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ABSTRACT 
 

I use bacteriophage T7, a lytic virus that infects bacterium E. coli, as a 

model system to explore how the genetic information encoded in a genome 

determines the phenotype of an organism in a given environment. By 

incorporating the existing experimental data and mechanisms, our group 

previously developed a genetically structured model of T7 intracellular growth. I 

extended and improved the model by recasting it in an objected-oriented 

framework, by incorporating a simple model to account for the host physiology, 

and by implementing a more mechanistic description of several steps of T7 

infection.  

By using the revised T7 model, I explored several biological questions that 

have broad relevance. I examined the effects of host physiology on T7 growth. 

Consistent with experimental data, I found that T7 growth was sensitive to the 

physiological conditions of its E. coli host. Simulations further suggested that T7 
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growth was limited by the capacity and efficiency of the host translation 

machinery. This work may provide insight into the interplay between the genome 

of an organism and its growth environment. Next I probed the design features of 

T7 by investigating the response of phage T7 to perturbations in its parameters 

and genomic structure. My results indicated that phage T7 was nearly optimal for 

environments with limited resources. These results may lead to a better 

understanding of the design principles of a biological system in the context of its 

environment. In addition to studies at the single-cell level, I employed the T7 

model to investigate the genetic interactions among deleterious mutations at the 

population level. Such interactions have profound implications in many 

important biological phenomena, such as the evolution of sex. Simulations 

suggested that the nature and degree of genetic interactions depended on the 

growth environment and the severity of mutations. This result provided an 

intuitive explanation for the experimental controversy over the nature of genetic 

interactions.  

The T7 model generates as a byproduct the time-series of T7 mRNAs and 

proteins, which I employed to evaluate a novel algorithm for inferring gene 

functions. The algorithm highlighted the function of several T7 regulatory 

proteins, and established a protein correlation matrix that correctly reflected the 

interactions among selected T7 proteins. This algorithm is potentially useful to 
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interpret the gene expression data that are produced from high-throughput 

techniques, such as DNA microarrays and protein 2D gel electrophoresis. 

To facilitate the modeling of biological systems in general, I have 

developed a software package called Dynetica – a biologist-friendly simulator of 

dynamic networks. Dynetica provides an intuitive environment for constructing, 

visualizing, and analyzing mathematical models of biological systems, such as 

metabolic, signaling and genetic networks. I expect that Dynetica, along with 

other modeling tools, will synergistically benefit biological research at large by 

serving as a computational framework for creating and sharing mathematical 

models. 
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C h a p t e r  1  

INTRODUCTION 

“If we hope to understand biology, instead of looking at one little protein at a time, 

which is how biology works, we will need to understand the integration of thousands 

of proteins in a dynamically changing environment.” 

Craig Venter 

1.1 Modeling for integrated understanding of biological systems 

1.1.1 Expansion of biological information 

Amid hope, awe and controversies1, two draft human genome sequences were 

simultaneously released at the dawn of the new millennium (Lander et al  2001; Venter 

et al  2001). This milestone highlights the exponential growth of biological information 

in the last several decades. Counting the human genome, about 1000 genomes of natural 

plasmids, organelles, viruses and viroids, bacteria, animals and plants have been 

sequenced to date (Lander et al 2001). Other evidence of the growth in biological 

information is vividly illustrated by the increase of the total number of gene or genome 

sequences stored in GenBank. This number has increased exponentially from 600 or so 

to more than 15 million over a period of merely twenty years 

(http://www.ncbi.nih.gov/Genbank/), and the rate of growth has been gradually 

                                                 
1 Controversies over sequencing of human genome are both social and technological. The Human Genome Project 
raises many concerns about potential abuse of the sequence information in recruitment, health insurance, and racial 
profiling. The reported two sequences were obtained using two different approaches. This has sparked many heated 
discussions as for which method is more appropriate and whether the sequencing team from the private sector led by 
Celera has actually made any significant contribution at all (Butler, 2001; Green, 2002;Myers et al., 2002; Waterston et 
al., 2002).  



 

 

2 
accelerating (Benson et al  2002). Meanwhile, as the technologies of X-ray and NMR 

spectroscopy become more mature, the number of protein structures that are solved 

every year has enjoyed steady increase (Westbrook et al  2002). 

