Embedded Systems

C Programming and Software Tools

N.C. State Department of Computer Science

Adapted from "EE498/ EE578 Real-Time Embedded Systems" by Nannan He, Minnesato State University at Mankato (2014)

http://mavweb.mnsu.edu/hen/lec/RTES_fundamental.pptx

Definition: System

A system is a mapping of a set of inputs into a set of outputs.

- 1. A system is an assembly of components connected together in an organized way
- 2. A system is fundamentally altered if a component joins or leaves it
- 3. It has a purpose
- 4. It has a degree of permanence
- 5. It has been defined as being of particular interest

Example: A Real-Time Control System

- Inputs are *excitations* and outputs are corresponding *responses*
- Inputs and outputs may be digital or analog
- Inputs are associated with sensors, cameras, etc.
- Outputs with actuators, displays, etc.

Definition: Response Time

The time between the presentation of a set of inputs to a system and the realization of the required behavior, including the availability of all associated outputs, is called the response time of the system

- How fast and punctual does it need to be?
 Depends on the specific real-time system
- But what is a real-time system?

Definitions: Real-Time System

A real-time system is a computer system that must satisfy bounded response-time constraints or risk severe consequences, including failure

A real-time system is one whose logical correctness is based on both the correctness of the outputs and their timeliness

Definition: Failed System

A failed system is a system that cannot satisfy one or more of the requirements stipulated in the system requirements specification

 Hence, rigorous specification of the system operating criteria, including timing constraints, is necessary

Definition: Embedded System

An embedded system is a system containing one or more computers (or processors) having a central role in the functionality of the system, but the system is not explicitly called a computer

- A real-time system may be embedded or nonembedded
- But it is always reactive
 - Task scheduling is driven by ongoing interaction with the environment

Degrees of "Real-Time"

- All practical systems are ultimately real-time systems
- Even a batch-oriented system—for example, grade processing at the end of a semester—is real-time
- Although the system may have response times of days, it must respond within a certain time
- Even a word-processing program should respond to commands within a reasonable amount of time
- Most of the literature refers to such systems as soft real-time systems

Soft, Hard, and Firm "Real-Time"

Definition: Soft Real-Time System

A soft real-time system is one in which performance is degraded but not destroyed by failure to meet response-time constraints

Definition: Hard Real-Time System

A hard real-time system is one in which failure to meet even a single deadline may lead to complete or catastrophic system failure

Definition: Firm Real-Time System

A firm real-time system is one in which a few missed deadlines will not lead to total failure, but missing more than a few may lead to complete or catastrophic system failure

Example: Real-Time Classification

System	Real-Time Classification	Explanation
Avionics weapons delivery system in which pressing a button launches an air- to-air missile	Hard	Missing the deadline to launch the missile within a specified time after pressing the button may cause the target to be missed, which will result in a catastrophe
Navigation controller for an autonomous weed-killer robot	Firm Missing a few navigation deadlines causes the robot to veer out from a planned path and damage some crops	
Console hockey game	Soft	Missing even several deadlines will only degrade performance

Where Do Deadlines Come from?

 Deadlines are based on the underlying physical phenomena of the system under control

Example: Where a Response Time Comes from?

- An elevator door is automatically operated and it may have a sensor to detect passengers between the closing doors so it can re-open automatically.
- What is the required system response time from when it recognizes that a passenger is between the closing door blades and starting to reopen the door?

Door Reopening Example Cont'd

This response time consists of five independent latency components:

Sensor:	$t_{\rm SE_min} = 5 \text{ ms}$	$t_{\rm SE_max} = 15 \text{ ms}$				
Hardware:	$t_{\rm HW_min} = 1 \mu s$	$t_{\rm HW_max} = 2 \ \mu s$				
System software:	$t_{\rm SS_min} = 16 \mu s$	$t_{\rm SS_max} = 48 \ \mu s$				
Application software:	$t_{\rm AS_min} = 0.5 \ \mu s$	$t_{\rm AS_max} = 0.5 \ \mu s$				
Door drive:	$t_{\rm DD_min} = 300 \text{ ms}$	$t_{\rm DD_max} = 500 \ {\rm ms}$				
Now, we can calculate the minimum and maximum values of the composite response time: $t_{min} \approx 305 \text{ ms}$, $t_{max} \approx 515 \text{ ms}$						
The overall response time is dominated by the door drive's response time containing the deceleration time of the moving door blades.						

