
Embedded Systems

C Programming and Software Tools
N.C. State Department of Computer Science

Adapted from “EE498/ EE578 Real-Time Embedded Systems” by

Nannan He, Minnesato State University at Mankato (2014)

http://mavweb.mnsu.edu/hen/lec/RTES_fundamental.pptx

Definition: System

A system is a mapping of a set of inputs into a set of
outputs.

2

System

Mapping Function..
. ..

.

Inputs Outputs

Input Space Output Space

1. A system is an assembly of components connected together in an
organized way

2. A system is fundamentally altered if a component joins or leaves it
3. It has a purpose
4. It has a degree of permanence
5. It has been defined as being of particular interest

Example: A Real-Time Control

System

• Inputs are excitations and outputs are
corresponding responses

• Inputs and outputs may be digital or analog

• Inputs are associated with sensors, cameras, etc.

• Outputs with actuators, displays, etc.

3

Real-Time
Control System

..

. ..
.

Camera Display

Sensors Actuators

Definition: Response Time

The time between the presentation of a set of inputs to
a system and the realization of the required behavior,
including the availability of all associated outputs, is

called the response time of the system

• How fast and punctual does it need to be?

– Depends on the specific real-time system

• But what is a real-time system?

4

Definitions: Real-Time System

A real-time system is a computer system that must satisfy
bounded response-time constraints or risk severe

consequences, including failure

A real-time system is one whose logical correctness is based
on both the correctness of the outputs and their timeliness

5

Definition: Failed System

A failed system is a system that cannot satisfy one or
more of the requirements stipulated in the system

requirements specification

• Hence, rigorous specification of the system

operating criteria, including timing constraints,

is necessary

6

Definition: Embedded System

An embedded system is a system containing one or
more computers (or processors) having a central role in

the functionality of the system, but the system is not
explicitly called a computer

• A real-time system may be embedded or non-
embedded

• But it is always reactive
– Task scheduling is driven by ongoing interaction with

the environment

7

Degrees of “Real-Time”

• All practical systems are ultimately real-time
systems

• Even a batch-oriented system—for example, grade
processing at the end of a semester—is real-time

• Although the system may have response times of
days, it must respond within a certain time

• Even a word-processing program should respond to
commands within a reasonable amount of time

• Most of the literature refers to such systems as soft
real-time systems

8

Soft, Hard, and Firm “Real-Time”

Definition: Soft Real-Time System
A soft real-time system is one in which performance is degraded
but not destroyed by failure to meet response-time constraints

Definition: Hard Real-Time System
A hard real-time system is one in which failure to meet even a
single deadline may lead to complete or catastrophic system failure

Definition: Firm Real-Time System
A firm real-time system is one in which a few missed deadlines will
not lead to total failure, but missing more than a few may lead to
complete or catastrophic system failure

9

Example: Real-Time Classification

System Real-Time
Classification

Explanation

Avionics weapons
delivery system in
which pressing a
button launches an air-
to-air missile

Hard Missing the deadline to launch the
missile within a specified time after
pressing the button may cause the
target to be missed, which will result
in a catastrophe

Navigation controller
for an autonomous
weed-killer robot

Firm Missing a few navigation deadlines
causes the robot to veer out from a
planned path and damage some
crops

Console hockey game Soft Missing even several deadlines will
only degrade performance

10

Where Do Deadlines Come from?

• Deadlines are based on the underlying

physical phenomena of the system under

control

11

Example: Where a Response Time

Comes from?

• An elevator door is automatically operated and it
may have a sensor to detect passengers
between the closing doors so it can re-open
automatically.

• What is the required system response time from
when it recognizes that a passenger is between
the closing door blades and starting to reopen
the door?

