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Abstract—Many real-life machine learning challenges can be
modeled as a time-varying optimization problem that depends
both on personal preferences as well as external factors. Given
that these optimization scenarios can heavily depend on the past,
and that many widely-used collections of objective functions can
be parametrized by a subset of finite dimensional Euclidean
space, we propose the novel methodology of simultaneously
modeling both objective functions and external data to formulate
optimization problems. In particular, we show via theoretical
results that modeling objective functions by time series of their
parameters is feasible for a wide class of parametrizations and
objective functions. We also detail an algorithm that can be used
to simultaneously learn appropriate pairs of models on both
objective functions and data, and show the wide applicability
of our algorithm in both synthetic and real data experiments.

I. INTRODUCTION

Recommendation problems represent a wide range of data-
driven discoveries in human life. Though the Netflix problem
is by far the most famous in the machine learning community,
recommendation problems exist when sommeliers recommend
beverages to customers, real estate agents recommends houses
to prospective homeowners, investment companies recommend
portfolios to investors, among many other possibilities. From
a research perspective, much attention has been given to the
fixed-objective scenario: given user preferences, a good recom-
mendation system would yield good recommendations to the
user. From an optimization perspective, a user’s preferences
can be modeled as some (potentially highly nonconvex) opti-
mization function, while a recommendation system functions
as a black box that gives a candidate solution, which can be
subsequently evaluated by the user.

It is of immense practical interest, however, to also con-
sider the time-varying-objective scenario. In practice, a user’s
interests may depend not only on the total content of their
preference history but also on the time in which the evaluations
are made. For example, a person may prefer heartier foods or
warmer beverages in cold months and vice versa in hotter
months. Referring back to the Netflix problem, a user who
watched one particular combination of genres may be in the
process of binge watching this particular combination or may
want to switch to something unrelated to movies watched
prior, or may get into a particular habit of occasionally trying
genres that they historically do not like. From an optimization
perspective, the user’s objective function is both time-varying
and dependent on the past. Thus, in order to ensure proper

behavior, any such recommendation system/optimizer must be
carried out in an online manner.

In the online optimization setting, at a given time tk, an
optimizer will compute a candidate optimum xk+1 for time tk+1
based solely on the information received up until time tk. After
computation, the true optimization function ftk+1 is revealed,
and a loss is suffered. The loss depends on the application in
mind. In many branches of online learning, we use losses of
the form

T∑
t=1

ft(x̂t) −

minx

T∑
t=1

ft(x)

 (1)

where we seek to minimize the cumulative error of all possible
choices of actions for each time step with respect to the best
fixed cumulative action in hindsight. This form of regret is
used in the online convex optimization literature, see [21],
[24], [27], [28] for general detailed overviews of problems in
this scenario and recent work; in particular, it is not hard to
prove under general assumptions that the naive generalizations
of standard descent algorithms are provably asymptotically
optimal in the sense that they achieve optimal regret in the
sense of Equation (1). For the course of this paper, we will
instead compare our actions at a given time with the best
possible action at that time: namely, at a particular time t,
the instantaneous regret of our choice of xt is given by

ft(x̂t) −min
xt

ft(xt) (2)

One can then define the total regret to be the sum of all
of the instantaneous regrets. This definition is more suitable
for the initial setting outlined above, where a fixed, time-
invariant recommendation system would not perform optimally
compared to one that could adapt in time. Research in this
direction focuses on using different methods to, assuming that
xt−1 is the optimum of ft−1, approximate xt using certain
assumptions on both the regularity of the optimal trajectory
as well as the objective functions in both space and time (see,
e.g., [3], [14], [25] and the references therein).

In the spirit of the recommendation system example outlined
earlier, we list a number of assumptions made throughout the
remainder of the work.

• Rather than attempting to find the trajectory of a given
series of computed optima, we instead assume that we
are interested in predicting the trajectory of objective
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functions in time. We do not, however, assume that the
objective necessarily varies smoothly in time. We will be
more precise about this later.

• Related to the previous assumption, we assume that we
have access to an oracle that we can call at each time
to globally optimize a given function at each time step.
This is guaranteed, for example, in the convex setting by
using standard descent methods.

• The exact optimization problem of interest at each time
ultimately depends on data that is separate from the
objective function.

