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Abstract

Many open problems in machine learning, pattern recognition, and geometric analysis
require enumeration of different types of lattice polygons, and in particular con-
vex polyominoes. In this work, we develop a large deviation principle for convex
polyominoes under different restrictions, such as fixed area and/or perimeter.

Keywords: large deviation principle; convex polyominoes; Young diagrams; pattern recognition.
MSC2020 subject classifications: 05A16; 05B50; 05E10; 60F10.
Submitted to EJP on June 7, 2020, final version accepted on July 27, 2022.

1 Introduction

The dramatic growth in practical applications for machine learning and pattern recog-
nition over the last ten years has been accompanied by many important developments in
the underlying algorithms and techniques. One of the most prominent tools allowing to
asses the quality of these algorithms consists in derivation of lower information-theoretic
bounds serving as benchmarks in comparative studies. Such bounds may quantify the
best achievable performance (e.g. Cramer-Rao bounds), sample or computational com-
plexity, etc. Derivation of many of such bounds essentially boils down into estimation
of the number of admissible models one of which is to be chosen as the outcome of the
learning process. For example, in pattern recognition the goal is to select a pattern
from a family of models best suiting the input data under some performance criteria.
The sample complexity of such model selection is controlled by the richness of the set
of eligible models or patterns, e.g. [1, 14, 15]. In its turn the problem of counting the
cardinalities of model classes is equivalent to the questions of enumeration of geometric
shapes.

Enumeration of geometric shapes has been one of the central combinatorial problems
for a long time [10, 18]. Recently discovered connections to the theory of random
partitions and concentration of measure have drawn attention of many scientists to this
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Large deviations of convex polyominoes

area. Let us start by mentioning the fundamental pioneering works of Vershik, Blinovskii,
Dembo and Zeitouni [2, 7, 16], who developed the large deviation principle for integer
partitions. A partition of a positive integer n is a finite non-increasing sequence of
natural numbers

ι = (ι1, . . . , ιb), (1.1)

with
∑
j ιj = n. A convenient and useful way of viewing and analyzing partitions is

through their Young diagrams. The Young diagram of ι is the union of b rectangles of
height 1 and length ιb each aligned with the integer lattice over the R2 plane and stacked
upon each other in such a way that their left sides form a straight vertical line and are
ordered as in ι starting from the bottom, as in Figure 1. Because of this ordering, the
upper right part of the diagram’s boundary – also refereed to as the interface of the
diagram – shall form a non-increasing piece-wise constant function. It was shown in
[2, 7, 16] that for an integer n, the interfaces of the 1√

n
-scaled Young diagrams endowed

with the uniform measure concentrate around a non-random limiting curve when n grows
to infinity. In [16] Vershik calculated the exact shape of the curve. Given an arbitrary
curve satisfying some natural regularity conditions, the authors of [2, 7] derived the
exact speed and rate function controlling the number of scaled Young diagrams in a small
vicinity of the curve. This line of research was further extended by other mathematicians
to different setups and conditions. In [7] a large deviation principle for strict partitions
was derived, in [17, 19] – for convex polygons on an integer lattice, etc. In some cases
only the limiting curve was obtained without the large deviation principle, e.g. the case
of restricted and boxed partitions [13].

Consider the integer (square) lattice on the R2 plane. A lattice polyomino is a union
of elementary lattice cells which must be joined at their sides. A polyomino is said
to be column-convex in a given lattice direction if all the cells along any line in that
direction are connected through cells in the same line. A polyomino on the integer
lattice is convex if it is column-convex in both horizontal and vertical directions, as in
Figure 2. Note that Young diagrams are convex polyominoes. One of the main problems
in the field of convex polyominoes is their enumeration [10]. There exists a large body of
literature addressing the problem of polyomino counting according to their perimeter
and/or area [3–6]. However, in all these works the desired numbers are given implicitly
as coefficients of the corresponding terms in the series expansions of the generating
functions derived therein. These series are usually too complicated and bulky to be
directly analyzed and the sought for coefficients cannot be easily extracted. Moreover,
even the asymptotic behavior of these coefficients is by no means obvious to derive.
Using general ideas on counting of Young diagrams from [2], in this work we develop
a large deviation principle for convex polyominoes with different constraints, such as
perimeter, area or both. Interestingly, our findings generalize some of the results in
the works devoted to the study of equilibrium shapes of convex polyominoes of fixed
perimeter under different pressure [11, 12].

The rest of the text is organized as follows. First we introduce the concept of a large
deviation principle and discuss the main geometric properties of convex polyominoes
in Section 2. We formulate the main results in Section 3 and provide their proofs in
Section 4.

2 Definitions

2.1 Large deviation principle

In this section we introduce the notion of a Large Deviation Principle (LDP) [8]. Our
main result concerning the enumeration of convex polyominoes will be formulated in
terms of an LDP. Let P be a Polish space meaning that it is a separable topological space
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Figure 1: A Young diagram of the partition ι = (8, 7, 6, 3, 1) of n = 25.

Figure 2: A convex polyomino.

such that there exists a metric on it that generates the topology of the space and P
equipped with that metric is complete. We shall also equip our Polish space with its
Borel σ-algebra turning it into a measurable space. For a measurable B ⊂ P, denote by
B0 the interior of B and by B̄ its closure (which are necessarily measurable, too).