12

Door Reopening Example Cont’d

This response time consists of five independent latency

components:

Sensor: 𝑡SE_min = 5 ms 𝑡SE_max = 15 ms

Hardware: 𝑡HW_min = 1 μs 𝑡HW_max = 2 μs

System software: 𝑡SS_min = 16 μs 𝑡SS_max = 48 μs

Application software: 𝑡AS_min = 0.5 μs 𝑡AS_max = 0.5 μs

Door drive: 𝑡DD_min = 300 ms 𝑡DD_max = 500 ms

Now, we can calculate the minimum and maximum values of the

composite response time: 𝑡min ≈ 305 ms, 𝑡max ≈ 515 ms

The overall response time is dominated by the door drive’s

response time containing the deceleration time of the moving

door blades.

13

Definitions: Event and Release

Time

Definition: Event

Any occurrence that causes the program counter to
change non-sequentially is considered a change of flow-
of-control, and thus an event

Definition: Release Time

The release time is the time at which an instance of a
scheduled task is ready to run, and is generally
associated with an interrupt

14

Taxonomy of Events

• Synchronous or asynchronous?
– Synchronous events: occur at predictable times in

the flow-of-control

– Asynchronous events: occur at unpredictable times,
are usually caused by external sources

• Periodic, aperiodic or sporadic?
– Periodic: A real-time clock that pulses regularly

– Aperiodic: Events that do not occur at regular
periods

– Sporadic: Aperiodic events that tend to occur very
infrequently

15

Example: Various Types of Events

Type Periodic Aperiodic Sporadic

Synchronous Cyclic
code

Conditional branch Divide-by-zero
(trap) interrupt

Asynchronous Clock
interrupt

Regular, but not
fixed-period
interrupt

Power-loss alarm

16

CPU Utilization or Time-Loading

Factor

• The measure of the relative time spent doing

non-idle processing indicates how much real-

time processing is occurring

Definition: CPU Utilization Factor

The CPU utilization or time-loading factor, U, is a relative
measure of the non-idle processing taking place

17

Example: Calculation of U

Suppose, an individual elevator controller in a bank of elevators has the
following tasks with execution periods of 𝑝𝑖 and worst-case execution times
of 𝑒𝑖, 𝑖 ∈ 1,2,3,4 :

Task 1: Communicate with the group dispatcher.

Task 2: Update the car position information and manage floor-to-floor runs
as well as door control.

Task 3: Register and cancel car calls.

Task 4: Miscellaneous system supervisions.

18

i 𝒆𝒊 𝒑𝒊

1 17 ms 500 ms

2 4 ms 25 ms

3 1 ms 75 ms

4 20 ms 200 ms

𝑈 = 𝑒𝑖 𝑝𝑖 4
𝑖=1 =0.31

31% (Very safe zone)

Goal: get to a reasonable U

• U too high? Possible chance of failure

• U too low? Not cost effective

• U = 50% for new systems,

• U = 80% for stable, well-known systems

19

Cost/performance tradeoff
Model Cost Clock CPU type Flash RAM I/O lines

ATTINY4 $0.40 12 MHz 8-bit AVR 512 B 32 B 4

ATTINY44 $0.75 20 MHz 8-bit AVR 4 kB 256 B 12

ATMEGA48 $1.23 20 MHz 8-bit AVR 4 kB 512 B 23

ATMEGA328 $1.68 20 MHz 8-bit AVR 32 kB 2 kB 23

ATXMEGA128 $2.72 32 MHz 16-bit AVR 128 kB 8 kB 50

AT32UCA1256 $8.59 66 MHz 32-bit AVR 256 kB 64 kB 69

NXP
LPC4370FET25
6E

$11.98 204 MHz 32-bit
3-core
ARM

1 MB 136 kB 83

Intel Core i7
4790K
(comedy option)

$339.99 4 GHz 64-bit
quad-core
x86

None
onboard

None
onboard
(max
~64GB
attached)

500+
(but none are
general-purpose)

20

Usual Misconception

“Real-time” means “fast”?

NO!!!