The rapid expansion in biological information has moved us one step closer to a 

complete understanding on how the genetic information stored in a genome determines 

the behaviors or characteristics (i.e., the phenotype2) of an organism or a cell in a given 

environment. Understanding the relationship between genotype and phenotype is 

important not only for our conceptual satisfaction, but also for many practical issues, 

such as finding cures for human diseases. These diseases may be caused by deleterious 

changes in human genes or by infectious agents such as viruses or bacteria. If we 

understand mechanistically the causes of a disease, we may be able to more rationally 

develop appropriate pharmaceuticals.  

As has been demonstrated in the sequencing of numerous genomes, including 

very complex ones, such as those of human, and more recently of rice (Goff et al  2002; 

Yu et al  2002) 3, advances in biotechnology have probably made the sequencing of any 

genome a routine work4. Even with the sequence data available, however, much remains 

to be done to really make the link between a genome and a resulting phenotype. The 
                                                 
2 Phenotype is the appearance or other characteristics of an organism, resulting from the interaction of its genetic 
constitution with the environment. This contrasts with the genotype, which is genetic constitution of an organism 
(Lewin, 1997). Note that the phenotype depends on the environment but the genotype does not. 

3 Here the genome complexity can be roughly characterized by genome size. For example, the human genome is 
composed of about 3 billion base pairs, and the rice genome is about 470 million base pairs in size. 

4 This point is certainly not to diminish the amount of capital and effort that need be invested into such mega-projects. 
For example, the sequencing of human genome has involved collaborative efforts by hundreds of researchers from 
around the world. 



 

 

3 
next step is to identify the genes in a genome and determine their functions. With the 

advances in sequence analysis, predicting potential genes in a genome has been relatively 

successful for simple organisms such as E. coli and yeast, but remains a major challenge 

for higher organisms including the human being. However, being able to predict genes 

does not mean that we know how they function. For example, about one third of the 

4000 or so genes in E. coli have unknown functions (Blattner et al  1997). Major efforts 

are now being made to characterize the function of genes using comparative sequence 

analysis (Bork & Koonin 1998) or by studying whole-genome scale gene expression at 

the mRNA level, using DNA microarrays (Schena et al  1995) or the method of serial 

analysis of gene expression (Velculescu et al  1995), and at the protein level using protein 

2D gel electrophoresis (Karger et al  1995; O'Farrell 1975) or mass spectrometry 

(Eckerskorn et al  1992; Henzel et al  1993; Mann et al  2001). Such studies have 

spawned the so-called transcriptome and proteome5, which represent complete sets of 

RNAs and proteins, respectively, that correspond to the genome. The transcriptome and 

the proteome are distinguished from the genome in that they are context dependent 

(Oliver 2000); for example, levels of RNAs and proteins in a cell usually vary with 

environmental conditions. 

                                                 
5 There are too many new “-ome” and “-omics” terms to completely list here. Interested readers are directed to 
http://www.genomicglossaries.com/content/omes.asp for a very detailed list of these terms and their definitions. 
Other popular “-ome” terms include interactome (the complete set of interactions, often referring to protein 
interactions in the cell), metabolome (the complete set of metabolites in the cell), and physiome (the quantitative 
description of the physiological dynamics or functions of the intact organism). In reflecting this trend, the journal of 
Microbial and Comparative Genomics was recently renamed to Omics: a Journal of Integrative Biology 
(http://www.catchword.com/titles/15362310.htm).  
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In addition to the characterization of the function of individual genes, endeavors 

have been undertaken to establish the interaction map between gene products, 

particularly proteins. To date, construction of large-scale interaction maps among 

proteins has primarily relied on the yeast two-hybrid analysis method, which identifies 

protein-protein interactions by the activation of reporter gene expression in yeast (Fields 

& Song 1989). This method has been applied to probe genome-wide protein-protein 

interactions in phage T7 (Bartel et al  1996), hepatitis C virus (Flajolet et al  2000), 

vaccinia virus (McCraith et al  2000), and Saccharomyces cerevisia (Ito et al  2001; Uetz et 

al  2000).  It has also been used to characterize interactions among selected groups of 

proteins (not genome-wide) in Drosophila, C. elegans, and mouse (for a review, see (Uetz 

2002)). The yeast two-hybrid method has been generalized to establish the so-called n-

hybrid systems to detect DNA-protein (one-hybrid), protein-protein (two-hybrid), and 

RNA-protein or small molecule-protein (three-hybrid) interactions (Vidal & Legrain 

1999). N-hybrid systems have also been established using bacterial hosts (Hu 2001). 

