ECE 650
Systems Programming & Engineering

Spring 2018

Protection & Security

Tyler Bletsch
Duke University

Slides are adapted from Brian Rogers (Duke)

Protection

OS manages resources for users & user processes
— Files, memory regions, /0 channels, CPU

Protection is a critical part of this management
— Ensure that resources can only be used with proper authorization from the OS

Reasons for protection
— Prevent users from malicious access to resources
— Ensure processes use system resources only as consistent with allowed policies

Protection is a mechanism
— Mechanism to enforce policies that define how resources should be used
— As opposed to a policy (definition of how resources should be used)
— Policies may adapt and change over time (or between different applications)
— Thus mechanisms should be general to allow flexibility

Engineering wisdom:
Always separate mechanism and policy

Basics of Protection

* Most protection mechanisms based on key principle

— Principle of least privilege

— Users, processes, etc. have the minimum level of access to resources and
privileges needed to accomplish intended task

— “Need to know basis”

* Minimizes damage from failed or compromised pieces
— They can only affect a minimal set of components in the system

* OS designs provide support for this

— System calls and services for apps to specify fine-grained permissions &
controls

— Apps enable and disable permissions as needed
— Also applies to users (separate accounts, permissions)

Subjects, Objects, Actions, and Rights

Subject Verb Right Object
(initiator) (request) (permission) (target)

e The thing e The e A specific e The thing
making the operation to ability for the that’s being
request (e.g. perform subject to do hit by the
the user) (e.g., read, the action to request (e.g.,

delete, etc.) the object. a file).

: 4
&)

Protection Rules

* Think of all resources as an object
— E.g., in UNIX — “everything is a file”
— Hardware objects: CPU, memory spaces, disk, keyboard, display
— Software objects: files, directories, programs

* Different objects have different possible operations, e.g.
— Read & write memory regions; Read from a keyboard input
— Execute on a CPU
— Create, delete, open, close, read, write, append files

* Protection mechanism operates based on rules

— Application or user (the subject) has permission to perform certain operations
on certain objects

Protection Rules (2)

* Rules specifies objects (resources) the process has permission to
access

* Access Right

— A permission for a process to perform an operation on an object

* Access rights can be static or dynamic for a process
— Dynamic rights achieved via either:
* A mechanism to change an object’s access rights

* A mechanism for subject switching
— Create new subject with desired access rights; then switch to it

— For example, the user/supervisor mode we discussed for interrupts

S whoami
tkb13

$ sudo whoami
[sudo] password for tkh13; ** %k ks x sk
root

* Happens via a protection mechanism using the file system
— Remember, in UNIX, “everything” is a file

— Every file has an owner ID and a setuid bit
e "set user ID upon execution”
» Set just like file read/write/execute permissions

— When a user executes a file:
 If setuid bit is on, user ID is changed to the owner of the file
* If setuid bit is off, user ID does not change

— Temporary user ID change ends after process exits

* Allows a privileged component to be used by general users
— E.g. an application that accesses the network or change user password

e What if a user creates a file with user ID of root & setuid on?

Access Matrix

Protection model maps nicely to a matrix

* Rows = subjects; columns = objects

A matrix entry lists the access rights

Provides a general mechanism for specifying policies
— Enforce specific access rights for a user or process

Access Matrix — Additional Functions

e Base access matrix allows

= Defining and enforcing strict access control policy

e How can we provide dynamic rights?
= Subject switching
e Add access matrix entries to enforce “switch” operation rights
e Examples: sudo, setuid

= Allow controlled changing of the access matrix entries
e Encode this permission in the access matrix as well!

* New operations for owner of an object to allow creation of new rights in
the access matrix

e Examples: chmod, Google Drive sharing settings

Access Matrix Implementation

* In areal system, the matrix will be very sparse
— But the way it is accessed & used cause special considerations

 Global Table

— List of <subject, object, rights> tuples
— Search for “right” when “subject” accesses “object”
— Drawbacks:
* Table is huge
* Objects may have “global” rights, but still listed for every subject

 Access Lists

— Maintain a list per object with <subject, rights> (column-based)
— Can extend with a “default” set of rights for each object

10

Security

* Protection is a mechanism for internal problem
— Controlled access to programs, data

e Security deals with the external environment
— Protection can be thwarted if security is compromised
— Protection works well only if users behave as intended
— E.g., what if a user password is stolen or cracked?

* |n a secure system...
— All resources (objects) are used only according to policy
— Cannot be achieved in reality, but strive to limit violations

11

Security and the OS

 Why is security important for systems programming?