“Real-time” means “predictable timing”

21

Practical Embedded Systems

• Aerospace
– Flight control

– Navigation

– Pilot interface

• Automotive
– Airbag deployment

– Antilock braking

– Fuel injection

• Household
– Microwave oven

– Rice cooker

– Washing machine

• Industrial
– Crane

– Paper machine

– Welding robot

• Multimedia
– Console game

– Home theater

– Simulator

• Medical
– Intensive care monitor

– Magnetic resonance imaging

– Remote surgery

22

Inertial measurement system for an

aircraft

Inertial

measurement

system

accelerometers
from x, y, z

temperature
sensor

10ms

1s

acceleration,
velocity,

and position
vectors

40ms

The tasks execute at different rates and need to
communicate and synchronize.

Monitoring system for a nuclear power

plant

monitoring

system

security breach
indicator 1ms

event2 over-temperature
indicator

event1
Display

updating

33.3ms

Ensure that the “meltdown imminent” indicator can
interrupt any other processing with minimal latency.

ARDUINO STUFF

This presentation is based on an electronics seminar I put on as part of
the TerrorBytes robotics team. It includes material from:

• Farzad Towhidkhah. Amirkabir University of Technology. Electrical Circuits, lecture 1.
http://bme2.aut.ac.ir/~towhidkhah/Circuit/Circuit1/PPT/lec1.ppt

• Jefferson Lab. Electrical Circuits.
http://education.jlab.org/jsat/powerpoint/0708_electricity.ppt

• Worldofteaching.com. Electric Circuits.
http://www.worldofteaching.com/powerpoints/physics/electric%20circuits.ppt

• Sparkfun. Introduction to Electronics and Breadboarding Circuits.
http://create.coloradovirtuallibrary.org/sites/default/files/Curriculum/SparkFun/Beginner/Int
rotoBasicElectronics.ppt

• Sparkfun. Intro to Arduino.
http://create.coloradovirtuallibrary.org/sites/default/files/Curriculum/SparkFun/Beginner/Int
rotoArduino.ppt

25

Arduino Board

• “Strong Friend” Created in Ivrea, Italy

• in 2005 by Massimo Banzi & David Cuartielles

• Open Source Hardware

• Processor

• Coding is accessible & transferrable  (C++, Processing, java)

Your kit

9V battery

Some kind of Arduino

10kΩ

Resistor

1kΩ

Resistor

or or

You can get all this stuff dirt cheap on ebay

How to hook stuff together easily

Analog

INPUTS

Digital I\O
PWM(3, 5, 6, 9, 10, 11)

PWR IN USB

(to Computer)

SCL\SDA
(I2C Bus)

POWER
5V / 3.3V / GND

RESET

Arduino Overview

digitalWrite()

analogWrite()

digitalRead()

if() statements / Boolean

analogRead()

Serial communication

B
IG

 6
 C

O
N

C
EP

TS

Project – Digital Input

• In Arduino, open up:

• File  Examples  02.Digital  Button

Digital Sensors (a.k.a. Switches)
Pull-up Resistor

to Digital Pin 2

Digital Sensors (a.k.a. Switches)
Add an indicator LED to Pin 13

This is just like our 1st circuit!

Digital Input

• Connect digital input to your Arduino using Pins # 0 – 13
(Although pins # 0 & 1 are also used for programming)

• Digital Input needs a pinMode command:
 pinMode(pinNumber, INPUT);

 Make sure to use ALL CAPS for INPUT

• To get a digital reading:
 int buttonState = digitalRead(pinNumber);

• Digital Input values are only HIGH (On) or LOW (Off)

Digital Sensors

• Digital sensors are more straight forward than Analog

• No matter what the sensor there are only two settings: On and
Off

• Signal is always either HIGH (On) or LOW (Off)

• Voltage signal for HIGH will be a little less than 5V on your Uno

• Voltage signal for LOW will be 0V on most systems

Voltage dividers

• You get an in-between voltage
based on the two resistances

analogRead()

Arduino uses a 10-bit A/D Converter:

• This means that you get input values from
0 to 1023

• 0 V  0

• 5 V  1023

Ex:
 int sensorValue = analogRead(A0);

Using Serial Communication

Method used to transfer data between two devices.