Definition 2.1. A sequence {Pn}∞n=1 of probability measures on P satisfies a Large
Deviation Principle with speed an and rate function I if

− inf
b∈B0

I(b) 6 lim inf
n→∞

log Pn(B)

an
6 lim sup

n→∞

log Pn(B)

an
6 − inf

b∈B̄
I(b), ∀B ⊂ P,

where I : P → R+ is lower semi-continuous (its level sets L(M) = {b ∈ P|I(b) 6M} are
closed for any M > 0). If all the level sets in L(M) are compact, we refer to I as a good
rate function.

Given an element γ ∈ P, let Uε(γ) be its ε-vicinity. In addition to the LDP, we also
formulate the so-called local LDP.

Definition 2.2. Assume that for all γ ∈ P,

lim inf
ε→0

lim inf
n→∞

log Pn(Uε(γ))

an
= lim sup

ε→0
lim sup
n→∞

log Pn(Uε(γ))

an
= −I(γ),

then we say that Pn satisfies the local LDP.

The last definition can be roughly interpreted as

Pn(Uε(γ)) ∼ e−anI(γ).

2.2 Convex polyominoes

We start with the following trivial property of convex polyominoes.
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Large deviations of convex polyominoes

Lemma 2.3 ([10]). A polyomino is convex if and only if its perimeter coincides with the
perimeter of its circumscribed rectangle.

Proof. Immediately follows from the convexity.

Figure 2 shows an example of a convex polyomino on a square lattice and its cir-
cumscribed rectangle. In the discrete scenario we have the following analog of the
isoperimetric inequality.

Lemma 2.4 (Isoperimeteric inequality on the square lattice). For a polyomino of area A
and perimeter L on the square lattice,

A 6
L2

16
, (2.1)

the equality is reached when the polyomino is a square.

Proof. We must only prove (2.1) for convex polyominoes. Due to Lemma 2.3, the
perimeter of the circumscribed rectangle of a convex polyomino of perimeter L is
also L. Clearly, the area of such a polyomino is maximized when it coincides with its
circumscribed rectangle. Among the rectangles of perimeter L, the area is maximal for
the square, which completes the proof.

3 Large deviation principle for convex polyominoes

Consider the plane R2 with the standard basis and fixed origin. Assume that we are
given a closed piece-wise differentiable curve Γ ⊂ R2 which is unimodal in both vertical
and horizontal directions. In other words, every horizontal and vertical line intersects
the curve in at most two points. Denote the region embraced by Γ by G and its area by

area(G) = A.

For convenience, let us assume that the barycenter (center of mass, assuming uniform
density) of G coincides with the coordinate origin.

Given two curves Γ1 and Γ2, the distance between them is defined as

d(Γ1,Γ2) = area(G1∆G2). (3.1)

Figure 3: The original unimodal curve Γ ⊂ R2.
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Large deviations of convex polyominoes

For every n ∈ N, we construct the integer lattice centered at the origin and scale it
by 1√

n
so that the area of every elementary cell becomes 1

n . Consider the set of convex
polyominoes in the ε-vicinity of Γ, which we denote by

Qn = Mn ∩ Uε(Γ),

where Mn is the set of all convex polyominoes on the 1√
n

-grid and the vicinity of Γ is

determined with respect to the distance d(·, ·) defined in (3.1). Our goal will be to count

Figure 4: The curve and the approximating convex polyomino.

the polyominoes in Qn satisfying different conditions, for example, the polyominoes in
Qn having fixed area QA1, fixed perimeter QL, or both fixed area and perimeter QA,L,
etc. We start from enumerating the polyominoes of fixed area and later show that the
other cases are treated analogously. We write2

QX = |QX |, X = A,L, {A,L}.

Also, following our convention for the curve Γ that assumes its barycenter to coincide
with the origin, we identify all shifted copies of the same polyomino and count them as
one.

Remark 1. By convention, below we write∫
Γ

f(Γ)(|dx|+ |dy|) =

∫
Γ

f(Γ(s))(| sin θ|+ | cos θ|)ds,

where Γ(s) is the natural parameterization of the curve by its arc length and θ = arctan(y′)

is the angle between the tangent line at a point and the horizontal axis.

Let

PX,n(Uε(Γ)) =
QX(Uε(Γ))

VX
, X = A,L, {A,L}.

1We suppress the n index to simply the notation.
2To be precise, we note that if for some specific n, A is not divisible by 1

n
which is the area of the unit

1√
n
× 1√

n
grid cell, we can round it to the closest integer multiple of 1

n
and denote by Ãn. If necessary, we do

the same for L and round it to a multiple of 2√
n

, where the coefficient 2 is due to Lemma 2.3 and the fact that

lattice rectangles have even perimeters. We also note that below we only count the number of polyominoes in
some ε-vicinity of the target curve and this vicinity always contains a range or parameters including Ãn and A,
therefore the distinction between the latter is of minor importance. Therefore, to simplify the notation we
shall denote the sequences of areas {Ãn} and lengths {L̃n} by A and L, respectively.
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where VX is the total number of convex polyominoes satisfying condition X.
As mentioned earlier, we first consider convex polyominoes of fixed area, X = A, and

denote Pn = PA,n. Below we explain how to treat the general case.

Theorem 3.1 (LDP for Convex Polyominoes). Let Γ be a unimodal in the vertical and
horizontal directions piece-wise differentiable curve embracing a region of area A. Then
the sequence {PA,n}n satisfies the local LDP with speed

√
n and good rate function

I(Γ) = CA −
∫

Γ

H

(
|y′|

1 + |y′|

)
(|dx|+ |dy|) = CA −

∫
Γ

(1 + | tan θ|)H
(

1

1 + | cot θ|

)
|dx|,

where H(u) = −u lnu − (1 − u) ln(1 − u) is the binary entropy, y = y(x) is the local
parametrization of the curve, and CA is the normalization constant (log-partition function
in the statistical mechanics terminology).