As a powerful tool to identify and quantify proteins, mass spectrometry has also been 

used to identify protein complexes in Saccharomyces cerevisia (Gavin et al  2002; Ho et al  

2002). These tools complement one another in revealing different aspects of protein 

interactions (Uetz 2002), and are beginning to provide a comprehensive view of how 

the individual cellular parts are functionally connected to one another. 

1.1.2 Modeling for knowledge integration 

If one day we have characterized the function of all genes by constructing the 

transcriptome, the proteome, and the interaction map between gene products in a cell 
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(or an organism), will we have completed the link between the genome and cellular 

behaviors? Partly. By reaching that step, we will have the complete part-lists of the cell. 

However, knowing what a cell is composed of and how each individual component 

works does not necessarily mean understanding how the cell as a whole works. For 

example, understanding what parts a car is composed of and how each part works does 

not mean that we would understand how the car itself works. To really claim that we 

understand how the car works, we should be able to put the parts back together and 

demonstrate that the car works. Similarly, to understand how a cell function as a whole, 

we will need to integrate our understanding of the parts and see whether or to what 

extent these pieces of understanding will coherently predict cellular behaviors. This 

integration process will be greatly facilitated by modeling, particularly mathematical 

modeling. Such a systems or integrated approach for biology research contrasts the 

reductionist approach, which has been the predominant approach for accumulating our 

knowledge about biological systems.  

Depending on its objective, a model may involve details at different levels. One of 

the most profound biological models is the so-called “central dogma” of molecular 

biology (Crick 1970), which describes the following information transfer process: 

DNA → mRNA → protein 

While omitting many details involved in the individual steps of this process, such 

as binding of RNA polymerases to the DNA sequence during transcription, the central 
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dogma epitomizes decades of endeavor by biologists that led to the elucidation of this 

process. It elegantly reduces many complex biological processes into one dimension, and 

has served as the theoretical foundation for the entire field of genetic engineering. 

The central dogma as illustrated above exemplifies the probably most intuitive 

models that biologists have been using – diagrams. Diagrams have been widely used and 

will probably continue to prevail in biology textbooks and literature. Recently, there have 

been significant efforts in formalizing the conventions of drawing diagram models 

(Kohn 1999). In general, diagrams serve as tremendous visual aid for understanding the 

biological processes and for formulating new hypotheses to be tested experimentally. 

However, diagrams are descriptive only, and cannot predict in a quantitative and 

sometimes not even in a qualitative fashion behaviors of a given system. A more 

sophisticated approach, mostly in characterizing gene networks, is to use a Boolean 

representation of a system (Glass 1975; Glass & Kauffman 1973; Thomas 1973). In this 

paradigm, each player (oftentimes a gene) has two states, ON and OFF; the system of 

interest is overall represented as a logic network, and the dynamics describes how genes 

interact to change one another’s states over time (Hasty et al  2001). Although a Boolean 

model can provide insight into the qualitative behavior of the underlying system, it is 

usually overly simplified and tends to give ambiguous predictions (Kuipers 1986).  

To achieve deeper understanding and greater predictive power, more detailed 

information need to be incorporated. This leads to the next level of modeling, the 

stoichiometric models (Clarke 1988; Fell 1992). A stoichiometric model represents the 
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underlying system as a set of coupled chemical reactions6. It is more detailed than 

previous approaches in that it requires the stoichiometry of each reaction. For example, 

to describe the process of A being turned into B, we will also need the information on 

how many molecules of A are turned into B. Coupled with a technique called metabolic 

flux analysis (Fell 1992), stoichiometric models have played an instrumental role in 

shaping the field of metabolic engineering, by providing theoretic guidance for 

experimental manipulation of metabolic networks (Stephanopoulos et al  1998). 

Recently, stoichiometric models have proven powerful in characterizing the underlying 

structure of metabolic networks by determining the elementary flux modes (Schuster et 

al  2000) or the null space base vectors (Schilling & Palsson 1998) and in predicting 

steady-state metabolic capabilities of several model organisms, such as E. coli (Edwards 

et al  2001; Schilling et al  1999) and H. influenzae (Edwards & Palsson 1999). But their 

application is limited by their inability to predict the temporal evolution of biological 

systems. To make such predictions, 

the stoichiometric structure of the 

reaction networks needs be 

supplemented with detailed kinetic 

information, resulting in kinetic 

models.  

