subject” accesses “object”
— Drawbacks:
* Table is huge
* Objects may have “global” rights, but still listed for every subject

 Access Lists

— Maintain a list per object with <subject, rights> (column-based)
— Can extend with a “default” set of rights for each object
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Security

* Protection is a mechanism for internal problem
— Controlled access to programs, data

e Security deals with the external environment
— Protection can be thwarted if security is compromised
— Protection works well only if users behave as intended
— E.g., what if a user password is stolen or cracked?

* |n a secure system...
— All resources (objects) are used only according to policy
— Cannot be achieved in reality, but strive to limit violations
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Security and the OS

 Why is security important for systems programming?

* Many attacks target an “escalation of privilege”
— This often involves attempting to gain “root” privilege in a system
— For purposes of reading or tampering with data
e Data not otherwise accessible via protection mechanism
— Systems programmers should be aware of:
* Types of attacks
* Mechanisms by which attacks are attempted and operate
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Some Definitions

* Threat: potential for a security violation
— E.g. a vulnerability in a program

* Attack: attempt to break security
— E.g. an exploit is an attempt to utilize a program vulnerability

» Categories of security violations
— Confidentiality breach: data theft
e E.g.credit card, account information; very common goal
— Integrity breach: unauthorized modification of code or data
— Availability breach: unauthorized destruction of data
* E.g. deleting customer account info or defacing a website
— Theft of service: unauthorized use of resources
— Denial of service: prevent legitimate use of a system
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Domains of Security Measures

Physical
— Need to secure the sites where computer systems reside
— Only authorized administrators / users have physical access

Human

— Social engineering may trick authorized users into performing an inadvertent
breach of security

— Phishing obtain information
— Executing malicious code

* OS

— Mechanisms to protect from accidental or purposeful breaches

Network
— Protect network-transmitted data from interception or tampering
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Types of Threats

* Threats to Running Programs
— Trojan Horse
— Trap Door
— Logic Bomb
— Stack (or Buffer) Overflow
— Viruses

* Threats to System and Network Resources
— Worms
— Port Scanning
— Denial of Service
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Trojan Horse

e Malware code that misuses its environment

Often disguised as legitimate software
User unknowingly is tricked into executing the malware code
Often takes advantage of access rights of the executing user

e Example: Take advantage of search paths on UNIX OS

PATH environment variable specifies order of locations to search for
executable files (e.g. ‘IS’ command)

PATH usually has things like: /bin:/usr/bin/:/usr/local/bin

Sometimes also has things like “.” (current directory)

Malicious user creates a Trojan program (e.g. with a common name like ‘cd’)

Unknowing user goes into the directory with this program and executes what
they think is the “normal” cd command

Executes Trojan code

e NOTE: This is why “.” is not in the PATH by default, and therefore
why you have to say ./myprogram to run a program you just built
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Trojan Horse (2)

e Emulate a login prompt

= User enters a login ID and password

Trojan code captures user ID and password

Trojan code prints a login failure message & exits
e Returning to the real login prompt

User thinks they have mistyped password; suspects nothing

Reason behind the <ctri>+<alt>+<delete> Windows
e Non-trappable key sequence
e Trojan code cannot intercept this signal and ignore it

e Spyware
= Code contained along with software to display ads
= Or capture information and send it somewhere for mining

e This is called a covert channel (e.g. by opening a network daemon)
* Fundamental violation of principle of least privilege
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Trap Door

* A security hole purposely left in legitimate software
— Can be exploited by those with knowledge of the vulnerability

* Financial code might include tiny rounding errors
— Route rounded money to a specific bank account
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Trap Door (2)

 Tweak authentication procedures for an application
— E.g. obscure user name and ID password combo is always valid

* Extra sneaky scenario:
— Embed the trap door for an application in compiler(s)
— Compiler checks to see if it is compiling the specific application
— If so, it inserts the trap door code
— Inspection of the application source code reveals no issues!
— Additionally, if the application is re-compiled, problem still exists!
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Logic Bomb

 Malware that is triggered only under certain conditions
— E.g. causes a security incident only at a particular time
— Application may run normally for a long period of time

* What kind of conditions? Almost anything...
— Certain year, month, day, time
— If certain information is present on the system
— Check a database to see if the programmer is still employed
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Stack (Buffer) Overflow

Previous threats involve:

— A programmer that can create malicious programs
— A way to install or place malicious code in the system

What if this is not possible?
— How could an attacker execute malicious code?

By far the most common way is through stack overflow
— Takes advantage of the stack mechanism to:
* Allow injection of malicious code
* Force a process to execute the code

As we will see, specific to architecture, OS, & application

21



Stack Overflow Mechanism

OxFF...F

0x00...0

J «— SP
Heap
Static Data
Code <«— PC

Process

e Stack organized as frames

— Every function call creates &
pushes a new frame on stack

— Function return pops frame from
stack

 Frames may contain
— Return address (PC)
— Address of previous frame
— Space for function args
— Space for function local vars
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Stack Overflow Mechanism

void func(int a, int b, char *c) { Stack After Calling func()
char buffl[5];
char buff2[10];
strcpy (buff2, c); Stack
} — «— Old
a SP
int main(int argc, char *argv[]) { b
func(l, 2,argv[1l]); C
i = Return PC
_ © Saved Frame Ptr
@ compile v
§ buffl
main: 2
<snip> g buff2[9]
0x4 push $1
0x8 push $2 buff2
0xC push $3
0x10 call func #pushes pc=0x14 _| buff2[0] « New
<snip> SP
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Stack Overflow Mechanism (2)

void func(int a, int b, char *c) { Stack After Calling func()
char buffl[5];
char buff2[10];
strcpy (buff2, c); Stack
} _ «— Old
a SP
int main(int argc, char *argv[]) { b
func(l, 2,argv[1l]); C
} = Return PC
E Saved Frame Ptr
-
« What if buffer c has more than 10 bytes? § N buffl
» Lack of bounds checking means other stack N
addresses will be overwritten 5 buff2[9]
* Including the Return PC!!! <
* When a function exits (‘ret’ instruction) buff2
* This “Return PC” is placed in the CPU
program counter | buff2[0]  New
SP
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Stack Overflow

If a stack buffer is filled based on user input:
— A lack of bounds checking means the return PC can be changed

What can the PC be changed to?