As an immediate corollary, we obtain the following statement where we count the
actual number of the polyominoes and not the (normalized) probability. This allows us to
get rid of the constant CA.

Corollary 3.2. The number of convex polyominoes of area A inside Uε(Γ) satisfies

lim inf
ε→0

lim inf
n→∞

log QA√
n

= lim sup
ε→0

lim sup
n→∞

log QA√
n

=

∫
Γ

H

(
|y′|

1 + |y′|

)
(|dx|+ |dy|)

=

∫
Γ

(1 + | tan θ|)H
(

1

1 + | cot θ|

)
|dx|.

Remark 2. Similar results can be obtained for convex polyominoes with fixed perimeter
and with both fixed area and perimeter. The only difference will be in the value of
constant CA. Given a specific family X of polyominoes, this constant can be calculated
as

CX = max
Γ∈X

∫
Γ

(1 + | tan θ|)H
(

1

1 + | cot θ|

)
|dx|. (3.2)

It is easy to see that the curves on which the extremum is reached [13] are concatenations
of the properly scaled segments of Vershik’s limiting shape [16] given by the equation

e
−πx√

6 + e
−πy√

6 = 1. (3.3)

In order to find the segments of this curve that maximize (3.2) for the family X under
consideration, we need to find such parts of Vershik’s curve (3.3) that satisfy the required
relations between the perimeter (coinciding with the perimeter of the circumscribed
rectangle) and area. As shown in [13] for any admissible combination of L and A we can
always find the necessary segments on the curve (3.3).

4 Proofs

This section is devoted to the proof of the main result and contains a number of
auxiliary lemmas.

Proof of Theorem 3.1. According to the definition of the LDP, the proof will be complete
if we demonstrate that

lim sup
ε→0

lim sup
n→∞

log Pn(Uε(Γ))√
n

6 −I(Γ), (4.1)

and

lim inf
ε→0

lim inf
n→∞

log Pn(Uε(Γ))√
n

> −I(Γ). (4.2)
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Let us start with (4.1). By the very definition of Γ, it can be partitioned into four
segments each of which is a graph of a strictly monotonic function. In our example
in Figure 5, the four segments are the curve arcs TNTE , TETS , TSTW , and TWTN
connecting the points of intersection of Γ with its two horizontal and two vertical tangent
lines.

Figure 5: Partitioning of the curve.

Given a polyomino Z ∈ QA, consider its top row of cells and choose the center of one
of these cells. We call the obtained point the north extreme point of the polyomino and
denote it by N (see Figure 6). Analogously, we define the other extreme points E, S,
and W 3.

Now let us consider all the polyominoes from QA whose N and S extreme points have
the same x coordinate and whose E and W extreme points have the same y coordinate.
Denote this set by QeA and let us bound its cardinality from above. Indeed,

QeA 6 QTNNA QNTEA QTEEA QESA QSTSA QTSTWA QTWWA QWTN
A , (4.3)

where QTNNA is the number of decreasing diagrams in the ε-vicinity of TNR, where R is
the point of intersection of the vertical line through N with Γ, that fit in between the
vertical lines through TN and N , QNTEA is the number of decreasing diagrams in the ε-
vicinity of RTE belonging to the quadrant to the north-east from the vertical line through
N and the horizontal line through TE and so on in an analogous manner. Note that our
definition (3.1) of the distance concerns closed curves and here we are talking about
monotonic curve segments. Let the two curve segments be defined by the monotonic
functions f : [xfl , x

f
r ] → R and g : [xgl , x

g
r ] → R. To make our argument precise, by the

distance between these two curves we will understand the integral
∫

[xl,xr]
|f(x)− g(x)|dx,

where xl = min[xfl , x
g
l ] and xr = max[xfr , x

g
r ], and the functions are extended as constants

by continuity, that is f over [xb, x
f
b ] is defined to be f(xfb ), g over [xb, x

g
b ] is defined to be

g(xgb), and similarly for the right end of the interval. Note also that in our setup, we

always have xfb = xgb or xfe = xge.

3As shown below, the obtained extreme points will naturally split the polyomino into Young diagrams. There
is some ambiguity in the choice of our extreme points when the edge rows or columns of the polyomino consist
of more than one cell, like in Figure 6. Obviously, this will only affect the counts of the Young diagrams but not
the total polyomino enumeration.

EJP 27 (2022), paper 108.
Page 7/19

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP835
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Large deviations of convex polyominoes

Figure 6: Deviation of the polyomino from the middle curve.

For convenience, take the logarithm of both sides of (4.3) to obtain

log QeA 6 log QNTEA + log QTSTWA + log QESA + log QWTN
A

+ log QTNNA + log QTEEA + log QSTSA + log QTWWA . (4.4)

Our goal will be to show that the main contribution to (4.3) is made by the diagrams
inside the large quadrants (the first row in the righ-hand side of (4.4)) and those parts of
the boundary that correspond to the segments of the form QXTXA or QTXXA (the second
row) tend to zero as ε approaches zero.

Let us start from bounding the value of log QTNNA . Indeed, the horizontal distance τN
between the points TN and N must shrink with ε because the curve is strictly monotonic,

τN (ε)→ 0, as ε→ 0.

Analogous relations hold for the other τX as well,

τX(ε)→ 0, as ε→ 0, X = N,E, S,W. (4.5)

Below we use the following simple result.