Figure 1.1 Models of varying details 

                                                 
6 While not very obvious, many biological processes, particularly cellular processes, can indeed be easily formulated as 
chemical reactions. 
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From diagrams to kinetic models, more detailed information will be needed, but 

the resulting models will be more powerful in their predictive power (Figure 1.1). In 

early phases of biological research, much of the knowledge integration exercise relied on 

the use of simpler and more descriptive approaches, particularly diagram models. 

Thanks to the more detailed data and mechanisms that can be obtained from 

experiments, more sophisticated models are now becoming increasingly preferable. For 

some well-characterized systems, even the more information-intensive approach – 

kinetic modeling – has become a realistic goal. Kinetic models have recently been 

applied to the analysis of a wide variety of biological systems, including bacterial 

chemotaxis signaling networks (Barkai & Leibler 1997; Spiro et al  1997), developmental 

pattern formation in Drosophila (von Dassow et al  2000), aggregation stage network of 

Dictyostelium (Laub & Loomis 1998), viral infection (Endy et al  1997; McAdams & 

Shapiro 1995; Reddy & Yin 1999; You et al  2002), circadian rhythms (Barkai & Leibler 

2000; Smolen et al  2001), single cell growth (Shuler et al  1979), and physiological 

processes (Noble 2002; Quick & Shuler 1999; Winslow et al  2000). In chemical 

engineering, kinetic modeling is not new; it has long become a routine approach 

employed to characterize a wide variety of chemical processes, some of which, such as 

combustion, may involve thousands of coupled chemical reactions. The above-

mentioned examples have demonstrated that kinetic modeling can also be employed to 

describe many biological processes. 

Kinetic models may be further coupled with equations describing mass transport 

processes, leading to more complicated mathematical models not covered in Figure 1.1. 
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For example, in modeling some biological processes, it is necessary and feasible to 

account for not only reaction kinetics, but also transport of interacting components by 

diffusion (Schaff et al  2000; Yin & McCaskill 1992; You & Yin 1999). Such models 

often involve using partial differential equations (PDE) in addition to ordinary 

differential equations (ODEs) 7. Owing to the higher computational cost (for the same 

number of interacting components) and the lack of parameters on diffusion processes, 

particularly for intracellular processes, however, most mathematical models in biology 

have so far ignored spatial heterogeneity in a system. Even when it is essential to 

describe some transport processes, these processes may still be approximated by first-

order reactions, which in turn can be described using ODEs (Reddy & Yin 1999; von 

Dassow et al 2000). 

1.2 Phage T7 

1.2.1 A genomic model system 

It remains a daunting task to explore the genotype-phenotype relationship at a 

whole genome level for most organisms because of the sheer number of components 

involved in the functioning of these organisms. Although, as briefly discussed in the 

previous section, a lot of data are being generated as part of the effort to bridge a 

genome and the resulting phenotype, the amount of data is still relatively small if we 

consider the large number of variables that are being dealt with (Lauffenburger 2001). 

However, it is now feasible to do so for well-studied simple organisms, such as 

                                                 
7 ODE models account for the majority of kinetic models. However, as shall be seen in Chapter 7, ODEs are not the 
only format of kinetic models; the latter can be also formulated in a stochastic framework. 
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bacteriophage T7. Thanks to its rich knowledge base that has been accumulated since its 

first characterization nearly half a century ago (Demerec & Fano 1944), phage T7 serves 

as a good genomic model system for exploring many fundamental and applied biological 

questions regarding the genotype-phenotype relationship. It should be noted that there 

are some limitations in resorting to phage T7 as a model system. As a virus, phage T7 

depends on the host cell for its survival, and as such does not possess many features that 

are present in a self-sustaining organism. For example, there are no genes coding for 

tRNAs or rRNAs, and the gene expression process is overall much simpler than in an 

animal cell. Nevertheless, because of the availability of rich data and mechanisms in the 

literature for phage T7, it provides an opportunity to explore several key questions on 

modeling biological systems: how and to what extent can we build mathematical models 

for biological systems, particularly at the whole-organism scale? How are such models 

useful for answering biological questions? And what questions can be answered by 

employing an integrated model? 