In particular, we will take the novel approach of modeling
the sequence of objective functions as a time series. From a
purely theoretical perspective, this is feasible because a wide
class of objective functions of interest can be parametrized
as a potentially infinite dimensional vector. Namely, if f :
A → R is a continuous function, where A is a subset
of finite dimensional Euclidean space, then f is uniquely
determined by its values on a countable number of points;
this is a direct consequence of the density of the rationals on
the real line [23]. In particular, if one allows for countably
infinite linear combinations of functions, the space of such
continuous functions has countable dimension. In practice,
one can even go further and assume that spaces of objective
functions of interest are inherently finite dimensional. For
example, the set of Lp norms for p > 1 is parametrizable
in one dimension, and many objective functions of interest
are parametrizable in two dimensions [4]. Given that, under
many circumstances of interest, external data can reasonably
be assumed to be finite dimensional, we combine the above
to make the reasonable assumption that the both the data and
the objective functions can be simultaneously modeled via a
(potentially high dimensional) vector time series. This allows
us to add a wide array of literature of techniques to the study
of the time-varying problem. See [7], [16] for non-exhaustive
overviews. Note that, from a proper mathematical perspective,
objective functions of interest may belong to some general
Hilbert or Banach space, and time series of such functions have
been studied in, e.g., [6]. For simplicity of presentation, in this
paper, we will not utilize the full scope of these techniques
and restrict ourselves to finite dimensional spaces, which is
sufficient for a wide variety of purposes. In particular, we will
see that under reasonable conditions, facts about time series
of real-valued functions can be used to obtain analogous facts
for time series of objective functions.

Though we will see that forecasting of objective functions
can be done via forecasting of their parametrizations, there
still remains the notion of accurately modeling the objective
functions and data. In practice, the exact process generating
both the data and the objective functions are not known;
nevertheless, there are wide classes of models, e.g. neural
networks, that are used in practice despite them not being
the exact generating process. In this mis-specified case, it is
of significant interest to learn the models from the collection
of interest that best model the data and objective function up
to any noise in the process. Numerous problems in online
learning, such as the nonstochastic multiarmed bandit problem

[2] can be reduced to a variant of the exponential weight
algorithm for prediction with expert advice [9]. In particular
we will see that minor modifications to this algorithm will
allow us to adapt it for simultaneous learning of both the
models behind the data and the objective functions.
Given that we allow for random fluctuations in time for
both the objective functions and external data, regret is no
longer a reasonable quantity of interest to minimize. Instead,
under reasonable assumptions on the randomness, expected
regret is more reasonable. Related to expected regret, we are
particularly interested in accurate modeling and subsequent
optimization in the asymptotic case, i.e. that our optimizations
are asymptotically efficient. We make this more precise in the
next section.

The remainder of the paper is organized as follows. In
Section II, we discuss relevant preliminaries and formally
define asymptotically efficient optimization. In Section III, we
theoretically justify why Euclidean time series techniques can
extend to those for objective functions. In Section IV, we detail
our algorithm to achieve asymptotic efficiency in optimization.
In Section V, we illustrate the efficacy of our algorithm by
showing results for synthetic and real data experiments. In
Section VI we make concluding remarks.

II. Preliminaries

A. Relevant Definitions

Recall that a time series on R is an R-valued stochastic
process indexed by time, which for this paper we will assume
to be discrete. There are many problems that can be modeled
using techniques for time series. Our focus will be restricted
to forecasting: given a (possibly infinite) sequence Xt, Xt−1, ...,
we would like to accurately predict Xt+1 on average up to
noise. Note that many results in prediction can be extended to
the case that we have an Rn valued time series for n > 1. In
this paper we will focus on the real-valued case, though our
methods can easily extend for the vector-valued case.

We will also use the notion of a parametrization.

Definition 1. A parametrization of a metric space X is a
continuous bijective function f : A → X with continuous
inverse (i.e. a homeomorphism) for a subset A ⊆ Rn .

Parametrizations frequently show up in manifold theory for
locally describing manifolds in terms of coordinates [17].
Similar ideas apply here. Parametrizations allow us to unam-
biguously refer to objective functions on a space of interest
solely in terms of the corresponding vectors in Rn. We will
make use of a particular type of parametrization for our
theoretical discussions.