Lemma 4.1 (Diagrams With Fixed Endpoints). The number of monotonic diagrams con-
necting points (a1, b1) and (a2, b2) of the integer square lattice with a1 6= a2 and b1 6= b2
which are also right-continuous at (a1, b1) is given by

N((a1, b1), (a2, b2)) =

(
|a1 − a2|+ |b1 − b2| − 1

|b1 − b2|

)
. (4.6)

Proof. Let us associate 1 with every horizontal edge and 0 with every vertical edge. Then
the desired number of diagrams coincides with the amount of ways |a1− a2| − 1 ones and
|b1 − b2| zeros can be written into a binary codeword of length |a1 − a2| + |b1 − b2| − 1,
which is given by the binomial coefficient in (4.6).

Lemma 4.2 (Binomial Coefficient Bound, [9]). For all natural a > b,

aH

(
b

a

)
− log

(√
8πb(1− b/a)

)
6 log

(
a

b

)
6 aH

(
b

a

)
. (4.7)

EJP 27 (2022), paper 108.
Page 8/19

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP835
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Large deviations of convex polyominoes

Proof. Using Stirling’s approximation

a! =
√

2πa
(a
e

)a
er(a),

1

12a
< r(a) <

1

12a+ 1
,

we obtain(
a

βa

)
=

√
2πa

√
2πβa

√
2π(1− β)a

(a/e)a

(βa/e)βa((1− β)a/e)(1−β)a
expr(a)−r(βa)−r((1−β)a)

=
1√

2πβ(1− β)a

1

ββa(1− β)(1−β)a
expr(a)−r(βa)−r((1−β)a),

where β = b
a . Taking logarithms of both sides and recalling that

H(β) = −β log β − (1− β) log(1− β),

we write

log

(
a

βa

)
= aH(β)− log

(√
2πβ(1− β)a

)
+ r(a)− r(βa)− r((1− β)a).

Note in addition that

1

12a
− 1

12βa+ 1
− 1

12(1− β)a+ 1
< r(a)− r(βa)− r((1− β)a)

<
1

12a+ 1
− 1

12βa
− 1

12(1− β)a
.

Further bounding the left- and right- hand sides of the last inequality, we obtain

− log 2 < r(a)− r(βa)− r((1− β)a) < log
(√

2πβ(1− β)a
)
,

which necessarily implies the desired inequality (4.7).

Consider the segment RTE of the curve Γ and represent it as a monotonic function

y = f(x),

supported over the interval [V, TE ], see Figure 6 for reference. Let the part of the
boundary of the polyomino Z supported on the same interval be κn(x). Below we show
that condition

d (Γ, ∂Z) 6 ε,

where ∂Z is the polyomino boundary curve, implies that at the points O and V ,

|y(x)− κn(x)| 6 γ(ε), x ∈ {O, V },

for some function γ(ε)→ 0, as ε→ 0. Using this fact and the last two lemmas, we can
write

log QTNNA 6 log

(
(2γ(ε) + τN )

√
n

2γ(ε)
√
n

)
6
√
n(2γ(ε) + τN )H

(
τN

2γ(ε) + τN

)
,

for all n large enough. Here and below to keep the notation short we omit the rounding
square brackets in 2γ(ε)

√
n and all similar expressions and assume the corresponding

numbers to be integers. Similarly,

log QTXXA 6
√
n(2γ(ε) + τX)H

(
τX

2γ(ε) + τX

)
, X = N,E, S,W, (4.8)
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where the index TXX is used to denote both TXX and XTX interchangeably without
loss of rigor. Since H(x) is bounded and 2γ(ε) + τX → 0, when ε → 0, inequality (4.8)
immediately implies that

lim
ε→0

log QTXXA√
n

= 0, X = N,E, S,W. (4.9)

Next we focus on bounding the value of log QNTEA . The rest of the terms in the first
line of (4.4) are treated analogously to the way we treated log QNTEA .

Lemma 4.3. Under the assumptions of Theorem 3.1,

lim sup
n→∞

log QNTEA√
n

6
∫
NTE

H

(
|y′|

1 + |y′|

)
(|dx|+ |dy|) + φNTE (ε), (4.10)

where NTE is the segment of Γ in the north-eastern quadrant and φNTE (ε)→ 0, when
ε→ 0.

Proof. The proof can be found below in this section.

Remark 3. Using exactly the same reasoning as in Lemma 4.3, we can obtain similar
bounds for the rest of the quadrant segments ES, TSTW and WTN of Γ.

Let us get back to the upper bound on QA. Note that QA is a sum of QeA-s for all
possible choices of the extreme points. We know that the point N can move around TN
such that its abscissa belongs to the range Nx ∈ [TN,x − τN , TN,x + τN ]. Similarly for the
rest of the extreme points. Overall,

QA =
∑

N∈∆N ,E∈∆E ,S∈∆S ,W∈∆W

QeA

=
∑

N∈∆N ,E∈∆E ,S∈∆S ,W∈∆W

QTNNA QNTEA QTEEA QESA QSTSA QTSTWA QTWWA QWTN
A , (4.11)

where ∆N = [TN,x−τN , TN,x+τN ], ∆E = [TE,y−τE , TE,y+τE ], ∆S = [TS,x−τS , TS,x+τS ],
and ∆W = [TW,y − τW , TW,y + τW ]. Note that the specific sequence of nodes in the
superscripts of the right-hand side of (4.11) is chosen according to Figure 6, and can
alter for a different set QeA, but we will always have four multipliers corresponding to the
curve segments of the form TXX and four corresponding to the segments in quadrants,
so it is only a matter of notation.