Phage T7 is a lytic virus that infects E. coli and produces approximately 100 

progeny per infected cell within thirty minutes at 30 °C.  The 39, 937 base-pair T7 

genome contains 56 known or potential genes (Molineux 1999) (see also 

http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/framik?db=genome&gi=10461). T7 

genes are numbered in order from left to right, according to their position on the genetic 

map. Overlapping genes are given numbers according to the relative positions of their 

left ends. T7 genes are expressed coordinately in three classes based on their position 

and function. The early, or class I genes code for functions to overcome host restriction 
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and convert the metabolism of the host cell to the production of T7 components. Class 

II genes, the next to be expressed, are responsible for functions involved in T7 DNA 

replication. The last to be expressed, class III genes code for proteins of the phage 

particle and functions for maturation and packaging of T7 DNA.  

T7 infection is remarkably rapid and efficient, and highly regulated (Figure 1.2). 

The linear molecule of T7 DNA enters into the cell gradually from left to right, which is 

also the orientation of all T7 genes and their transcription. Although other phages like 

lambda inject their DNA within one minute of binding to the host, the entry of T7 

DNA takes about 10 minutes (Garcia & Molineux 1995a; Garcia & Molineux 1995b; 

McAllister et al  1981). After the complete entry of T7 DNA, T7 transcription is mostly 

shut off by the accumulated T7 lysozyme (gp3.5), a class II gene product (Zhang & 

Studier 1997). The remaining transcription capacity switches to the stronger class III T7 

promoters, which direct the transcription of class III genes. T7 DNA replication begins 

at about the same time when most transcription is shut off (Summers 1969; Summers 

1970). The replicated T7 DNA exists in concatemeric forms and the mature form of T7 

DNA with unique ends is regenerated from concatemers during packaging of the DNA 

into phage particles (Studier 1972). The infection cycle ends with the abrupt lysis of the 

host cell and progeny phages are released.  

1.2.2 A phage T7 model and its applications 

By incorporating the existing experimental data and mechanisms on T7 biology, 

our group previously developed a genetically-structured model (Endy et al 1997) to 
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account for the major steps of T7 intracellular growth: entry of the T7 DNA into the 

host, transcription of the T7 genes, translation of the resulting mRNAs, procapsid 

assembly, DNA replication, and the formation of phage progeny. This model 

distinguished itself in its ability to simulate the entire process from genetic information 

to phenotype by accounting for most of the known functions of T7 genes. As part of 

my Ph.D. thesis work, I improved the model by recasting it in an object-oriented 

framework, which can be easily generalized to model other biological systems. I further 

extended it by incorporating a simple model to account for the host physiology, and by 

implementing a more mechanistic description of several steps of T7 infection. These 

extensions led to overall better agreement with the experiments in predicting T7 

intracellular growth, and better computational performance (You et al 2002; You & Yin 

2001). These modifications and improvements are described in detail in Chapter 2.  

The host-cell model in the revised T7 model, along with the high efficiency of 

computer simulations, presents an opportunity to explore on a large scale how 

interactions between the T7 genome and its environment (the host cell) determine 

various characteristics of phage T7 development. This aspect has been exploited to 

investigate a number of fundamental biological questions that may have broad relevance. 

As a first step to better understand genome-environment interactions, I investigated 

how the physiology of E. coli would affect T7 growth. This study may lead to a better 

understanding of the phage growth at sub-optimal conditions, such as those that exist in 

nature (Kutter et al  1994), and assist our evaluation of phage therapy strategies against 

antibiotic-resistant bacteria (Carlton 1999).  
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Figure 1.2 Intracellular growth cycle of phage T7. The solid lines with half arrows indicate 
transcription and translation, the dashed lines denote reaction, and the solid lines with full 
arrows indicate the three classes of T7 DNA. (a)Infection initiation, class I gene expression. 
(b) Class II gene expression, phage DNA replication. (c) Class III gene expression, procapsid 
assembly, phage maturation, and lysis. RNAP: RNA polymerase; DNAP: DNA polymerase. 
Adapted from (Endy et al 1997). 
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To probe design features of phage T7 as a complex system, I investigated how T7 

growth would respond to perturbations in its kinetic parameters and its genomic 

structure8 by creating and evaluating more than 150,000 in silico mutants. My results 

suggest several important features of T7 design. First, phage T7 is almost optimally 

designed for environments having limited resources. Second, phage T7 is overall robust 

to perturbations in its parameters but very fragile to perturbations in its genomic 

structure. Third, the robustness of phage T7 is primarily achieved by having redundancy 

and negative feedback embedded in the genome design. This work highlights the 

importance of the environment in shaping the design of an organism through evolution. 

