Collateral, Risk Management, and the Distribution of Debt Capacity

Adriano A. Rampini  S. Viswanathan
Duke University          Duke University

Session on “Risk Capital and Risk Management”
2010 Annual Meeting
Financial Management Association

New York, NY
October 22, 2010
Financing and Risk Management Trade-off

Punchline

• Financing and risk management are fundamentally linked
  • ... as both involve promises to pay
  • ... which are limited by collateral constraints

• This fundamental trade-off has important implications for
  • ... corporate risk management
  • ... the distribution of debt capacity
Main Results

Two main results

• Result 1: More constrained firms do less risk management!
  • ... contrary to received theory
  • ... consistent with empirical evidence

• Result 2: Distribution of debt capacity shifts to less productive/better capitalized firms.
  • More constrained firms may be forced to downsize.
  • Less capital deployed by more productive/poorly capitalized firms in downturns.
Model of Dynamic Collateralized Financing

Key: Collateral constraints

- **Collateral constraints** due to limited enforcement
  - We derive collateral constraints similar to Kiyotaki/Moore (1997)
    - ... from limited enforcement similar to Kehoe/Levine (1993)

- This talk: **Simplest version of model**
  - Skip derivation and start directly with collateral constraints
  - 2 periods, 2 states
  - Fixed price of capital
Model

Firm

• 3 dates: $t = 0, 1, \text{ and } 2$

• **Risk neutral firm’s objective:** expected present value of dividends

$$E \left[ \sum_{t=0}^{T} \beta^t d_t \right]$$ (1)

• Internal funds $w_0$ at time 0

• Investment of $k_t$ at time $t$ yields cash flow

$$A_{t+1}(s)f(k_t)$$

at time $t + 1$ where $f(\cdot)$ is **concave production function**, $A(s)$ is productivity in state $s$
Model (Cont’d)

Financiers

• Risk neutral and discount future at rate $\beta < 1$

• Large endowment of funds in all dates and states

• ... willing to lend in state-contingent way at expected return $R \equiv \frac{1}{\beta} > 1$
Model (Cont’d)

Simplest case.

• Two states at time 1: state $s \in S \equiv \{H, L\}$

• Cash flow either high or low: $A(H) > A(L) > 0$

\[
\begin{array}{c}
\text{Time Line} \\
0 & 1 & 2 \\
\pi(H) & s = H & \\
\pi(L) & s = L & \\
\end{array}
\]
Financing with Collateral Constraints

Firm’s problem

- Maximize expected present value of dividends (1) by choosing
  - ... dividend, investment, financing, and risk management policy

subject to **budget constraints** at date 0, 1, and 2,

\[ w_0 + \sum_{s \in S} \pi(s)b_1(s) \geq d_0 + k_0 \]  \hspace{1cm} (2)

\[ A_t(s)f(k_{t-1}(s)) + k_{t-1}(s) + b_{t+1}(s) \geq d_t(s) + k_t(s) + Rb_t(s), \]  \hspace{1cm} (3)

- and **collateral constraints** for each date and state

\[ \theta k_{t-1}(s) \geq Rb_t(s), \]  \hspace{1cm} (4)

- and **limited liability constraints** (and non-negativity of capital)

\[ d_t(s) \geq 0, \quad k_t(s) \geq 0. \]  \hspace{1cm} (5)
Risk Management Subject to Short Sale Constraints

Equivalence

- Financing with state-contingent debt subject to collateral constraints (4) equivalent to non-contingent debt plus

  - ... risk management with one-period Arrow securities subject to short sale constraints

\[ h_t(s) \geq 0 \]

where \( h_t(s) \equiv \theta k_{t-1}(s) - Rb_t(s) \)
Financing - Risk Management Trade-off

Main result: Constrained firms hedge less!

- Firms with sufficiently low net worth do not engage in risk management (Proposition 7)
  - Or: ... exhaust debt capacity against all states
  - More generally: more constrained firms hedge less!

- Intuition:
  - Financing need for investment overrides hedging concerns.

- Consistent with the evidence:
  - Smaller (and low dividend paying) firms hedge less.

- But isn’t this the opposite of what received theory predicts? – Indeed.
Reconsidering Risk Management

Risk management as in Froot/Scharfstein/Stein (1993)

• They assume
  
  ... complete markets, perfect enforcement at $t = 1$, and no financing need at $t = 0$
  
  and show that optimal hedging policy implies "full hedging"

• ... and equalizes marginal value of net worth across states at $t = 1$

\[
\pi(H) \quad s = H: \mu_1(H) \quad \text{Complete hedging: } \mu_1(H) = \mu_1(L) \\
\pi(L) \quad s = L: \mu_1(L)
\]
Reconsidering Risk Management (Cont’d)

Financing and risk management subject to collateral constraints

• Our model assumes
  
  • ... complete markets subject to collateral constraints and financing need at \( t = 0 \)

and implies that

• ... financing need can override hedging concern

\[
\mu_0 = R\mu_1(H) + R\lambda_1(H)
\]

\[
\mu_0 = R\mu_1(L) + R\lambda_1(L)
\]

Financing need for investment

\[s = H: \mu_1(H)\]

\[s = L: \mu_1(L)\]

No hedging: \( \mu_1(H) \neq \mu_1(L) \)
Distribution of Debt Capacity

Synopsis

• **Productive borrowers exhaust debt capacity**
  
  • ... because the opportunity cost of conserving debt capacity is foregone investment
  
  • Ditto for constrained firms!

• Such firms may be **forced to downsize**
  
  • ... exactly in times when cash flows are low but investment opportunities arise

• **Financial innovation** may aggravate these effects
  
  • ... as higher $\theta$ means firms can pledge more (leaving them with less net worth ex post)

• Infinite horizon model: Rampini/Viswanathan (2010) *Collateral and capital structure*
Conclusion

Financing and risk management are fundamentally linked

- Firms’ promises to pay are limited by collateral constraints
- New perspective on dynamic risk management
  - ... more constrained borrowers hedge less
- Productive/less well capitalized borrowers likely exhaust debt capacity
  - ... and may be forced to downsize