Let us bound the logarithm of the left-hand side of (4.11) from above,

1√
n

log

 ∑
N∈∆N ,E∈∆E ,S∈∆S ,W∈∆W

QTNNA QNTEA QTEEA QESA QSTSA QTSTWA QTWWA QWTN
A


(4.12)

6
1√
n

log

(
16n2

∏
X

(2τX) max
N,E,S,W

QTNNA QNTEA QTEEA QESA QSTSA QTSTWA QTWWA QWTN
A

)

6
1√
n

log

(
max
N

QTNNA max
N

QNTEA max
E

QTEEA max
E,S

QESA max
S

QSTSA QTSTWA max
W

QTWWA max
W

QWTN
A

)
+

log
(
16n2

∏
X(2τX)

)
√
n

(i)

6

 TE∫
TN

+

TS∫
TE

+

TW∫
TS

+

TN∫
TW

H

(
|y′|

1 + |y′|

)
(|dx|+ |dy|) + φ(ε) +

log
(
16n2

∏
X(2τX)

)
√
n
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=

∫
Γ

H

(
|y′|

1 + |y′|

)
(|dx|+ |dy|) + φ(ε) +

log
(
16n2

∏
X(2τX)

)
√
n

, (4.13)

where in (i) we used (4.9), Lemma 4.3 and Remark 3, and therefore φ(ε)→ 0 when ε→ 0.
Take the lim supε→∞ lim supn→∞ of (4.12) and (4.13) to get the required bound,

lim sup
ε→∞

lim sup
n→∞

log QA√
n

6
∫

Γ

H

(
|y′|

1 + |y′|

)
(|dx|+ |dy|). (4.14)

Let us now turn to the proof of the lower bound (4.2). Similarly to (4.4), it is easy to
note that

log QeA > log QNTEA + log QTSTWA + log QESA + log QWTN
A . (4.15)

To treat this bound we use the following result.

Lemma 4.4. Under the assumptions of Theorem 3.1,

lim inf
n→∞

log QNTEA√
n

>
∫
NTE

H

(
|y′|

1 + |y′|

)
(|dx|+ |dy|) + ψNTE (ε), (4.16)

where NTE is the segment of Γ in the north-eastern quadrant and ψNTE (ε) → 0, as
ε→ 0.

Proof. The proof can be found below in this section.

Remark 4. Here again, through the same reasoning as in Lemma 4.4, we can obtain
similar bounds for the segments ES, TSTW and WTN of Γ.

In manner similar to (4.14), we get the lower bound from Lemma 4.4 and Remark 4,

lim inf
ε→∞

lim inf
n→∞

log QA√
n

>
∫

Γ

H

(
|y′|

1 + |y′|

)
(|dx|+ |dy|).

Note that we can express the asymptotic behavior of VA as

lim
n→∞

log VA√
n

= max
Γ∈X

I(Γ),

and the statement of Theorem 3.1 follows.

Proof of Lemma 4.3. As we have already mentioned earlier, the curve segment RTE can
be parametrized as a monotonically decreasing function y(x) supported on the horizontal
projection [α, β] = [V, TE ] of RTE onto the x axis, where we assume y(x) to be positive
and for convenience denote α = V, β = TE . By the Lebesgue decomposition theorem,
there exists a unique way the function y can be represented as

y(x) = y1(x) + y2(x),

where the monotonic functions y1(x) and y2(x) are absolutely continuous and singular
correspondingly. Without loss of generality assume that y2(x) is continuous from the
right. Note that the monotonically decreasing part of the polyomino boundary y = κn(x)

considered here is also continuous on the right.
Due to the monotonocity and singularity of y2, for some set A ⊂ [α, β] of measure 0,

y′2(x) = 0, x /∈ A.

Fix δ > 0 (it will later be made arbitrarily small). Since the Lebesgue measure µ is
regular, we conclude the existence of an open set B measurable with respect to the
Borel measure on the real line such that A ⊂ B and µ(B) < δ. The function y2 naturally
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defines a measure ν on [α, β] supported on A and such that ν((a, b]) = y2(b)−y2(a). Since
B is at most a countable union of open intervals B =

⋃∞
i=1Bi, from the continuity of ν

(w.r.t. the sequence of sets) it follows that

lim
m→∞

ν

( ∞⋃
i=m

Bi

)
= 0.

Choose m such that

ν

( ∞⋃
i=m+1

Bi

)
< δ.

Now let us expand each interval Bi, i 6 m by incorporating the endpoints and de-
note the obtained closed intervals by B̃i, i 6 m. The set

⋃m
i=1 B̃i can be viewed as

a union of a finite number of closed intervals intersecting only on their boundaries.
Let [d1, g1], [d2, g2], . . . , [ds, gs] be the intervals B̃i where s is minimal possible. The
set [α, β]\

⋃s
i=1[di, gi] consists of a finite number of disjoint intervals, by adding to

them their end points we get a set of closed intervals [aj , bj ], j = 1, . . . , p such that

µ
(

[α, β]\
⋃
j [dj , gj ]

)
< δ. In fact {aj , bj} and {dj , gj} are equal as sets and we denote

them differently just for the sake of convenience. Partition every interval [aj , bj ] into sj
closed intervals

[aj , bj ] =

sj⋃
k=1

[ckj , q
k
j ],

intersecting only on their boundaries. Now move the constructed intervals slightly, such
that all the conditions above are satisfied and for any x which is an end point of one of
the considered intervals and

y′(x) < c, (4.17)

for some constant4 c.
Below, in the course of proving (4.1) we replace the requirement κn ∈ Uε(y), by

|κn(x)− y(x)| < γ(ε), (4.18)

where x runs through the end points of the intervals and γ(ε) > 0. Later we explain that
(4.17) and the condition κn ∈ Uε(y) imply that γ(ε) can be chosen in such a way that
γ(ε)→ 0, as ε→ 0.