Definition 2. Let (X, d) be a metric space. A parametrization
f : Rn → X is Lipschitz continuous if there exists a constant
C > 0 such that, for all x, y ∈ Rn

d( f (x), f (y)) ≤ C||x − y|| (3)

This is a direct extension of the definition of a Lipschitz func-
tion for target spaces that are not Euclidean. Parametrizations
that satisfy Definition 2 thus satisfy a bound on the amount of
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distortion suffered by mapping from Rn to X. We will see that
this control is sufficient to establish approximation bounds on
function predictions.

Finally, we make an abstract definition of an optimization
problem that will suit our modeling purposes.

Definition 3. Let X be a function space. An optimization
problem of the form

O(φ) subject to D

is a triple (φ,D,O), where φ ∈ X is a function from some
subdomain of Rn → R in some space X, D ∈ Rm, and O :
(X,D)→ R.

In practice, D represents relevant constraints on the opti-
mization problem and O will always be minimization or
maximization with respect to the constraints defined by D.

B. Asymptotically Efficient Optimization

The ultimate goal of this work is to define and propose
a desirable condition for learning and subsequently solving
optimization problems. Specifically, we would like to consider
a notion of asymptotic efficiency in solving optimization prob-
lems. To illustrate what we mean by asymptotic efficiency,
consider the following example from statistical learning.

Example 1. Given data points z1, ..., zn ∈ Z where Z is the
domain of observations. We are frequently interested in finding
the data generating model that minimizes the out-of-sample
loss for a given loss function ` : Hn[α] × Z → R, where Hn

is a collection of statistical model classes for n data-points.
Out-of-sample loss is defined as follows. Define θ̂n[α] by:

θ̂n[α] = argmin
θ

1
n

n∑
i=1

`(zi, θ[α], α)

where θ belongs to some compact parameter space and α ∈
Hn. Then the out-of-sample loss is defined by

Ln[α] := E`(·, θ̂n[α], α) =

∫
`(z, θ̂n[α], α)p(z)dz

where p(z) is the true data-generating process. For indepen-
dent data, such model selection is usually performed via cross-
validation, where a training set determines the parameters
of the model and the out-of-sample loss is approximated by
using an dataset independently generated of the training data.
There exist methods such as Akaike Information Criterion,
Takeuchi Information Criterion and generalizations that un-
der certain assumptions asymptotically yield the true out-of-
sample loss [1], [12], [13], [26].

We now make the following definition. Roughly speaking,
we are given a class of pairs of models, where one element
models the objective function whereas another element models
the external data. We do not assume that the model pairs
correctly characterize the true process. Assume without loss
of generality that we are interested in minimization. We say
that an optimization procedure is asymptotically efficient if
the value computed by the procedure relative to the true

optimization problem converges asymptotically to that of the
best possible model pair in a given class. More precisely:

Definition 4. Let {Pt} := (φt,Dt,O) be an time-varying
sequence of optimization problems. Without loss of generality
assume that φt > 0. LetM be a class of models m = (mφ,mD),
where mφ and mD are models for the objective function and
data processes respectively. Let Fm(t) for a model m ∈ M
be a procedure that uses all optimization problems up to
time t to output a candidate optimizer xt+1 of φt+1. We
say that a procedure AM(t) for optimization problems is an
asymptotically efficient minimizer if it outputs x̂t such that

lim
t→∞

φt+1(x̂t)
minm∈M φt+1(Fm(t))

→ 1.

It is natural to ask under what conditions can such an
optimization procedure exist. In [12], [13], it was shown
under certain assumptions, such asymptotic efficiency can be
achieved if the objective function is fixed in time and the
number of data points goes to infinity asymptotically. Adapting
the result to the case where the objective function is time-
varying is a direction of future interest.

III. Modelling Time Series of Objectives by Time Series of
Parameters

In the introduction, we outlined reasons why predicting
objective functions via time series is useful. The goal of this
section is to theoretically justify our proposal that modeling
parameters will model objective functions by proxy. The
results of this section are not technically complicated, but
are nevertheless important. Our first result concerns bounds
relating the accuracy of estimation of a time series of objective
functions given the accuracy of estimation of the time series
of the parameters.