In addition to applications at the single-cell level, I systematically characterized the 

genetic interactions among deleterious mutations at the population level, by using the T7 

model to generate 90,000 T7 in silico mutants and to efficiently evaluate their fitness. 

Such genetic interactions play a major role in a variety of fundamental biological 

phenomena, such as the evolution of recombination, the dynamics of fitness landscapes, 

and the buffering of genetic variations, but their experimental characterization has been 

hindered by the difficulty in generating and quantifying a large number of mutants. This 

work illustrated the importance of the growth environment for an organism in 

determining the nature of genetic interactions. Conclusions from this chapter provide an 

intuitive explanation for the controversy over the exact nature of genetic interactions.  

                                                 
8 In this work, I use the term “genomic structure” to describe the ordering of genetic elements, such as genes, 
promoters, and transcription terminators. 
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As a byproduct, the T7 model generates the time-series of all T7 mRNAs and 

proteins, which may be considered as simulated gene expression profiling data. Taking 

advantage of these data, I have developed and evaluated a novel data-mining algorithm 

for inferring gene functions and potential protein-protein interactions.  This algorithm is 

potentially useful for interpreting the large volume of data generated from high-

throughput technologies such as DNA microarrays and protein 2D gel electrophoresis.  

1.3 Modeling beyond phage T7 

As has been demonstrated by examples listed above, mathematical modeling and 

computer simulation may deepen our understanding of complex biological systems by 

testing the validity and consistency of experimental data and mechanisms, by generating 

experimentally testable hypotheses, and by providing new insight into the behaviors of 

these systems. However, the application of this integrated approach in biology has been 

hindered by the lack of software tools to build and analyze models, particularly for 

researchers unfamiliar with programming and numerical methods. To meet this need, I 

have developed Dynetica – a simulator of dynamic networks. With Dynetica, the user 

can easily build models for systems that can be formulated as a coupled network of 

chemical reactions. A particularly distinguishing feature of Dynetica is that it facilitates 

easy construction of models for genetic networks, where the dominant reactions are the 

expression of genes and the interactions among gene products. In addition, Dynetica 

provides users the flexibility of performing time-course simulations using deterministic 

or stochastic algorithms. A deterministic algorithm is appropriate when the system 

variables can be treated as continuous or the model is highly lumped, whereas a 
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stochastic algorithm is appropriate when the system is homogeneous, numbers of 

interacting molecules are small, and fluctuations in these numbers are significant. Finally, 

since it is written in Java, Dynetica is platform-independent, allowing models to be run 

on most modern computers and easily shared among researchers. I anticipate that 

Dynetica will dramatically speed up the process of model construction and analysis for a 

wide variety of biological systems. Dynetica is described in detail in Chapter VII. 

1.4 Overview of thesis  

Chapter II details construction of the current model of phage T7 intracellular 

growth cycle. 

Chapter III describes the application of the phage T7 model to explore the effects 

of host physiology on growth of phage T7. This work illustrates the interplay between 

the genome of an organism and its growth environment. 

Chapter IV describes the investigation of the design of phage T7 by perturbing its 

kinetic parameters and genomic structure.  

Chapter V presents the quantification of genetic interactions between deleterious 

mutations at the population level by using in silico mutagenesis.  

Chapter VI illustrates an application of the model in developing and validating a 

new methodology to infer protein functions and protein-protein interactions from time 

courses of mRNAs and proteins. This methodology suggests a means to infer how 
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genetic networks are constructed given the large volume of data being generated by gene 

expression profiling at the mRNA level and the protein level. 

Chapter VII presents a detailed description of construction and usage of Dynetica 

– a biologist-friendly simulator of dynamic networks. 

Chapter VIII highlights important findings of the previous chapters and suggests 

future research directions. 
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C h a p t e r  2  

CONSTRUCTION OF AN IMPROVED MODEL OF PHAGE T7 

INTRACELLULAR GROWTH  

“All models are wrong, but some are useful.” 

George E. P. Box  

“To improve is to change; to be perfect is to change often.” 