Definitions: Event and Release Time

Definition: Event

Any occurrence that causes the program counter to change non-sequentially is considered a change of flowof-control, and thus an event

Definition: Release Time

The release time is the time at which an instance of a scheduled task is ready to run, and is generally associated with an interrupt

Taxonomy of Events

- Synchronous or asynchronous?
 - Synchronous events: occur at predictable times in the flow-of-control
 - Asynchronous events: occur at unpredictable times, are usually caused by external sources
- Periodic, aperiodic or sporadic?
 - **Periodic:** A real-time clock that pulses regularly
 - Aperiodic: Events that do not occur at regular periods
 - Sporadic: Aperiodic events that tend to occur very infrequently

Example: Various Types of Events

Туре	Periodic	Aperiodic	Sporadic
Synchronous	Cyclic code	Conditional branch	Divide-by-zero (trap) interrupt
Asynchronous	Clock interrupt	Regular, but not fixed-period interrupt	Power-loss alarm

CPU Utilization or Time-Loading Factor

 The measure of the relative time spent doing non-idle processing indicates how much realtime processing is occurring

Definition: CPU Utilization Factor

The CPU utilization or time-loading factor, *U*, is a relative measure of the non-idle processing taking place

Example: Calculation of *U*

Suppose, an individual elevator controller in a bank of elevators has the following tasks with execution periods of p_i and worst-case execution times of e_i , $i \in [1,2,3,4]$:

Task 1: Communicate with the group dispatcher.

Task 2: Update the car position information and manage floor-to-floor runs as well as door control.

Task 3: Register and cancel car calls.

Task 4: Miscellaneous system supervisions.

i	ei	p_i
1	17 ms	500 ms
2	4 ms	25 ms
3	1 ms	75 ms
4	20 ms	200 ms

$$U = \sum_{i=1}^{4} e_i / p_i$$
=0.31

31% (Very safe zone)

Goal: get to a reasonable U

• U too high? Possible chance of failure

• U too low? Not cost effective

- U = 50% for new systems,
- U = 80% for stable, well-known systems

Cost/performance tradeoff

Model	Cost	Clock	CPU type	Flash	RAM	I/O lines
ATTINY4	\$0.40	12 MHz	8-bit AVR	512 B	32 B	4
ATTINY44	\$0.75	20 MHz	8-bit AVR	4 kB	256 B	12
ATMEGA48	\$1.23	20 MHz	8-bit AVR	4 kB	512 B	23
ATMEGA328	\$1.68	20 MHz	8-bit AVR	32 kB	2 kB	23
ATXMEGA128	\$2.72	32 MHz	16-bit AVR	128 kB	8 kB	50
AT32UCA1256	\$8.59	66 MHz	32-bit AVR	256 kB	64 kB	69
NXP LPC4370FET25 6E	\$11.98	204 MHz	32-bit 3-core ARM	1 MB	136 kB	83
Intel Core i7 4790K (comedy option)	\$339.99	4 GHz	64-bit quad-core x86	None onboard	None onboard (max ~64GB attached)	500+ (but none are general-purpose)

Usual Misconception

"Real-time" means "fast"?

NO!!!

"Real-time" means "predictable timing"

Practical Embedded Systems

- Aerospace
 - Flight control
 - Navigation
 - Pilot interface
- Automotive
 - Airbag deployment
 - Antilock braking
 - Fuel injection
- Household
 - Microwave oven
 - Rice cooker
 - Washing machine

- Industrial
 - Crane
 - Paper machine
 - Welding robot
- Multimedia
 - Console game
 - Home theater
 - Simulator
- Medical
 - Intensive care monitor
 - Magnetic resonance imaging
 - Remote surgery

Inertial measurement system for an aircraft

The tasks execute at different rates and need to communicate and synchronize.

Monitoring system for a nuclear power plant

Ensure that the "meltdown imminent" indicator can interrupt any other processing with minimal latency.