Define a function

L(z) = (1− z)H
(
−z

1− z

)
, z 6 0 (4.19)

which is continuous and

0
(i)

6 L(z + ξ)− L(z)
(ii)

6 L(ξ)→ 0, as ξ → 0, (4.20)

where (i) follows from the monotonicity of L and (ii) from the relation

L′z(z + ξ)− L′z(z) = log
−z − ξ

1− z − ξ
− log

−z
1− z

> 0, (ξ 6 0).

Let n1, n2, . . . be the sequence on which the lim sup is reached in (4.10). For any x which
is an endpoint of an interval [ckj , q

k
j ] there exist at most [2γ(ε)

√
ni] values of κni(x) for

4If this condition does not hold for some segment of Γ, we can always consider the other local parametrization
x = x(y), for which it will hold.
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which (4.18) holds true. Due to Lemma 4.1, given the values κni(c
k
j ) > κni(q

k
j ) of κn at

points ckj and qkj respectively, we have(√
ni
(
κni(c

k
j )− κni(qkj ) + qkj − ckj

)
− 1

√
ni
(
qkj − ckj

) )
possibilities for the restrictions of κn onto the interval [ckj , q

k
j ]. Let us now bound the

number Yni of the possibilities of restricting κn onto the set of intervals [ckj , q
k
j ], [dl, gl]

from above as

Yni 6
p∏
j=1

sj∏
k=1

(2γ(ε))
2
ni

(√
ni
(
κni(c

k
j )− κni(qkj ) + qkj − ckj

)
− 1

√
ni
(
qkj − ckj

) )

×
s∏
l=1

(2γ(ε))
2
ni

(√
ni (κni(dj)− κni(gj) + gj − dj)− 1

√
ni (qj − cj)

)
. (4.21)

Taking the logarithms of the both sides we get,

log Yni 6 pm log
(

(2γ(ε))
2
ni

)
+
√
ni

p∑
j=1

sj∑
k=1

(qkj − ckj )

(
1−

κni(q
k
j )− κni(ckj )

qkj − ckj

)
H

(
−(κni(q

k
j )− κni(ckj ))

qkj − ckj − (κni(q
k
j )− κni(ckj )

)

+
√
ni

s∑
l=1

(gl − dl)
(

1− κni(gl)− κni(dl)
gl − dl

)
H

(
−(κni(gl)− κni(dl))

gl − dl − (κni(gl)− κni(dl)

)
,

(4.22)

where we have utilized the bound (4.7). Let γ(ε, x) be a monotonically decreasing
function of x for any fixed ε satisfying the condition

κni(x) = y(x) + γ(ε, x),

for x running through the values of ckj , q
k
j , dl, and gl and such that

|γ(ε, x)| < γ(ε),

to comply with (4.18). Divide (4.21) by
√
ni and let i → ∞. Let us show that the

contribution of the term
∑
l in (4.21) can be made arbitrarily small through the choice of

δ. Recall that ∑
l

(gl − dl) 6 µ

(
m⋃
i=1

B̃i

)
< δ. (4.23)

Since the entropy function H(z) is convex, we can use Jensen’s inequality to obtain

s∑
l=1

(ξl−zl)H
(
−zl
ξl − zl

)
6

(
s∑
l=1

ξl −
s∑
l=1

zl

)
H

(
−
∑s
l=1 zl∑s

l=1 ξl −
∑s
l=1 zl

)
, ξl−zl > 0. (4.24)

Overall, we get that the term
∑
l to in (4.21) is bounded from above by(∑

l

(gl − dl)−D

)
H

(
−D∑

l(gl − dl)−D

)
, (4.25)

where
D =

∑
l

y(gl)− y(dl) + γ(ε, gl)− γ(ε, dl).
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From (4.23) and the fact that

(δ −D)H

(
−D
δ −D

)
→ 0, as δ → 0,

we conclude that (4.25) can be made arbitrarily small by a proper choice of δ. Equation
(4.20) implies that

L

(
y1(qkj )− y1(ckj ) + y2(qkj )− y2(ckj ) + γ(ε, qkj )− γ(ε, ckj )

qkj − ckj

)

6 L

(
y1(qkj )− y1(ckj )

qkj − ckj

)
+ L

(
y2(qkj )− y2(ckj ) + γ(ε, qkj )− γ(ε, ckj )

qkj − ckj

)
. (4.26)

Using (4.24), let us bound the contribution of the last summand (4.26) to (4.22),

p∑
j=1

sj∑
k=1

(qkj − ckj )L

(
y2(qkj )− y2(ckj ) + γ(ε, qkj )− γ(ε, ckj )

qkj − ckj

)

6
∑
j,k

(qkj − ckj )L

( ∑
j,k y2(qkj )− y2(ckj ) + γ(ε, qkj )− γ(ε, ckj )∑

j,k q
k
j − ckj +

∑
j,k y2(qkj )− y2(ckj ) + γ(ε, qkj )− γ(ε, ckj )

)
. (4.27)

Since ∑
j,k

qkj − ckj > (β − α)− δ,

and ∑
j,k

y2(qkj )− y2(ckj ) + γ(ε, qkj )− γ(ε, ckj ) < δ + f(ε),

where f(ε) can be chosen in such a way that

f(ε)→ 0, as ε→ 0,

we conclude that the right-hand side of (4.27) is of the order of

(β − α)L

(
δ + f(ε)

(α− β)− δ

)
→ 0, as δ, ε→ 0.