* Many attacks target an “escalation of privilege”
— This often involves attempting to gain “root” privilege in a system
— For purposes of reading or tampering with data
e Data not otherwise accessible via protection mechanism
— Systems programmers should be aware of:
* Types of attacks
* Mechanisms by which attacks are attempted and operate

12

Some Definitions

* Threat: potential for a security violation
— E.g. a vulnerability in a program

* Attack: attempt to break security
— E.g. an exploit is an attempt to utilize a program vulnerability

» Categories of security violations
— Confidentiality breach: data theft
e E.g.credit card, account information; very common goal
— Integrity breach: unauthorized modification of code or data
— Availability breach: unauthorized destruction of data
* E.g. deleting customer account info or defacing a website
— Theft of service: unauthorized use of resources
— Denial of service: prevent legitimate use of a system

13

Domains of Security Measures

Physical
— Need to secure the sites where computer systems reside
— Only authorized administrators / users have physical access

Human

— Social engineering may trick authorized users into performing an inadvertent
breach of security

— Phishing obtain information
— Executing malicious code

* OS

— Mechanisms to protect from accidental or purposeful breaches

Network
— Protect network-transmitted data from interception or tampering

14

Types of Threats

* Threats to Running Programs
— Trojan Horse
— Trap Door
— Logic Bomb
— Stack (or Buffer) Overflow
— Viruses

* Threats to System and Network Resources
— Worms
— Port Scanning
— Denial of Service

15

Trojan Horse

e Malware code that misuses its environment

Often disguised as legitimate software
User unknowingly is tricked into executing the malware code
Often takes advantage of access rights of the executing user

e Example: Take advantage of search paths on UNIX OS

PATH environment variable specifies order of locations to search for
executable files (e.g. ‘IS’ command)

PATH usually has things like: /bin:/usr/bin/:/usr/local/bin

Sometimes also has things like “.” (current directory)

Malicious user creates a Trojan program (e.g. with a common name like ‘cd’)

Unknowing user goes into the directory with this program and executes what
they think is the “normal” cd command

Executes Trojan code

e NOTE: This is why “.” is not in the PATH by default, and therefore
why you have to say ./myprogram to run a program you just built

16

Trojan Horse (2)

e Emulate a login prompt

= User enters a login ID and password

Trojan code captures user ID and password

Trojan code prints a login failure message & exits
e Returning to the real login prompt

User thinks they have mistyped password; suspects nothing

Reason behind the <ctri>+<alt>+<delete> Windows
e Non-trappable key sequence
e Trojan code cannot intercept this signal and ignore it

e Spyware
= Code contained along with software to display ads
= Or capture information and send it somewhere for mining

e This is called a covert channel (e.g. by opening a network daemon)
* Fundamental violation of principle of least privilege

17

Trap Door

* A security hole purposely left in legitimate software
— Can be exploited by those with knowledge of the vulnerability

* Financial code might include tiny rounding errors
— Route rounded money to a specific bank account

18

Trap Door (2)

 Tweak authentication procedures for an application
— E.g. obscure user name and ID password combo is always valid

* Extra sneaky scenario:
— Embed the trap door for an application in compiler(s)
— Compiler checks to see if it is compiling the specific application
— If so, it inserts the trap door code
— Inspection of the application source code reveals no issues!
— Additionally, if the application is re-compiled, problem still exists!

19

Logic Bomb

 Malware that is triggered only under certain conditions
— E.g. causes a security incident only at a particular time
— Application may run normally for a long period of time

* What kind of conditions? Almost anything...
— Certain year, month, day, time
— If certain information is present on the system
— Check a database to see if the programmer is still employed

20

Stack (Buffer) Overflow

Previous threats involve:

— A programmer that can create malicious programs
— A way to install or place malicious code in the system

What if this is not possible?
— How could an attacker execute malicious code?

By far the most common way is through stack overflow
— Takes advantage of the stack mechanism to:
* Allow injection of malicious code
* Force a process to execute the code

As we will see, specific to architecture, OS, & application

21

Stack Overflow Mechanism

OxFF...F

0x00...0

J «— SP
Heap
Static Data
Code <«— PC

Process

e Stack organized as frames

— Every function call creates &
pushes a new frame on stack

— Function return pops frame from
stack

 Frames may contain
— Return address (PC)
— Address of previous frame
— Space for function args
— Space for function local vars

22

Stack Overflow Mechanism

void func(int a, int b, char *c) { Stack After Calling func()
char buffl[5];
char buff2[10];
strcpy (buff2, c); Stack
} — «— Old
a SP
int main(int argc, char *argv[]) { b
func(l, 2,argv[1l]); C
i = Return PC
_ © Saved Frame Ptr
@ compile v
§ buffl
main: 2
<snip> g buff2[9]
0x4 push $1
0x8 push $2 buff2
0xC push $3
0x10 call func #pushes pc=0x14 _| buff2[0] « New
<snip> SP

23

Stack Overflow Mechanism (2)

void func(int a, int b, char *c) { Stack After Calling func()
char buffl[5];
char buff2[10];
strcpy (buff2, c); Stack
} _ «— Old
a SP
int main(int argc, char *argv[]) { b
func(l, 2,argv[1l]); C
} = Return PC
E Saved Frame Ptr
-
« What if buffer c has more than 10 bytes? § N buffl
» Lack of bounds checking means other stack N
addresses will be overwritten 5 buff2[9]
* Including the Return PC!!! <
* When a function exits (‘ret’ instruction) buff2
* This “Return PC” is placed in the CPU
program counter | buff2[0] New
SP

24

Stack Overflow

If a stack buffer is filled based on user input:
— A lack of bounds checking means the return PC can be changed

What can the PC be changed to?