ARDUINO STUFF

This presentation is based on an electronics seminar I put on as part of the TerrorBytes robotics team. It includes material from:

- Farzad Towhidkhah. Amirkabir University of Technology. Electrical Circuits, lecture 1. http://bme2.aut.ac.ir/~towhidkhah/Circuit/Circuit1/PPT/lec1.ppt
- Jefferson Lab. Electrical Circuits. http://education.jlab.org/jsat/powerpoint/0708_electricity.ppt
- Worldofteaching.com. Electric Circuits. http://www.worldofteaching.com/powerpoints/physics/electric%20circuits.ppt
- Sparkfun. Introduction to Electronics and Breadboarding Circuits. http://create.coloradovirtuallibrary.org/sites/default/files/Curriculum/SparkFun/Beginner/Int rotoBasicElectronics.ppt
- Sparkfun. Intro to Arduino. http://create.coloradovirtuallibrary.org/sites/default/files/Curriculum/SparkFun/Beginner/Int rotoArduino.ppt

Arduino Board

- "Strong Friend" Created in Ivrea, Italy
- in 2005 by Massimo Banzi & David Cuartielles
 - Open Source Hardware

- And Processor
- Coding is accessible & transferrable \rightarrow (C++, Processing, java)

Your kit

Some kind of Arduino

You can get all this stuff dirt cheap on ebay

How to hook stuff together easily

Solderless Breadboards

			· /		
				00000 00000 00000 00000 00000 00000 0000	
	300 00000			00000 0000	ence
3		00000	00000		VERSITY

Arduino Overview

Project – Digital Input

- In Arduino, open up:
- File \rightarrow Examples \rightarrow 02.Digital \rightarrow Button

Digital Sensors (a.k.a. Switches) Pull-up Resistor

Digital Sensors (a.k.a. Switches) Add an indicator LED to Pin 13

This is just like our 1st circuit!

Digital Input

- Connect digital input to your Arduino using Pins # 0 13 (Although pins # 0 & 1 are also used for programming)
- Digital Input needs a pinMode command: pinMode (pinNumber, INPUT); Make sure to use ALL CAPS for INPUT
- To get a digital reading: int buttonState = digitalRead(pinNumber);
- Digital Input values are only **HIGH** (On) or **LOW** (Off)

Digital Sensors

- Digital sensors are more straight forward than Analog
- No matter what the sensor there are only two settings: On and Off
- Signal is always either HIGH (On) or LOW (Off)
- Voltage signal for HIGH will be a little less than 5V on your Uno
- Voltage signal for LOW will be 0V on most systems

Voltage dividers

1 V

+5V

• You get an in-between voltage based on the two resistances

$$V_{R1} = V_{CC} \cdot \left(\frac{R_1}{R_{Total}}\right)$$

$$V_{R2} = V_{CC} \cdot \left(\frac{R_2}{R_{Total}}\right)$$

 $R_{Total} = R_1 + R_2$

analogRead()

Arduino uses a 10-bit A/D Converter:

- This means that you get input values from 0 to 1023
 - $0 \lor \rightarrow 0$
 - $5 \lor \rightarrow 1023$

Ex:

int sensorValue = analogRead(A0);

Using Serial Communication

Method used to transfer data between two devices.

Arduino dedicates Digital I/O pin # 0 to receiving and Digital I/O pin #1 to transmit.

Serial Monitor & analogRead()

Serial Monitor & analogRead()

The following slides comprise the entirety of the electronics workshop I put on with the TerrorBytes robotics team. It's aimed at a high school audience, so skip the basics as needed.

41

Introduction to Electronics and Custom Circuits

Tyler Bletsch (Tyler.Bletsch@netapp.com)

13 December 2014

What can you do with this?

 We built an LED light sensor to act as a "middle limit switch" to find our shooting position.