Therefore, the contribution of the second summand from (4.26) into the right-hand side
of (4.22) tends to zero together with ε.

Next, let us demonstrate that γ(ε, x) → 0, for x ∈ {ckj , qkj } when ε → 0 under the
condition (4.17). Indeed, choose x0 ∈ {ckj , qkj }. For a fixed ω > 0 let h > 0 be such small
that

y(x)− y(x0) < (c+ ω)(x− x0), 0 < x− x0 < h.

Let
κni(x0)− y(x0) = γ1(ε) > 0.

Since κni is a monotonic function and

κni(x)− y(x) > 0,

for max[0, x′] 6 x 6 x0, where

x′ = max

[
x0 − h,

(c+ ω)x0 − γ1(ε)

c+ ω

]
,
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we obtain

ε >

∫ x0

max[0,x′]

|κni(x)− y(x)|dx =

∫ x0

max[0,x′]

κni(x)dx−
∫ x0

max[0,x′]

y(x)dx

>
γ1(ε)

2
(x0 −max[0, x′]) . (4.28)

The last inequality basically says that the leftmost integral is bounded from below by the
area of the triangle determined by the lines

f1(x) = y(x0) + γ1(ε), f2(y) = y(x0), f3(x) = y(x0) +
x0 − x
x0 − x′

γ1(ε).

When ε→ 0, (4.28) implies that γ1(ε)→ 0. Similar reasoning applies if

κni(x0)− y(x0) = γ1(ε) < 0.

Taking into consideration the obtained bounds and applying limni→∞ to the both sides of
(4.22), we get

lim
ni→∞

log Yni√
ni

6
∑
j,k

(qkj − ckj )L

(
y1(qkj )− y1(ckj )

qkj − ckj

)
+ φ(ε) + ζ(δ), (4.29)

where ζ(δ) is the contribution of
∑
l from (4.22) into the bound (4.29) and φ(ε) → 0,

as ε → 0. As we already know the term ζ(δ) can be made arbitrarily small for a small
enough δ, therefore, below we omit it from the upper bound.

Next we increase each sj in such a way that

w = max
j,k

(qkj − ckj )→ 0.

Then the first summand in the right-hand side of (4.29) becomes

p∑
j=1

sj∑
k=1

(qkj − ckj )L

(
1

qkj − ckj

∫ qkj

ckj

y′1(x)dx

)
=

∫
⋃
j

[aj ,bj ]

L (yc(x)) dx,

where yc(x) is a step function such that for the given partition {[ckj , qkj ]} of the set⋃
j [aj , bj ],

yc(x) =

∫ qkj

ckj

y′1(x)dx, x ∈ [ckj , q
k
j ).

Taking into consideration the last two equations and applying lim infw→0 to the both
sides of (4.29), we obtain

lim sup
n→∞

log Yn√
n
− φ(ε) 6 lim inf

w→0

∫
⋃
j

[aj ,bj ]

L (yc(x)) dx
(i)

6
∫
⋃
j

[aj ,bj ]

lim inf
w→0

L (yc(x)) dx

(ii)
=

∫
⋃
j

[aj ,bj ]

L
(

lim inf
w→0

yc(x)
)
dx

(iii)
=

∫
⋃
j

[aj ,bj ]

L (y′1(x)) dx =

∫
⋃
j

[aj ,bj ]

L (y′(x)) dx, (4.30)

where (i) follows from Fatou’s lemma, (ii) follows form the continuity of L, and (iii) is a
consequence of the fact that if z(x) ∈ L1([a, b]), then for a.e. x0 ∈ [a, b],

lim
q→∞

1

|Dq|

∫
Dq

z(x)dx = z(x0),
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where Dq is any sequence of intervals such that x ∈ Dq and |Dq| → 0, as q → ∞. The
last equality in (4.30) follows from the fact that y′1 = y′ a.s.

Since µ
(⋃

j [aj , bj ]
)
> (β − α − δ) and δ can be chosen arbitrarily small, from the

absolute continuity of the integrals in (4.30), we have

lim sup
n→∞

log Yn√
n

6
∫

[α,β]

L (y′(x)) dx+ φ(ε),

and (4.10) follows.

Proof of Lemma 4.4. Consider a subsequence ni on which the lim inf is attained in (4.16).
Define the interval [α, β] exactly as in the proof of Lemma 4.3, partition it into s equal
intervals [aj , bj ], j = 1, . . . , s, and denote their lengths by

∆ = bj − aj =
β − α
s

.

Above we focused on the upper bound and considered an excessive number of functions
κn. Indeed, some of κn did not belong to Uε(y), moreover, some of them could not serve
as boundaries of the polyominoes under consideration because since their areas could
be larger than the area ANTE of the quadrant of G at hand. Now we treat the lower
bound and must only count those κn that are the boundaries of convex polyominoes of
area ANTE belonging to Uε(y).

Consider those κn which for every x0 ∈ {aj , bj} take the same value κn(x0) and satisfy
the condition

|κn(x0)− y(x0)| 6 1√
n
. (4.31)

Assume we build our diagram from left to right. Two issues can happen during the
course of such construction under the condition (4.31):

1) we can exhaust the area ANTE before we reach the rightmost point of y,

2) we can reach the rightmost point of y having diagram of a smaller area than required.