Lemma 1. Let f : Rn → X be a Lipschitz map between Rn

and a metric space (X, d). Let Xt be a time series with elements
in Rn, and let X̂t be an estimate of Xt. Assume that Xt− X̂t has
finite p’th moment for p > 1. Then we have the following.

Ed( f (Xt), f (X̂t))p ≤ CE|Xt − X̂t |
p (4)

The proof follows immediately from properties of expectations
and Lipschitz continuity. In general, this bound is tight; an
example of this is given in the case that X is a finite n-
dimensional subspace of a Hilbert space of loss functions
with basis {vi}. If {ei} is an orthonormal basis of Rn, then
the unitary transformation U : Rn → X that takes ei to
vi is Lipschitz with constant 1 (because unitary operators
preserve distances), and the expectations on both sides of the
inequality in Theorem 1 are equal because of the Pythagorean
theorem for Hilbert spaces. Similar results also extend to cases
where the estimate of the time series of the parametrization
is misspecified, though the bounds will also depend on the
degree of inaccuracy.

Theorem 1 captures a natural statement: if an estimate of
the parameters of a loss function is accurate on average, then
so is the estimate of the loss function up to noise. It is easy
to extend this fact to show that, under certain assumptions on
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the noise, we can develop Chernoff bounds that give estimates
on how close a given estimate of an objective function is
to the true objective function in probability. This, however,
does not necessarily imply anything about locations or values
of optima. If we assume that our objective function f is
an element of the Hilbert space L2(R) of square-integrable
losses on R, then it is easy to construct examples of objective
functions arbitrarily close in L2 whose optima have locations
and values arbitrarily far away from those of f : to see this,
we only have to pick a tent function whose spike is centered
at a specified value with its width depending on its height.
We can, however, restrict to a reasonable space of objective
functions for which, while the optima can potentially have
arbitrary location, the optimal values are reasonably close.
Specifically, let L∞(D) be the space of bounded functions on a
subset D ⊆ Rn equipped with sup norm || f ||∞ := supx∈D | f (x)|.
With respect to the metric d∞ induced by this norm, any two
functions f , g ∈ L∞(D) satisfying d∞( f , g) < ε necessarily have
their global minimum (maximum) values differ by at most ε.
Note that this space naturally includes Lipschitz functions on
compact metric spaces, so the result applies for a wide class
of objective functions of interest.

We remark that in general, we cannot extend the results to
say that locations of global optima are also reasonably close,
even if we restrict ourselves to Lipschitz functions with norm
|| f || := || f ||∞ + L f , where L f is the infimum of all possible
Lipschitz constants. In order to do this, we would need to
assume lower bounds concerning the differences between the
global maxima/minima with the other local maxima/minima1

That such a result would hold is obvious. We can also get
this by having some control over the second derivatives. More
precisely:

Theorem 1. Let f : D → R be an m-strongly convex C2

function defined on a compact subset D ⊆ Rn. Such a function
is defined by the inequality

f (y) ≥ f (x) + ∇ f (x)T (y − x) + m||y − x||22

for all x, y ∈ D. [8] Then for every ε1, ε2 > 0, we can find δ > 0
such that || f − g||∞ < δ implies that |minx f (x)−minxg(x)| < ε1
and ||argminx f (x) − argminxg(x)|| < ε2

Proof. It is clear that taking δ = ε1 gives the condition on the
minimum values. The validity of the argmin condition requires
the strong convexity assumption. Assume that x is the argmin
of f . The assumption that || f −g||∞ < δ implies that the argmin
of y must occur in the set A := {y ∈ D : | f (y)−minx f (x)| < δ}.
This set is necessarily connected as otherwise the smooth-
ness would imply that f has a local maxima, contradicting
the convexity assumption. If we apply the strong convexity
assumption around the argmin x, we see that

f (y) ≥ f (x) + m||y − x||22

as ∇ f (x) = 0. Basic manipulations show that, for y ∈ A, we

1This is of little concern from a practical perspective given that many
functions of interest can be highly nonconvex for which local optima can
be more than sufficient.

necessarily have ||y− x|| ≤
√

δ
m . Thus letting δ = min(ε1,mε2

2)
gives the claim. �

To summarize the above discussion: if we have a time
series of objective functions in a parametrized space with
parametrization with reasonable bounds on distortion, we
have guarantees in both high probability and expectation that
our estimated objective function is accurate. Under further
assumptions on our space of objective functions, we can
prove that the optimal value of our objective functions is
reasonably accurate, and we have guarantees on accuracy of
the location of the optimal values. Thus time series techniques
for Euclidean space can be adapted to estimate objective
functions.