 Run by an Arduino; acts like a normal limit switch to the cRIO

Process

Prototype

Coding

ø

RobotLightDetectNaive | Arduino 1.0.5
 File Edit Sketch Tools Help

int lightPin = A0; //define a pin for Photo resistor int ledPin=4; //define a pin for LED

Serial begin(9600); // Begin serial communcation

int threshold=500; // set by calibrate()

//define a pin for LED

int DOWN DELAY=500; // how long to keep outPin low on detect, in

 ${\bf Serial.println}(v):$ // Write the value of the photoresistor to th

pinMode(ledPin, OUTPUT); pinMode(outPin, OUTPUT);

if (v > threshold) {
 digitalWrite(outPin, LOW);
 distalWrite(outPin, LOW);

int v = analogRead(lightPin);

RobotLightDetectNaive

int ledPin=4; int outPin=13;

void setup() {

void loop() {

••

Quick-anddirty build

Custom PCB

Your kit

Sources used in this presentation

- This presentation includes material from:
 - Farzad Towhidkhah. Amirkabir University of Technology. Electrical Circuits, lecture 1. http://bme2.aut.ac.ir/~towhidkhah/Circuit/Circuit1/PPT/lec1.ppt
 - Jefferson Lab. Electrical Circuits. http://education.jlab.org/jsat/powerpoint/0708_electricity.ppt
 - Worldofteaching.com. Electric Circuits. http://www.worldofteaching.com/powerpoints/physics/electric%20circuits.ppt
 - Sparkfun. Introduction to Electronics and Breadboarding Circuits.

http://create.coloradovirtuallibrary.org/sites/default/files/Curriculum/SparkFun/Be ginner/IntrotoBasicElectronics.ppt

 Sparkfun. Intro to Arduino. http://create.coloradovirtuallibrary.org/sites/default/files/Curriculum/SparkFu n/Beginner/IntrotoArduino.ppt

PART 1: ELECTRICITY IS A THING!

Introduction to Electric Circuits

- Here we are going to remind what are:
 - Voltage
 - Current
 - Current flow
 - Voltage Sources
 - Voltmeter (Multimeter)

V = "Electrical pressure" - measured in *volts.*

Figure 1.1

The water analogy

- A battery in an electrical circuit plays the same role as a pump in a water system.

What produces voltage?

V = "Electrical pressure"

Electric Power Plant

Lab Power Supply

Nerve Cell

A few millivolts when activated by

a synapse

Solar Cell

A few Volts

Symbols Used for Voltage Sources

All these symbols are interchangable.

What voltages are used in FRC?

In non-battery-powered things, ground is usually literally connected to a spike into the ground

Ground in robotics

• We call the negative of the battery "ground"

What is Current?

- Current is the flow of charge from a voltage source
- 1 Ampere ("Amp") = Flow of 1 Coulomb/sec

How Does Current Flow?

Current can only flow through conductors

When Does Current NOT Flow?

Current cannot flow through insulators

Note that Air is an Insulator

Current cannot flow through insulators

No current flow

That's why a battery doesn't discharge if left on its own.

Current Flow Analogy

Low Current

Voltage Analogy

Resistance Analogy

Ohm's Law

Georg Simon Ohm (1787-1854)

Describes the relationship between voltage, current, and resistance.

V = I Ror I = V / R

I = Current (Amperes) (amps, A)

- V = Voltage (Volts, V)
- $R = Resistance (ohms, \Omega)$

- Defined as the amount of potential energy in a circuit.
- Units: Volts (V)

- The rate of charge flow in a circuit.
- <u>Units</u>: Amperes (A)

- Opposition to charge flow.
- <u>Units</u>: Ohms (Ω)

$[V = I \cdot R]$

Resistance

- Anything that isn't a PERFECT conductor has resistance (and nothing's perfect).
- 20 ft. of 18AWG wire: 0.128 $\boldsymbol{\Omega}$

• 60W incandescent lightbulb: 240 Ω

• My face: ~30 MΩ

Resistors

• Resistors provide a specific amount of resistance to a path in a circuit or wire.

• Resistors are color coded.

Circuit symbol for a resistor

Exercise

Exercise

What's the CURRENT?

Get with it, grandma

 Lightbulbs are for old people

 Light Emitting Diodes (LEDs) are where it's at!

What are LEDs?

- Light Emitting Diodes
- Diode Symbol + Arrows
- Points to ground

R1

Can emit a variety of colors

- They need above a certain voltage to turn on (the *forward voltage drop*)
 - Typically 1.5 3 V
- They need less than a certain current to not burn up
 - Typically 5 20 mA (milli-amps)

This is your LED...