Later we show that in the case 1) the remaining area is small and can be spread above
the constructed diagram without pushing it beyond Uε(y), and in the case 2) the total
length of the remaining not covered intervals [aj , bj ] can be made arbitrarily small.
Roughly speaking, we need to show that the areas under the curves κn(x) and y(x) for
x ∈ [0, η], η < β are close, where η is the point where κn becomes zero for the first time.
During the construction of a diagram from left to right as described above, if we reached
β, then we spread the remaining cells above the already constructed diagram. Let us
show that the total area of these extra cells can be made arbitrarily small. Indeed, since
κn ∈ Uε(y) the extra area can be represented as

ANTE −
∫ β

α

κn(x)dx =

∫ β

α

y(x)− κn(x)dx 6 ξ, (4.32)

where ξ → 0 when ∆ shrinks and n grows.
Next we recycle the ideas used for the proof of (4.28), but this time we will also

upper bound the L1-distance between the curves. For two monotonically non-increasing
functions z1(x) and z2(x), such that |z1(x)− z2(x)| 6 1/

√
n for x = a, b where a < b are

arbitrary reals, we clearly have∫ b

a

|z1(x)− z2(x)|dx 6 (b− a)

(
z1(a)− z2(b) +

2√
n

)
. (4.33)
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Assume that (4.31) holds for all x ∈ {aj , bj}, then from (4.33) we get

∫
[α,β]

|κn(x)− y(x)|dx =

s∑
j=1

∫
[aj ,bj ]

|κn(x)− y(x)|dx

6
s∑
j=1

(bj − aj)
(
y(aj)− y(bj) +

2√
n

)
6 ∆

(
y(α)− y(β) +

2√
n

)
. (4.34)

Let now η < β so that κn(x) = 0, |y(x) − κn(x)| > 1√
n

for x > η and κn(x) > 0 for
x < η. This implies that ∫ η

0

κn(x)dx = ANTE ,

and ∫ η

0

y(x)dx = ANTE − ρ <
∫ β

0

y(x)dx.

Now ∫ η

0

|κn(x)− y(x)|dx >
∣∣∣∣∫ η

0

κn(x)− y(x)dx

∣∣∣∣ > ρ.

On the other hand, the left-hand side of the last inequality is bounded from above by the
expression in the right-hand side of (4.34). As a consequence, for small enough ∆, the
value of ρ must be also small,

ρ→ 0, as ∆→ 0.

This is only possible if η is large enough. Let

θ = β − η

then ∫ β

η

y(x)dx→ 0, as ∆→ 0.

As we have already mentioned above, for ∆ small enough, condition (4.32) will hold with
ξ small. Overall, (4.32) and (4.34) imply that the constructed κn(x) will belong to Uε(y)

under the appropriate choice of ∆.
Let Yni be the number of admissible diagrams we want to count, then it is lower

bounded by the number of κni satisfying the conditions (4.32) and (4.34). By Lemma 4.1,
the number of possible restrictions of κni(x) onto an interval [aj , bj ] for given κni(aj) and
κni(bj) is (√

ni (κni(aj)− κni(bj) + bj − aj)− 1
√
ni (bj − aj)

)
.

The number of such restrictions on [α, β], for the given κni(aj) and κni(bj), is lower
bounded by the product

l∏
j=1

(√
ni (κni(aj)− κni(bj) + bj − aj)− 1

√
ni (bj − aj)

)
,

where l is found from the following conditions. Let η < β and r be the largest number
such that µ ([ar, br] ∩ [η, β]) = 0, then set l = s. Otherwise set l = r+1 and al = ar+1, bl =

η. Clearly,

µ

 s⋃
j=l

[aj , bj ]

 < β − η + bl − al < θ + ∆→ 0, as ∆→ 0.
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Using the bound

log

(
m

s

)
> mH

( s
m

)
+ o(m), as m→∞,

following from (4.7) and taking into account that

|κn1(x)− y(x0)| 6 1
√
ni
, x = aj , bj , j 6 l,

we get

log Yni√
ni

>
l∑

j=1

(
1− y(bj)− y(aj)

bj − aj
+O

(
1
√
ni

))
H

 −y(bj)−y(aj)
bj−aj +O

(
1√
ni

)
1− y(bj)−y(aj)

bj−aj +O
(

1√
ni

)
 .

Let ni →∞ and recall the definition of L from (4.19) to obtain,

lim inf
n→∞

log Yni√
ni

>
l∑

j=1

(bj − aj)L
(
y1(bj)− y1(aj)

bj − aj
+
y2(bj)− y2(aj)

bj − aj

)
(i)

>
l∑

j=1

(bj − aj)L
(
y1(bj)− y1(aj)

bj − aj

)
=

l∑
j=1

(bj − aj)L

 1

bj − aj

bj∫
aj

y′1(x)dx


(ii)

>
l∑

j=1

bj∫
aj

L (y′1(x)) dx =

min[η,β]∫
α

L (y′(x)) dx,

where in (i) we utilized the monotonicity of L and in (ii) its convexity together with
Jensen’s inequality. Now let ∆→ 0 to obtain

lim inf
n→∞

log Yn√
n

>
∫

TNTE

L (y′(x)) dx+ ψ(ε),

which completes the proof.

Remark 5. Assume now that instead of fixed area we deal with convex polyominoes of
fixed perimeter. This case is even simpler since for most of the polyominoes the perimeter
constraint will never be active. Indeed, the perimeter constraint only plays role if the
diagram κn(x) hits the boundary of the circumscribing rectangle. By appropriate choice
of the extreme points of the polyomino we can easily satisfy this requirement, thus the
bulk of the diagram will not be affected by it. The same applies to the polyominoes with

both perimeter and area fixed (unless
∫

Γ
(1 + | tan θ|)H

(
1

1+| cot θ|

)
dx = 0, which is not the

case we consider).
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