Arduino dedicates Digital I/O pin # 0 to

receiving and Digital I/O pin #1 to

transmit.

Data passes between the computer and Arduino

through the USB cable. Data is transmitted as

zeros (‘0’) and ones (‘1’) sequentially.

Serial Monitor & analogRead()

Initializes the Serial

Communication

9600 baud data rate

prints data to serial bus

Serial Monitor & analogRead()

Opens up a Serial

Terminal Window

The following slides comprise the entirety of the
electronics workshop I put on with the TerrorBytes
robotics team. It’s aimed at a high school audience,
so skip the basics as needed.

CSC230: C and Software Tools © NC State Computer Science Faculty 41

Introduction to Electronics and
Custom Circuits

Tyler Bletsch
(Tyler.Bletsch@netapp.com)

13 December 2014

What can you do with this?

• We built an LED light
sensor to act as a “middle
limit switch” to find our
shooting position.

• Run by an Arduino; acts
like a normal limit switch
to the cRIO

Process

Prototype Coding
Quick-and-
dirty build

Custom
PCB

Your kit

9V battery

Some kind of Arduino

10kΩ Resistor 1kΩ Resistor

or or

Sources used in this presentation

• This presentation includes material from:
– Farzad Towhidkhah. Amirkabir University of

Technology. Electrical Circuits, lecture 1.
http://bme2.aut.ac.ir/~towhidkhah/Circuit/Circuit1/PPT/lec1.ppt

– Jefferson Lab. Electrical Circuits.
http://education.jlab.org/jsat/powerpoint/0708_electricity.ppt

– Worldofteaching.com. Electric Circuits.
http://www.worldofteaching.com/powerpoints/physics/electric%20circuits.ppt

– Sparkfun. Introduction to Electronics and
Breadboarding Circuits.
http://create.coloradovirtuallibrary.org/sites/default/files/Curriculum/SparkFun/Be
ginner/IntrotoBasicElectronics.ppt

– Sparkfun. Intro to Arduino.
http://create.coloradovirtuallibrary.org/sites/default/files/Curriculum/SparkFu
n/Beginner/IntrotoArduino.ppt

PART 1: ELECTRICITY IS A THING!

Introduction to Electric Circuits

• Here we are going to remind what are:

– Voltage

– Current

– Current flow

– Voltage Sources

– Voltmeter (Multimeter)

48

What is Voltage?

49

V = “Electrical pressure” - measured in volts.

H2O

High Pressure Low Pressure

Figure 1.1

The water analogy

• A battery in an electrical circuit plays the same
role as a pump in a water system.

50

What produces voltage?

51

V = “Electrical pressure”

A Battery

Electric Power Plant

Lab Power Supply

Nerve Cell

1.5 V

9 V

13,500 V

A few

Volts

Solar Cell

A few millivolts
when activated by
a synapse

Symbols Used for Voltage Sources

52

+
_

+

_

Battery

+

_

Battery

All these symbols are interchangable.

What voltages are used in FRC?

What is “Ground”?

54

“Ground” refers to the reference terminal to

which all other voltages are measured

+
_ V1 +

_ V2 +
_ V3

Point of Reference

In non-battery-powered things,
ground is usually literally connected to a spike into the ground

Ground Symbol

Ground in robotics

• We call the negative of the battery “ground”

What is Current?

56

• Current is the flow of charge from a voltage source

• 1 Ampere (“Amp”) = Flow of 1 Coulomb/sec

+++

How Does Current Flow?

57

Current can only flow through conductors

+++

Metal wires (conductors)

Current

flow

When Does Current NOT Flow?

58

+++

Plastic material (insulators)

Current cannot flow through insulators

No current

flow

Note that Air is an Insulator

59

+++
Air

Current cannot flow through insulators

No current flow

That’s why a battery doesn’t

discharge if left on its own.