This is your LED on too much current. Any questions?

How to limit current?

- I have a 12V source
- I have an LED
- How can I limit the current????

R1

- I'm going to give it 12V
- The LED will eat 2V
- That leaves 10V left
- What resistor will limit the extra 10V to 10mA (0.01 A)?
- V = I * R
- 10 = 0.01 * R
- R = 10 / 0.01
- R = 1000
- 1000 Ohms!

How to hook stuff together easily

		00000 00000 00000 00000 00000
	00000 00000 00000 00000	
00000 00000 00000	00000	
00000 00000 00000	00000	
00000	00000	11
00000	00000	
00000	00000	11
	00000	11
00000	00000	
00000	00000	••
00000	00000	11
	A DECEMBER OF	11
00000	Contraction of the second s	00000
00000	00000	II
00000	00000	00000
00000	00000	
		11
		11
00000	00000	
00000	00000	••
00000	a second s	11
00000		11
00000	00000	11
00000	00000	III
00000	00000	••
00000	00000	11
00000	00000	11
00000	00000	00000-00000
00000	00000	
00000	00000	00000
00000	00000	0000
00000	00000	11
	00000	11
00000	00000	
00000	00000	
00000	00000	
00000	00000	00000
	00000	1.
00000	00000	
00000	00000	

LET'S ACTUALLY DO A THING!!!

• Make that LED turn on!!

PART 2: ARDUINO DOES STUFF!

Add computing to your circuit

- All this electronics stuff is cool, but I want to DO STUFF, not make a light turn on
- Enter Arduino
 - Tiny little computer that's really cheap
 - Designed to talk to electronics

Arduino Board

- "Strong Friend" Created in Ivrea, Italy
- in 2005 by Massimo Banzi & David Cuartielles
 - Open Source Hardware

- And Processor
- Coding is accessible & transferrable \rightarrow (C++, Processing, java)

Arduino Overview

Go ahead and plug your board in!

Replace the 9V with the Arduino

Adding control

 Let's use the Arduino and start programming!!!

Concepts: INPUT vs. OUTPUT

• Referenced from the perspective of the microcontroller (electrical board).

Inputs is a signal / information going into the board.

Output is any signal exiting the board.

Almost all systems that use physical computing will have some form of output

What are some examples of Outputs?

Concepts: INPUT vs. OUTPUT

• Referenced from the perspective of the microcontroller (electrical board).

Inputs is a signal / information going into the board.

Output is any signal exiting the board.

Sensors, Flex Sensors, Humidity mo	<u>amples</u> : LEDs, DC motor, servo otor, a piezo buzzer, relay, an RGB D	
· · · · ·	LED	

Concepts: Analog vs. Digital

 Microcontrollers are digital devices – ON or OFF. Also called – discrete.

 analog signals are anything that can be a full range of values. What are some examples? More on this later...

Open up Arduino

- Hints:
- For PC Users \rightarrow
- Run the installer copy and move the files to the appropriate locations, or

- For Mac Users \rightarrow
- Move the Arduino executable to the dock for ease of access.
- Resist the temptation to run these from your desktop.

Arduino

Integrated Development Environment (IDE)

Settings: Tools \rightarrow Serial Port

sketch_may01a Arduino 1.0.3						-		
File Edi	t Sket	ch T	Fools	Help			-	
Sketc	h_may	/01	4	Auto Format Archive Sketch Fix Encoding & Relo	Ctrl+T			
			S	Serial Monitor	Ctrl+Shift	+M		
			E	Board		►		_
			S	Serial Port		►	 COM3 	
				Programmer Burn Bootloader		×		

- Your computer communicates to the Arduino microcontroller via a serial port → through a USB-Serial adapter.
- Check to make sure that the drivers are properly installed.