IV. Modelling Time-Varying Optimization Problems

Though the previous section justified why a time series
approach can successfully model time-varying optimization
problems, we now propose a method to accurately model them
in practice. As previously mentioned, the exact optimization
problems we wish to predict will depend not only on the
predicted objective function but our predictions of the data
at any given time. In practice we will rarely know the true
generating processes governing the data and objectives, so
any algorithm we propose must allow for potentially incorrect
models.

Assume that we have some finite collection M of models
for both the objective function and data generating processes.
At a given time t = n, we do not know the future data
or objective, however a given pair of models (one for data,
one for objective) will give the best performance with respect
to the collection of estimating the future. We would like to
asymptotically predict the best model as time goes to infinity
in the sense of Definition 4. From a practical perspective,
we desire such a method that achieves good performance in
practice even for short time periods and classes of models that
are not sufficiently rich.

We summarize the main algorithm of our paper in Al-
gorithm 1. Our algorithm is a modification of the standard
algorithm for expert learning with exponential weights. At
each time, we use the previously observed data and objective
functions as inputs to prediction algorithms Fi(t − 1) that fit
models to both the data generating and objective function
generating processes using all data obtained up to time t − 1,
predict the next optimization problem, and output the opti-
mizer of the predicted problem. For each predicted optimizer,
we obtain a loss φi0+t(Fi(t − 1)) by evaluating our prediction
at the true objective function, and update the predicative
weights on our models accordingly. We add an additional
optional step for introducing new models: there are frequent
scenarios where one would like to fit a model to given data
but cannot do so until enough arrives. This step allows for
gradual introduction of models by readjusting the weights of
the predicative distribution at a given time of introduction
using a change parameter m. Without this step, the algorithm
reduces to the classical exponential weighting algorithm. The
specific criteria for expansion is problem dependent and thus
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Algorithm 1 Expert Learning Algorithm for Modeling Data
and Objectives

Input: Parameters η > 0, 0 < m < 1 initial data D1, ...,Di0 ,
initial objectives φ1, ..., φi0 ,
Output: pt = [pt,1, ..., pt,N] (predicative distribution over the
active objective/data model pairs
Initialize w1,0 = ... = wk0,0 = 1, wk,0 = 0 for k > k0
M = k0
for t = 1→ T do

if Received sufficient amount of objectives and data to
fit model M + 1 then

w1,0 = (1 − m)w1,t−1, ...,wM,t−1 = (1 − m)wM,t−1
wM+1,t−1 = m
M = M + 1

end if
Calculate the predicative distribution pi,t =

wi,t−1/
∑N

j=1 w j,t−1 for each 1 ≤ i ≤ N
Compute Fi(t − 1) for each 1 ≤ i ≤ M
Observe optimization problem (φi0+t,Di0+t)
Compute li = exp(−ηφi0+t(Fi(t − 1)) for each 1 ≤ i ≤ M
Compute wi,t = pi,t−1li

end for

open-ended. The η parameter is standard in the exponential
weighting algorithm and is called the learning rate.

V. Experiments

We now evaluate the behavior of our proposed algorithm on
problems using both synthetic and real data. Given that our
framework depends on black box global optimizers, we restrict
our experiments to convex problems, though the algorithm can
readily be applied to nonconvex problems. For completeness,
we state necessary model definitions.

In this paper we will make use of two.

Definition 5. An autoregressive process of lag k with mean
zero, denoted AR(k), is a process for which there exist con-
stants a1, ..., ak satisfying some conditions such that

Xt =

k∑
i=1

aiXt−i + εt,

where εt are i.i.d. Gaussian random variables with mean zero
and variance 1.

Specific conditions on the constants can be found in standard
textbooks on time series.

Definition 6. A moving average process of lag 1 with mean
zero, denoted MA(1), is a time series for which there exists a
constant |a| < 1 such that

Xt = εt + aεt−1

where the εt are i.i.d. Gaussian random variables with mean
zero and variance 1.