Current Flow Analogy

High Current Low Current

Water
Tower

Voltage Analogy

More Energy == Higher Voltage Less Energy == Lower Voltage

V

Water
Tower

V

Resistance Analogy

Big Pipe == Lower Resistance Small Pipe == Higher Resistance

Water
Tower

Water
Tower

V

Ohm’s Law

V = I R
or

I = V / R

Georg Simon Ohm (1787-1854)

I = Current (Amperes) (amps, A)

V = Voltage (Volts, V)

R = Resistance (ohms, Ω)

Welp, here’s my entire life’s
work boiled down to one

really easy equation. Oh well.

Describes the relationship between
voltage, current, and resistance.

Electrical Properties

Voltage

V

• Defined as
the amount
of potential
energy in a
circuit.

• Units: Volts (V)

Current

I

• The rate of
charge flow
in a circuit.

• Units: Amperes (A)

Resistance

R

• Opposition to
charge flow.

• Units: Ohms (Ω)

Resistance

• Anything that isn’t a PERFECT conductor has
resistance (and nothing’s perfect).

• 20 ft. of 18AWG wire: 0.128 Ω

• 60W incandescent lightbulb: 240 Ω

• My face: ~30 MΩ

Resistors

• Resistors provide a specific amount of
resistance to a path in a circuit or wire.

• Resistors are color coded. Circuit symbol for a resistor

battery switch lamp wires

Exercise

Exercise

120 Ω

12 V

What’s the CURRENT?

Get with it, grandma

• Lightbulbs are for
old people

• Light Emitting Diodes
(LEDs) are where it’s at!

What are LEDs?

• Light Emitting Diodes

• Diode Symbol + Arrows for light

• Points to ground

Can emit a variety of colors

Long leg is
POSITIVE

Short leg is
NEGATIVE

Rules of LEDs

• They need above a certain voltage to turn on
(the forward voltage drop)

– Typically 1.5 – 3 V

• They need less than a certain current to not
burn up

– Typically 5 – 20 mA (milli-amps)

This is your LED…

This is your LED
on too much current.
Any questions?

How to limit current?

• I have a 12V source

• I have an LED

• How can I limit the current?????

• I’m going to give it 12V
• The LED will eat 2V
• That leaves 10V left
• What resistor will limit

the extra 10V to 10mA
(0.01 A)?

• V = I * R
• 10 = 0.01 * R
• R = 10 / 0.01
• R = 1000
• 1000 Ohms!

How to hook stuff together easily

LET’S ACTUALLY DO A THING!!!

• Make that LED turn on!!

PART 2: ARDUINO DOES STUFF!

Add computing to your circuit

• All this electronics stuff is cool, but I want to
DO STUFF, not make a light turn on

• Enter Arduino

– Tiny little computer that’s really cheap

– Designed to talk to electronics

Arduino Board

• “Strong Friend” Created in Ivrea, Italy

• in 2005 by Massimo Banzi & David Cuartielles

• Open Source Hardware

• Processor

• Coding is accessible & transferrable  (C++, Processing, java)

Analog
INPUTS

Digital I\O
PWM(3, 5, 6, 9, 10, 11)

PWR IN USB
(to Computer)

SCL\SDA
(I2C Bus)

POWER
5V / 3.3V / GND

RESET

Arduino Overview

Go ahead and plug your board in!

Replace the 9V with the Arduino

Adding control

• Let’s use the Arduino and start
programming!!!

Concepts: INPUT vs. OUTPUT

• Referenced from the perspective of the
microcontroller (electrical board).

Inputs is a signal / information

going into the board.

Output is any signal exiting the

board.

Almost all systems that use physical computing will have some form of output

What are some examples of Outputs?

Concepts: INPUT vs. OUTPUT

• Referenced from the perspective of the
microcontroller (electrical board).

Inputs is a signal / information

going into the board.

Output is any signal exiting the

board.

Examples: Buttons Switches, Light
Sensors, Flex Sensors, Humidity
Sensors, Temperature Sensors…

Examples: LEDs, DC motor, servo
motor, a piezo buzzer, relay, an RGB
LED

Concepts: Analog vs. Digital

• Microcontrollers are digital devices – ON or
OFF. Also called – discrete.