Settings: Tools \rightarrow Board

A I tiny85 (external 20 MHz clock)				
ATtiny44 (internal 1 MHz clock)				
ATtiny44 (internal 8 MHz clock)				
ATtiny44 (external 20 MHz clock)				
ATtiny84 (internal 1 MHz clock)				
ATtiny84 (internal 8 MHz clock)				
ATtiny84 (external 20 MHz clock)				
Arduino Uno				
Arduino Duemilanove w/ ATmega328				
Arduino Diecimila or Duemilanove w/ ATmega168				
Arduino Nano w/ ATmega328				
Arduino Nano w/ ATmega168				
Arduino Mega 2560 or Mega ADK				
Arduino Mega (ATmega1280)				
Arduino Leonardo				
Arduino Leonardo				
Arduino Esplora				

• Next, double-check that the proper board is selected under the Tools \rightarrow Board menu.

Let's get to coding...

- Project #1 Blink
 - "Hello World" of Physical Computing

Psuedo-code – how should this work?

Comments, Comments, Comments

- Comments are for you the programmer and your friends...or anyone else human that might read your code.
- // this is for single line comments
 // it's good to put a description at the
 // top and before anything `tricky'
- /* this is for multi-line comments
 Like this...
 And this....

*/

Three commands to know...

Project #1: Wiring Diagram

Move the green wire from the power bus to <u>pin 13</u> (or any other Digital I/O pin on the Arduino board.

Image created in Fritzing

A few simple challenges

- Let's make LED#13 blink!
 - Challenge 1a blink with a 200 ms second interval.
 - Challenge 1b blink to mimic a heartbeat
 - Challenge 1c find the fastest blink that the human eye can still detect...

1 ms delay? 2 ms delay? 3 ms delay???

Programming Concepts: Variables

Programming Concepts: Variable Types

• Variable Types:

Input

- Input is any signal entering an electrical system.
 - Both digital and analog sensors are forms of input
 - Input can also take many other forms: Keyboards, a mouse, infrared sensors, biometric sensors, or just plain voltage from a circuit

Project – Digital Input

- In Arduino, open up:
- File \rightarrow Examples \rightarrow 02.Digital \rightarrow Button

Digital Sensors (a.k.a. Switches) Pull-up Resistor

This is just like our 1st circuit!

- Connect digital input to your Arduino using Pins # 0 13 (Although pins # 0 & 1 are also used for programming)
- Digital Input needs a pinMode command: pinMode (pinNumber, INPUT); Make sure to use ALL CAPS for INPUT
- To get a digital reading: int buttonState = digitalRead(pinNumber);
- Digital Input values are only **HIGH** (On) or **LOW** (Off)

Digital Sensors

- Digital sensors are more straight forward than Analog
- No matter what the sensor there are only two settings: On and Off
- Signal is always either HIGH (On) or LOW (Off)
- Voltage signal for HIGH will be a little less than 5V on your Uno
- Voltage signal for LOW will be 0V on most systems

Anatomy of a statement

We set it equal to the function digitalRead(pushButton)

We declare a variable as an integer.

The function digitalRead() will return the value 1 or 0, depending on whether the button is being pressed or not being pressed.

int buttonState = digitalRead(pushButton);

We name it buttonState

Recall that the pushButton variable stores the number 2

The value 1 or 0 will be saved in the variable buttonState.

Programming: Conditional Statements - if()

Boolean Operators

<boolean></boolean>	Description
() == ()	is equal?
() != ()	is not equal?
() > ()	greater than
() >= ()	greater than or equal
() < ()	less than
() <= ()	less than or equal

Voltage dividers

• You get an in-between voltage based on the two resistances

$$V_{R1} = V_{CC} \cdot \left(\frac{R_1}{R_{Total}}\right)$$

$$V_{R2} = V_{CC} \cdot \left(\frac{R_2}{R_{Total}}\right)$$

 $R_{Total} = R_1 + R_2$

Arduino uses a 10-bit A/D Converter:

- This means that you get input values from 0 to 1023
 - $0 \lor \rightarrow 0$
 - $5 \lor \rightarrow 1023$

Ex:

int sensorValue = analogRead(A0);

Using Serial Communication

Method used to transfer data between two devices.

Serial Monitor & analogRead()

Serial Monitor & analogRead()

•Take two sensors -- Use the Serial Monitor and find the range of input values you get for each sensor.