A. Synthetic Data Experiment

Convex combinations of L1 and squared L2 losses are of
immense importance in machine learning. We consider such
a collection of loss functions: at time t, our loss function is
of the form λt || · ||

2
2 + (1 − λt)|| · ||1, where λt is generated by

a reflected Brownian motion starting at λ1 = 0.5, where the
variance of each time step is 0.01. We specify that the λ are
always at least 0.1 and always at most 0.9. These losses are
always convex, hence an oracle can optimize all of these losses
exactly.

At each time t, we would like to select an AR(k) model, for
1 ≤ k ≤ 20 that best fits the above process. For each of these
models of λ,, we then fit another AR(k′) model, 1 ≤ k′ ≤ 20
that best fits an MA(1) model of data with zero mean and lag
coefficient 0.8. At each time, we use each process to predict the
value of λ, and then subsequently for each value of predicted
λ compute the predicted lags of the desired AR process for
the data. We start at time t = 11 with 11 data points, and go
to time t = 80, adding a new data point at each time. After
fitting each model, we observe the expected loss with respect
to the true convex combination (note that in this case it is not
hard to derive an analytical formula for the expected loss).
Higher model lags are gradually added as enough observations
become available to ensure accurate fitting. The optimization
for this experiment was performed using Gurobi and YALMIP
in Matlab [15], [19]. Keeping with notation, the objective
function at φt is the true convex combination of expected L1
and squared L2 losses.

Fig. 1: Predicative vs Optimal Model Loss of the weighted
L1-L2 experiment.

Figure 1 show the results of the average of the experiment
repeated 50 times. In this figure, the change multiplier m = .2
and the tuning parameter η = 2. We that as more data is added,
the average of the predicative losses converges to the average
optimal loss for the pairs of model classes.

We also use this example to empirically analyze the effect of
the choice of parameters of our algorithm affect convergence
to optimum values. We first investigate the effect of choosing
different tuning parameters. We use the data from the previous
experiment with η = 2 but m ranging between 0.05 and 0.5
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Fig. 2: Top: Convergence results for different change parame-
ters. Bottom: Convergence results for different learning rates.

in increments of 0.05. The results can be found in the top
of Figure 2. We see that, asymptotically, the precise value
of the change parameter has negligible effect on convergence
of the average predicative loss to the average optimal loss
given by the dashed line. The figure directly below illustrates
the same result but with m = 0.2 fixed and η ranging
between 0.5 and 5 in increments of 0.5. We again observe
asymptotic convergence on average to the optimal loss, with
stronger convergence for higher learning rates. These results
are not surprising: lower learning rates make the predicative
distribution closer to uniform, requiring more time to converge.
Nevertheless, convergence is observed, albeit more weakly for
the lowest learning rate.

B. Real Data Experiment

We now consider our method on the real world problem
of portfolio recommendation. Though there are a number of
different ways to construct portfolios in both online and offline
settings (see, e.g., [10], [20], [22], we restrict our attention
to Markowitz portfolio theory. Given a collection of assets
z1, ..., zn, the Markowitz optimal portfolio allocation is given
by:

argmin
w∈Rn

wT Σw − λwTµ (5)

w1, ...,wn ≥ 0,
n∑

i=1

wi = 1

where Σ represents the covariance matrix for the returns of the
assets, µ is the average return of each asset, and λ > 0 is a
parameter encoding the tradeoff between expected returns and
risk; optimizing with λ = 0 finds the portfolio with the least
amount of risk. The above function is quadratic, hence there
exists a global optimizer. For our purposes, Σ, µ, and λ will
be time-varying.

Using our framework, we consider the following recommen-
dation problem. In this scenario, a portfolio manager reaches
out to his client every month (30 days) with a series of new
portfolios, each of which is constructed built by estimation
of their client’s risk tolerance and subsequent optimizing of
Equation (5) given different lookback periods on a given
collection of assets to be between 15 and 90 days in increments
of 15 for computing relevant means and covariances. The risk
tolerance is estimated by a series of autoregressive processes
on the risk tolerance with lags between 30 and 180 days in
increments of 302.