• analog signals are anything that can be a full
range of values. What are some examples?
More on this later…

5 V

0 V

5 V

0 V

Open up Arduino

• Hints:

• For PC Users 

• Run the installer copy
and move the files to
the appropriate
locations, or

• For Mac Users 

1. Move the Arduino
executable to the dock
for ease of access.

2. Resist the temptation
to run these from your
desktop.

Arduino
Integrated Development Environment (IDE)

Two required functions /
methods / routines:

void setup() {

 // runs once

}

void loop() {

 // repeats

}

error & status messages

Settings: Tools  Serial Port

• Your computer
communicates to
the Arduino
microcontroller via a
serial port 
through a USB-Serial
adapter.

• Check to make sure
that the drivers are
properly installed.

Settings: Tools  Board

• Next, double-check
that the proper
board is selected
under the
ToolsBoard
menu.

digitalWrite()

analogWrite()

digitalRead()

if() statements / Boolean

analogRead()

Serial communication

B
IG

 6
 C

O
N

C
EP

TS

Let’s get to coding…

• Project #1 – Blink

– “Hello World” of Physical Computing

• Psuedo-code – how should this work?

Turn LED
ON

Wait
Turn LED

OFF
Wait

Rinse &
Repeat

Comments, Comments, Comments

• Comments are for you – the programmer and your friends…or
anyone else human that might read your code.

// this is for single line comments

// it’s good to put a description at the

// top and before anything ‘tricky’

/* this is for multi-line comments

 Like this…

 And this….

*/

comments

Three commands to know…

pinMode(pin, INPUT/OUTPUT);

 ex: pinMode(13, OUTPUT);

digitalWrite(pin, HIGH/LOW);

 ex: digitalWrite(13, HIGH);

delay(time_ms);

 ex: delay(2500); // delay of 2.5 sec.

// NOTE: -> commands are CASE-sensitive

Project #1: Wiring Diagram

Move the green
wire from the
power bus to pin 13
(or any other Digital
I/O pin on the
Arduino board.

Image created in Fritzing

A few simple challenges

• Let’s make LED#13 blink!

– Challenge 1a – blink with a 200 ms second
interval.

– Challenge 1b – blink to mimic a heartbeat

– Challenge 1c – find the fastest blink that the
human eye can still detect…

1 ms delay? 2 ms delay? 3 ms delay???

Programming Concepts: Variables

Global

Function-level

Variable Scope

Programming Concepts: Variable Types

• Variable Types:

8 bits 16 bits 32 bits

byte
char

int
unsigned int

long
unsigned long
float

Input

• Input is any signal entering an electrical system.

– Both digital and analog sensors are forms of input

– Input can also take many other forms: Keyboards, a
mouse, infrared sensors, biometric sensors, or just plain
voltage from a circuit

Project – Digital Input

• In Arduino, open up:

• File  Examples  02.Digital  Button

Digital Sensors (a.k.a. Switches)
Pull-up Resistor

to Digital Pin 2

Digital Sensors (a.k.a. Switches)
Add an indicator LED to Pin 13

This is just like our 1st circuit!

Digital Input

• Connect digital input to your Arduino using Pins # 0 – 13
(Although pins # 0 & 1 are also used for programming)

• Digital Input needs a pinMode command:
 pinMode(pinNumber, INPUT);

 Make sure to use ALL CAPS for INPUT

• To get a digital reading:
 int buttonState = digitalRead(pinNumber);

• Digital Input values are only HIGH (On) or LOW (Off)

Digital Sensors

• Digital sensors are more straight forward than Analog

• No matter what the sensor there are only two settings: On
and Off

• Signal is always either HIGH (On) or LOW (Off)

• Voltage signal for HIGH will be a little less than 5V on your
Uno

• Voltage signal for LOW will be 0V on most systems

Anatomy of a statement

Programming: Conditional Statements - if()

Programming: Conditional Statements - if()

void loop()

{

 int buttonState = digitalRead(5);

 if(buttonState == LOW)

 { // do something

 }

 else

 { // do something else

 }

}

DIG
INPUT

Boolean Operators

<Boolean> Description

() == () is equal?