•MaxAnalogRead = ____

•MinAnalogRead = _____

Analog Sensors

Examples:

Sensors	Variables
Mic	soundVolume
Photoresistor	lightLevel
Potentiometer	dialPosition
Temp Sensor	temperature
Flex Sensor	bend
Accelerometer	tilt/acceleration


```
void loop ( )
{
   Serial.pr
```

}

```
Serial.print("Hands on ") ;
Serial.print("Learning ") ;
Serial.println("is Fun!!!") ;
```


File Edit Ske	tch Tools Help							
	<u></u>		C	DM24				×
BareMinim							Se	nd
void s		Learning						
// r	Hands on	Learning	is	Fun!!	!			
Seri	Hands on	Learning	is	Fun!!	!			
}	Hands on	Learning	is	Fun!!	!			
,	Hands on	Learning	is	Fun!!	!			
void l	Hands on	Learning	is	Fun!!	!			
{	Hands on	Learning	is	Fun!!	!			
L	Hands on	Learning	is	Fun!!	!			
	Hands on	Learning	is	Fun!!	!			
	Hands o							
	<							>
<	✓ Autoscroll				No line e	ending 🗸	9600 baud	
Done uploadi	ing.							
Dinamu	akot ab	170. 1 00	0 b	utog -(of -			
_		ize: 1,98	a o	ytes (L		
32,256	byte max	Imum)						
3				Arduino U	no on CO	M24		

}


```
void loop()
{
    int xVar = 10;
    Serial.print ( "Variable xVar is " );
    Serial.println ( xVar );
```

<u></u>			C	OM24	ŀ				_ [×
										Send	ł
Variable	xVar	is	10								^
Variable	xVar	is	10								
Variable	xVar	is	10								
Variable	xVar	is	10								
Variable	xVar	is	10								
Variable	xVar	is	10								
Variable	xVar	is	10								
Variable	xVar	is	10								
Variable	xVar	is	10								
Variable	xVar	is	10								~
Autoscroll						No line	ending	~	9600 b	aud	v

}


```
void loop ()
{
   Serial.print ("Digital pin 9: ");
   Serial.println (digitalRead(9));
```

<u>\$</u> ,			COM24		-	□ ×
						Send
Digital pin	9:	1				^
Digital pin	9:	1				
Digital pin	9:	1				
Digital pin	9:	1				
Digital pin	9:	1				
Digital pin	9:	1				
Digital pin	9:	1				
Digital pin	9:	1				
Digital pin	9:	1				
Digital pin	9:	1				~
Autoscroll				No line ending	♥ 9600) baud 🔍

PART 3: THE LIGHT SENSOR SYSTEM

Our actual light sensor schematic from build season

 What pins are outputs?

 What pins are inputs? Analog or digital?

Our first-gen code


```
int lightPin = A0; //define a pin for Photo resistor
int ledPin=4; //define a pin for LED
int outPin=13; //define a pin for output to DSC
```

```
int threshold=150; // set experimentally
```

int DOWN DELAY=500; // how long to keep outPin low on detect, in ms

```
void setup() {
   Serial.begin(9600); // Begin serial communcation
   pinMode(ledPin, OUTPUT);
   pinMode(outPin, OUTPUT);
}
```

```
void loop() {
    int v = analogRead(lightPin);
    Serial.println(v); // Write the value of the photoresistor to the serial monitor.
    if (v > threshold) {
        digitalWrite(outPin, LOW);
        delay(DOWN_DELAY);
    } else {
        digitalWrite(outPin, HIGH);
    }
}
```

Problems

- What do you think went wrong?
 - Would malfunction if light levels changed from where we tested it

• What to do?

Our second-gen code

```
// <some variable declarations omitted>
int threshold=-1; // set by calibrate()
int CALIBRATE NUM SAMPLES=10;
void calibrate() {
  digitalWrite(ledPin, LOW);
  int avg=0;
  for (int i=0; i<CALIBRATE NUM SAMPLES; i++) {</pre>
    avg += analogRead(lightPin);
  }
  avg /= CALIBRATE NUM SAMPLES;
  threshold = avg*1.75;
                                            void loop() {
  digitalWrite(ledPin, HIGH);
                                               int v = analogRead(lightPin);
}
                                               Serial.println(v);
                                               if (v > threshold) {
                                                 digitalWrite(outPin, LOW);
void setup() {
                                                 delay(DOWN DELAY);
  Serial.begin(9600);
                                               } else {
 pinMode(ledPin, OUTPUT);
                                                 digitalWrite(outPin, HIGH);
 pinMode(outPin, OUTPUT);
                                               }
  calibrate();
                                             }
}
```


How does it work?