— Where have we learned about PCs that point to specific code?
— Or the attacker can fill the buffer with code!
— Return PC will point back to the written buffer

For example, code to execute a shell:

int main(int argc, char *argv[]) {
execvp (“/bin/sh”, “/bin /sh”, NULL) ;
return O;

}

If this is interesting, read “Smashing the Stack for Fun and Profit”:
http://insecure.org/stf/smashstack.html
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Prevention Mechanisms

* Historically this type of attack has dominated incidents

— Lack of bounds checking is the vulnerability
— Stack overflow is the exploit

* What can be done? Lots of R&D on this:

— strncpy()!! (i.e. more careful programming)
— Non-executable stacks
e But attackers just become more sophisticated
* Use chains of system calls to perform attacks
— Address space randomization
— Stack meta-data to record modifications to stack information
— And on and on
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Virus

Malware embedded in a legitimate program

Replicates itself and actively spreads
— Key distinction from the threats we have thus far seen

Typically spread via social engineering
— Users execute programs via spam email or internet downloads

One common source
— Microsoft office files, as they can execute macros
— Attacker can embed malicious macro code in a file

A delivery program (usually a Trojan horse) contains a program
called a virus dropper

— Virus dropper executes and injects virus into the system

— E.g. copies to memory & starts executing virus program
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Some Common Virus Categories

e File
= Virus appends to a file
= Changes start of program to jump to virus
= After executing, returns control to program so virus is not noticed

e Boot
* |nfect boot sector; execute every time system is booted
= Also infects other bootable media such as USB
= Viruses don’t appear in the file system

e Macro

= Macro: programming language available in some document formats,
e.g. Microsoft office files

= Attacker can embed malicious macro code in a file,
have it add same macro to other files

e Source code

= Modifies source of programs to include the virus & help spread
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More Common Virus Categories

Lots of variants geared to avoiding detection

* Polymorphic
— Changes each time it is installed to change its “signature”
— Helps defeat virus scanners that look for patterns in code

Stealth
— Virus modifies parts of a system that check for virus existence
— E.g. modify the read() system call

Tunneling

— Virus bypasses detection by installing itself in interrupt handler or device
drivers

Encrypted

— Virus includes decryption code to decrypt itself and then execute
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* Essentially a virus that uses network resources to spread

* Does not attach to existing program like a virus

e Often consist of 2 pieces
— “Grappling hook”
* Initial code that is established and executes on a machine
* It communicates with an established machine & requests the worm
— Main worm malware
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* Robert Morris — 1998, graduate student at Cornell

* First internet worm

 Worm attempted 3 network attack methods

— Try to exploit ‘rsh’ to execute a task remotely
* Searched for host-login name pairs in special files

— Exploit vulnerability in ‘finger’ program
e Buffer overflow of a stack frame to execute /bin/sh

— Exploit vulnerability in ‘sendmail’ program
* Debugging option commonly left enabled by system admins
* Worm mailed itself & executed grappling hook program
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Port Scanning

* Attempt TCP/IP connections to host on range of ports

* Each attempt tries to connect to a vulnerable service
— E.g. sendmail

 |f successful, this indicates an exploit opportunity
— E.g. to exploit a buffer overflow
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Denial of Service

Not aimed at stealing or modifying information

Goal is to disrupt legitimate use of a system or service

Usually network-based attacks

— E.g. initiate but do not complete many TCP/IP connections
— Results in no new legitimate connections being serviced

Distributed Denial of Service (DDOS)

— Launched from multiple sites at a common target
— Sometimes the multiple sites are infected machines (zombies)

Sometimes security measures introduce DOS vulnerabilities
— E.g. increasing delays between unsuccessful login attempts
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 Malware that acquires privileged access to the OS
— Also maintains that access
— By hiding its presence from normal OS activity

* Goals of a rootkit
— Run (without restriction) on a target system
* Use social engineering or vulnerabilities in protection (e.g. ACLs)
— Remain invisible to security software, OS, users
— Perform malicious action (called the payload)
* Steal information or access to resources; install other malware
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How do Rootkits Hide?

* Processes (including security software) depend on the OS to provide
information about the environment

— E.g. through APIs that expose system calls

* Rootkit software can monitor these API questions to OS
— Rootkit intercepts questions related to its existence
* E.g.an ‘ls’ of the directory where the rootkit program exists
* E.g. an’ls’ of the /proc/ directory containing info on all processes
* E.g.a ‘read’ request on a file modified by the Rootkit
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Rootkit Subversion Mechanisms

* “Hooking” OS APIs

— Change address of OS APIs by pointing to own malware code
— Can be done for user or supervisor mode
— In response to system calls, the code at modified address is run

* Hide in unused disk space
— Unused disk space is not visible to normal file system APIs
— Modify device driver(s) to execute rootkit code when loaded

* |nfect the Master Boot Record (MBR)
— Control what is loaded into memory before OS is even booted
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