() != () is not equal?

() > () greater than

() >= () greater than or equal

() < () less than

() <= () less than or equal

Voltage dividers

• You get an in-between voltage
based on the two resistances

analogRead()

Arduino uses a 10-bit A/D Converter:

• This means that you get input values from
0 to 1023

• 0 V  0

• 5 V  1023

Ex:
 int sensorValue = analogRead(A0);

Using Serial Communication

Method used to transfer data between two devices.

Arduino dedicates Digital I/O pin # 0 to

receiving and Digital I/O pin #1 to transmit.

Data passes between the computer and Arduino

through the USB cable. Data is transmitted as zeros

(‘0’) and ones (‘1’) sequentially.

Serial Monitor & analogRead()

Initializes the Serial
Communication

9600 baud data rate

prints data to serial bus

Serial Monitor & analogRead()

Opens up a Serial
Terminal Window

Analog Sensors
2 Pin Analog Sensors = var. resistor

•Take two sensors -- Use the
Serial Monitor and find the
range of input values you get
for each sensor.

•MaxAnalogRead = _________

•MinAnalogRead = _________

Analog Sensors

Examples:

Sensors Variables

Mic soundVolume

Photoresistor lightLevel

Potentiometer dialPosition

Temp Sensor temperature

Flex Sensor bend

Accelerometer tilt/acceleration

Additional Serial Communication
Sending a Message

void loop ()

{

 Serial.print(“Hands on “) ;

 Serial.print(“Learning ”) ;

 Serial.println(“is Fun!!!”) ;

}

Serial Communication:
Serial Debugging

void loop()

{

 int xVar = 10;

 Serial.print (“Variable xVar is “) ;

 Serial.println (xVar) ;

}

Serial Communication:
Serial Troubleshooting

void loop ()

{

 Serial.print (“Digital pin 9: “);

 Serial.println (digitalRead(9));

}

PART 3: THE LIGHT SENSOR SYSTEM

Our actual light sensor schematic from build season

• What pins
are outputs?

• What pins
are inputs?
Analog or
digital?

Photoresistor
(light sensor)

LED

Digital Sidecar

Our first-gen code

int lightPin = A0; //define a pin for Photo resistor

int ledPin=4; //define a pin for LED

int outPin=13; //define a pin for output to DSC

int threshold=150; // set experimentally

int DOWN_DELAY=500; // how long to keep outPin low on detect, in ms

void setup() {

 Serial.begin(9600); // Begin serial communcation

 pinMode(ledPin, OUTPUT);

 pinMode(outPin, OUTPUT);

}

void loop() {

 int v = analogRead(lightPin);

 Serial.println(v); // Write the value of the photoresistor to the serial monitor.

 if (v > threshold) {

 digitalWrite(outPin, LOW);

 delay(DOWN_DELAY);

 } else {

 digitalWrite(outPin, HIGH);

 }

}

Problems

• What do you think went wrong?

– Would malfunction if light levels changed from
where we tested it

• What to do?

Our second-gen code

// <some variable declarations omitted>

int threshold=-1; // set by calibrate()

int CALIBRATE_NUM_SAMPLES=10;

void calibrate() {

 digitalWrite(ledPin, LOW);

 int avg=0;

 for (int i=0; i<CALIBRATE_NUM_SAMPLES; i++) {

 avg += analogRead(lightPin);

 }

 avg /= CALIBRATE_NUM_SAMPLES;

 threshold = avg*1.75;

 digitalWrite(ledPin, HIGH);

}

void setup() {

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

 pinMode(outPin, OUTPUT);

 calibrate();

}

void loop() {

 int v = analogRead(lightPin);

 Serial.println(v);

 if (v > threshold) {

 digitalWrite(outPin, LOW);

 delay(DOWN_DELAY);

 } else {

 digitalWrite(outPin, HIGH);

 }

}

How does it work?