 On start-up, measure the light levels with the LED off, and call 75% more than that the threshold

Problems

- What do you think this did wrong?
 - Would malfunction if light levels changed after power-on (such as moving it to a brightly lit competition field...)

• What to do?

Our final code


```
// <some variable declarations omitted>
int threshold = 40; // derived experimentally
int downTime = 6; // time to wait with led off before measuring (ms)
int upTime
             = 6; // time to wait with led on before measuring (ms)
void setup() {
                                                        int measureLight() {
  Serial.begin(9600); //Begin serial communcation
                                                          // measure with LED off
 pinMode(ledPin, OUTPUT);
                                                          digitalWrite(ledPin,LOW);
 pinMode(outPin, OUTPUT);
                                                          delay(downTime);
}
                                                          int v off = analogRead(lightPin);
                                                          // measure with LED on
void loop() {
                                                          digitalWrite(ledPin,HIGH);
  int v = measureLight();
                                                          delay(upTime);
  if (DEBUG) Serial.println(v);
                                                          int v on = analogRead(lightPin);
  if (v > threshold) {
                                                          // debug output of raw values
                                                          if (DEBUG>=2) {
    digitalWrite(outPin, LOW);
                                                            Serial.print(v off);
    delay(DOWN DELAY);
                                                            Serial.print(" ");
  } else {
                                                            Serial.print(v on);
    digitalWrite(outPin, HIGH);
                                                            Serial.print(" ");
                                                          }
  }
                                                          // return difference
  if (DEBUG) delay(20);
                                                          return v on - v off;
}
```

How does it work?

- Turn the LED off
- Measure
- Turn the LED on
- Measure
- Calculate difference and use that

Physical mounting

- Used an Arduino Nano, which jams into a breadboard
- How to keep wires in breadboard?
 Lots and lots of hot glue

- Result was 100% stable and reliable light sensor
- Robot stopped at the firing position every single time

PART 4: CUSTOM CIRCUIT BOARD

The short story

- Get EAGLE (it's free)
- Lay out all the components and connect them just like we did before
 - For the Arduino, replace it with a an Arduinocompatible chip (like the ATtiny84 or the ATmega328)

The schematic

- EAGLE helps you translate the schematic to a board layout
- You position all the components where you want, run the connection 'wires', and put printed labels on stuff

Board layout

- Red = wire running on top
- Blue = wire running on bottom
 - Green = Copper pad and hole to put a component through
- Pink = Labels printed on board

Making it real

- Send the board to a fabricator company like OSH Park and they make it for a fee
 - OSH Park is \$5 per square inch.
 This board was about a square inch, so we got three boards for \$5. Cheap!
- OSH Park mockup of our board:

• Actual boards, straight from the factory:

Solder it up

Continuity – Is it a Circuit?

- The word "circuit" is derived from the <u>circle</u>. An Electrical Circuit must have a continuous LOOP from Power (V_{cc}) to Ground (GND).
- Continuity is important to make portions of circuits are connect. Continuity is the simplest and possibly the most important setting on your multi-meter. Sometimes we call this "ringing out" a circuit.

Measuring Electricity – Voltage

Voltage is a measure of potential electrical energy. A voltage is also called a potential difference – it is measured between two points in a circuit – across a device.

Measuring Electricity -- Current

- Current is the measure of the rate of charge flow. For Electrical Engineers we consider this to be the movement of electrons.
- In order to measure this you must break the circuit or insert the meter in-line (series).

Measuring Electricity -- Resistance

Resistance is the measure of how much opposition to current flow is in a circuit.

Components should be removed entirely from the circuit to measure resistance. Note the settings on the multi-meter. Make sure that you are set for the appropriate range.