— Where have we learned about PCs that point to specific code?
— Or the attacker can fill the buffer with code!
— Return PC will point back to the written buffer

For example, code to execute a shell:

int main(int argc, char *argv[]) {
execvp (“/bin/sh”, “/bin /sh”, NULL) ;
return O;

}

If this is interesting, read “Smashing the Stack for Fun and Profit”:
http://insecure.org/stf/smashstack.html

25

http://insecure.org/stf/smashstack.html
http://insecure.org/stf/smashstack.html

Prevention Mechanisms

* Historically this type of attack has dominated incidents

— Lack of bounds checking is the vulnerability
— Stack overflow is the exploit

* What can be done? Lots of R&D on this:

— strncpy()!! (i.e. more careful programming)
— Non-executable stacks
e But attackers just become more sophisticated
* Use chains of system calls to perform attacks
— Address space randomization
— Stack meta-data to record modifications to stack information
— And on and on

26

Virus

Malware embedded in a legitimate program

Replicates itself and actively spreads
— Key distinction from the threats we have thus far seen

Typically spread via social engineering
— Users execute programs via spam email or internet downloads

One common source
— Microsoft office files, as they can execute macros
— Attacker can embed malicious macro code in a file

A delivery program (usually a Trojan horse) contains a program
called a virus dropper

— Virus dropper executes and injects virus into the system

— E.g. copies to memory & starts executing virus program

27

Some Common Virus Categories

e File
= Virus appends to a file
= Changes start of program to jump to virus
= After executing, returns control to program so virus is not noticed

e Boot
* |nfect boot sector; execute every time system is booted
= Also infects other bootable media such as USB
= Viruses don’t appear in the file system

e Macro

= Macro: programming language available in some document formats,
e.g. Microsoft office files

= Attacker can embed malicious macro code in a file,
have it add same macro to other files

e Source code

= Modifies source of programs to include the virus & help spread

28

More Common Virus Categories

Lots of variants geared to avoiding detection

* Polymorphic
— Changes each time it is installed to change its “signature”
— Helps defeat virus scanners that look for patterns in code

Stealth
— Virus modifies parts of a system that check for virus existence
— E.g. modify the read() system call

Tunneling

— Virus bypasses detection by installing itself in interrupt handler or device
drivers

Encrypted

— Virus includes decryption code to decrypt itself and then execute

29

* Essentially a virus that uses network resources to spread

* Does not attach to existing program like a virus

e Often consist of 2 pieces
— “Grappling hook”
* Initial code that is established and executes on a machine
* It communicates with an established machine & requests the worm
— Main worm malware

30

* Robert Morris — 1998, graduate student at Cornell

* First internet worm

 Worm attempted 3 network attack methods

— Try to exploit ‘rsh’ to execute a task remotely
* Searched for host-login name pairs in special files

— Exploit vulnerability in ‘finger’ program
e Buffer overflow of a stack frame to execute /bin/sh

— Exploit vulnerability in ‘sendmail’ program
* Debugging option commonly left enabled by system admins
* Worm mailed itself & executed grappling hook program

31

Port Scanning

* Attempt TCP/IP connections to host on range of ports

* Each attempt tries to connect to a vulnerable service
— E.g. sendmail

 |f successful, this indicates an exploit opportunity
— E.g. to exploit a buffer overflow

32

Denial of Service

Not aimed at stealing or modifying information

Goal is to disrupt legitimate use of a system or service

Usually network-based attacks

— E.g. initiate but do not complete many TCP/IP connections
— Results in no new legitimate connections being serviced

Distributed Denial of Service (DDOS)

— Launched from multiple sites at a common target
— Sometimes the multiple sites are infected machines (zombies)

Sometimes security measures introduce DOS vulnerabilities
— E.g. increasing delays between unsuccessful login attempts

33

 Malware that acquires privileged access to the OS
— Also maintains that access
— By hiding its presence from normal OS activity

* Goals of a rootkit
— Run (without restriction) on a target system
* Use social engineering or vulnerabilities in protection (e.g. ACLs)
— Remain invisible to security software, OS, users
— Perform malicious action (called the payload)
* Steal information or access to resources; install other malware

34

How do Rootkits Hide?

* Processes (including security software) depend on the OS to provide
information about the environment

— E.g. through APIs that expose system calls

* Rootkit software can monitor these API questions to OS
— Rootkit intercepts questions related to its existence
* E.g.an ‘ls’ of the directory where the rootkit program exists
* E.g. an’ls’ of the /proc/ directory containing info on all processes
* E.g.a ‘read’ request on a file modified by the Rootkit

35

Rootkit Subversion Mechanisms

* “Hooking” OS APIs

— Change address of OS APIs by pointing to own malware code
— Can be done for user or supervisor mode
— In response to system calls, the code at modified address is run

* Hide in unused disk space
— Unused disk space is not visible to normal file system APIs
— Modify device driver(s) to execute rootkit code when loaded

* |nfect the Master Boot Record (MBR)
— Control what is loaded into memory before OS is even booted

36