• On start-up, measure the light levels with the
LED off, and call 75% more than that the
threshold

Problems

• What do you think this did wrong?

– Would malfunction if light levels changed after
power-on (such as moving it to a brightly lit
competition field…)

• What to do?

Our final code

// <some variable declarations omitted>

int threshold = 40; // derived experimentally

int downTime = 6; // time to wait with led off before measuring (ms)

int upTime = 6; // time to wait with led on before measuring (ms)

void setup() {

 Serial.begin(9600); //Begin serial communcation

 pinMode(ledPin, OUTPUT);

 pinMode(outPin, OUTPUT);

}

void loop() {

 int v = measureLight();

 if (DEBUG) Serial.println(v);

 if (v > threshold) {

 digitalWrite(outPin, LOW);

 delay(DOWN_DELAY);

 } else {

 digitalWrite(outPin, HIGH);

 }

 if (DEBUG) delay(20);

}

int measureLight() {

 // measure with LED off

 digitalWrite(ledPin,LOW);

 delay(downTime);

 int v_off = analogRead(lightPin);

 // measure with LED on

 digitalWrite(ledPin,HIGH);

 delay(upTime);

 int v_on = analogRead(lightPin);

 // debug output of raw values

 if (DEBUG>=2) {

 Serial.print(v_off);

 Serial.print(" ");

 Serial.print(v_on);

 Serial.print(" ");

 }

 // return difference

 return v_on - v_off;

}

How does it work?

• Turn the LED off

• Measure

• Turn the LED on

• Measure

• Calculate difference and use that

Physical mounting

• Used an Arduino Nano, which jams into a
breadboard

• How to keep wires
in breadboard?

– Lots and lots of hot glue

• Result was 100% stable and reliable light sensor

• Robot stopped at the firing position every single
time

PART 4: CUSTOM CIRCUIT BOARD

The short story

• Get EAGLE (it’s free)

• Lay out all the components and connect them
just like we did before

– For the Arduino, replace it with a an Arduino-
compatible chip (like the ATtiny84 or the
ATmega328)

The schematic

Standard programming
connector

2-pin connector
for LED

2-pin connector
for photoresistor

Power-on LED

Indicator LED

3-pin connector to digital sidecar
(provides 5V power too)

ATtiny84 microcontroller

Board design

• EAGLE helps you translate the schematic to a
board layout

• You position all the components where you
want, run the connection ‘wires’, and put
printed labels on stuff

Board layout

• Red = wire
running on
top

• Blue = wire
running on
bottom

• Green =
Copper pad
and hole to
put a
component
through

• Pink = Labels
printed on
board

Making it real

• Send the board to a fabricator company like OSH Park and
they make it for a fee
– OSH Park is $5 per square inch.

This board was about a square inch,
so we got three boards for $5. Cheap!

• OSH Park mockup of our board:

• Actual boards, straight from the factory:

Top Bottom

Solder it up

• Bam, done

Continuity – Is it a Circuit?

The word “circuit” is derived from the circle. An Electrical Circuit
must have a continuous LOOP from Power (Vcc) to Ground
(GND).

Continuity is important to make portions of circuits are connect.
Continuity is the simplest and possibly the most important
setting on your multi-meter. Sometimes we call this “ringing
out” a circuit.

Measuring Electricity – Voltage

Voltage is a measure of potential electrical energy. A
voltage is also called a potential difference – it is
measured between two points in a circuit – across a
device.

Measuring Electricity -- Current

Current is the measure of the rate of charge flow. For Electrical
Engineers – we consider this to be the movement of
electrons.

In order to measure this – you must break the circuit or insert
the meter in-line (series).

Measuring Electricity -- Resistance

Resistance is the measure of how much opposition to current
flow is in a circuit.

Components should be removed entirely from the circuit to
measure resistance. Note the settings on the multi-meter.
Make sure that you are set for the appropriate range.

Resistance
settings