Unbeknownst to the manager, the client evaluates the port-
folio also via Equation (5), but with a 150 day lookback period
and a risk generated by a recursion dependent on the past 240
days. The recursion is generated in this simulation by letting
the risk parameter be .5 for the first 240 days followed by
a recursion generated by multiplying a uniformly randomly
generated point on the eight dimensional unit simplex by
0.75. To simulate uncertainty in risk at any particular time,
each computed risk parameter is perturbed by independent
exponentially distributed noise with parameter λ = 10. The
client will only choose one portfolio at each 30 day period.

As data, we make use of the NYSE dataset used frequently
in the portfolio optimization literature, a collection of 36 stock
returns taken over a period of 22 years [5], [18]. We also add
a risk-free asset that gives constant, low returns of 1% every
360 days compounded daily. The goal, as with the synthetic
experiment, is to predict the best portfolio of those offered
that optimizes the client’s objective function without knowing
that objective function in the future. We use MATLAB’s built-
in quadprog function using a slightly regularized covariance
matrix to ensure numerical well-posedness of the quadratic
problem. Due to numerical issues, computed optima may (very
slightly) lie outside of the feasible set; we project these optima
onto the feasible set by removing any (slightly) negative values
followed by normalizing optima to sum to 1.

The results of this experiment are detailed in Figure 3
after running 50 experiments (each experiment corresponds
to a different risk tolerance recursion) with learning parameter
η = 1003. Our analysis starts 300 points in on the available
return data, meaning that all models for the optimization

2Risk is only observed every 30 days
3This is needed as the values of the objectives had small magnitude, hence

the distributions would otherwise be close to uniform
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Fig. 3: Scaled Predicative vs Scaled Optimal Model Loss of
the Portfolio Optimization Prediction Experiment.

problems are well-specified so no change multiplier is needed.
The result is the same as in the synthetic case: with enough
observations, the predicative loss asymptotically approaches
that of the optimal loss. The loss in this experiment is scaled
for visualization purposes.

VI. Conclusion

In this paper we have proposed a novel methodology for
time-varying optimization by simultaneously modeling objec-
tive functions and data relevant to the objective function.
We showed that a large class of objective functions can be
reasonably modeled in this way. We also detailed an algorithm
for simultaneous prediction of data and objective function and
showed experimentally in scenarios involving both synthetic
and real data that predicative losses will converge asymptoti-
cally to optimal losses for given classes of objective functions.

There are many directions in which this line of research can
evolve. From a theoretical perspective, it would be interesting
to look at the problem from the context of functional time
series, where we assume that the objective function is in some
Hilbert or Banach space with countable dimension rather than
a finite-dimensional space, as is done in [6]. These cases
cover a wide variety of loss functions of interest, such as
those in L2 or Lipschitz losses. It is also of great theoretical
and practical interest to investigate the case where we have
multiple objective functions, which could be modeled as a
vector time series [11]. This situation creates a notion of
tradeoff, where we may have to favor one objective function
over another after employing some scalarization procedure.
This could also lead to the study of modeling manifold-
valued time series for objective functions, for which geometric
techniques could be employed.

From a practical perspective, we considered only limited
classes of time series in the experiments, and it would be
extremely interesting to see how other classes adapt to our out-
lined framework, particularly autoregressive integrated moving
average (ARIMA) and generalized autoregressive conditional
heteroskedasticity (GARCH) models for time series that are

used in many applications. We will also investigate the behav-
ior of neural networks in the time-varying objective scenario,
for which many interesting questions could be posed.
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Appendix

In this section we detail the expected error of fitting an
MA(1) model by an AR(k) model. We consider the expected
squared error, the expected absolute error can be dealt with
similarly.

For an MA1 process with lag parameters a we have that
Xt+1 = εt+1 + aεt. If we estimate the MA(1) process via an
AR(k) process, we see that the predicted X̂t+1 satisfies

X̂t+1 =

k∑
i=1

bi(εt−i+1 + aεt−i),

which, after regrouping terms, we have

Xt+1 − X̂t+1 = (a − b1)εt −

 k∑
i=1

(bia + bi+1)εt−i

 − bkaεk,

Since the ε terms are independent and mean zero, standard
algebraic manipulations yield

E(Xt+1 − X̂t+1)2 = (a − b1)2 +

k∑
i=1

(abi + bi+1)2 + a2b2
k
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