Winston Churchill 

 
The present T7 model, T7v2.5, recasts previous T7 models developed in our 

group (Endy 1997; Endy et al 1997) using an object-oriented approach. In addition, it 

incorporates a host-cell model that accounts for the empirical relationships between the 

host growth rate and the other host physiological parameters such as the numbers of E. 

coli RNA polymerases (EcRNAPs) and ribosomes, the pool sizes of nucleoside 

triphosphates (NTPs) and amino acids, and the cell volume; it accounts for the 

stoichiometric relation of the T7 helicase/primase (gp4A) and the DNA polymerase 

(gp5) in forming replication complexes, or replisomes, as well as the stoichiometric 

balance between the number of replication complexes and the maximum number of 

replication forks that can form on the newly synthesized T7 genomes; it determines the 

allocation of host and T7 RNA polymerases (T7RNAPs) among different mRNAs by 

the relative transcription capacities of the mRNAs; it incorporates a module that 
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facilitates the sensitivity analysis of the model with respect to single parameters or two 

parameters simultaneously.  

With the new design, the model is significantly improved in several aspects. First, 

with an object-oriented design, T7v2.5 presents a framework that can be easily 

generalized to model the growth of other kinds of viruses. Second, by incorporating a 

host cell model and updating the mechanisms of several viral infection steps, T7v2.5 

gives overall better agreement with the experiments for the base simulation, in particular 

in the prediction of the eclipse time and the rise rate. Third, the computation speed of 

T7v2.5 is over ten-fold faster than its direct precursor -- T7v2 (Endy 1997). The source 

code of T7v2.5 is available on request.  

2.1 Design of the base model 

By taking into consideration the host, the viral infection process can be treated as 

a complex reaction system formed by various components from both the virus and its 

host. We define such a system as a viral infection system (VIS). As shown in Figure 2.1, 

a VIS consists of at least a virus and a host cell, which in turn are composed of 

components of various levels. In the so-called object-oriented paradigm, many of these 

components can be programmed as objects. Each object has its own state defined by 

some attributes, which may change through the object’s “communications” with itself or 

other objects. For example, a protein, if treated as an object, may have such attributes as 

its name, its length in amino acids, the position of its gene along the genome, and its 

concentration in the cell. The protein concentration changes when it decays and when it 
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is translated; the decay process can be considered as the result of the “communication” 

between the protein and itself, and the translation process can be thought of as the 

translation machinery “telling” the protein to change its concentration. The entire 

system is essentially a web of objects telling each other what to do. The object-oriented 

modeling approach usually yields well-defined reusable components and an easily 

maintainable source code.  
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Figure 2.1 A static object-oriented view of the viral infection system consisting of a virus and 
a host cell. Entities shown in bold are defined as C++ classes. The others are represented as 
simple variables. The classes of higher levels are derived from classes and variables from the 
immediately lower level. Interactions among various components are omitted from this 
figure. Because of some common features they share, the classes genetic element, mRNA, 
and protein are all derived from a more abstract class element. 

2.1.1 Representation of the host cell

The current T7 model incorporates an empirically based host-cell model that 

accounts for experimentally observed correlations between the E. coli growth rate and 

resources such as the numbers of EcRNAPs and ribosomes, the pool sizes of NTPs and 

amino acids, and the cell volume, shown in Table 2.1 and reviewed elsewhere (Bremer & 

Dennis 1996). In setting up the host-cell model, we treat the host cell as a spatially 

homogeneous resource reservoir, where the levels of the resources are defined at the 
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initiation of the T7 infection. Moreover, by employing the equations in Table 2.1, we 

implicitly assume: (1) cell volume is constant over the course of infection, (2) negligible 

exchange of metabolites between the infected cell and its extracellular environment 

during infection, (3) the model host cell represents an average of a cell population that 

grows at the exponential phase immediately prior to phage infection, (4) the initial NTP 

pool size is equivalent to the total RNA content of the cell, (5) NTPs are not consumed 

as the energy source for the reactions, (6) the initial amino acid pool size is equivalent to 

the total protein content of the cell.  These assumptions are made based on our still 

limited understanding of the interplay between phage T7 and its E. coli host; some of 

them are open to debate. For example, the value for the NTP pool size is chosen mainly 

because of the lack of mechanistic understanding on the exact level of NTP in the host 

cell that is available for phage development. Nevertheless, these assumptions serve as a 

starting point toward representing the host cell, and they can be refined when more 

experimental data and mechanisms become available. 

Table 2.1 Dependence of E. coli physiological parameters on the cell growth rate (µ, 
doublings/hr)a 

Parameter Equation 

E. coli cell volume (liter) bVc = 8µ × 10-16 

EcRNAP number (molecule) NP = 192.2 µ3 – 155.2 µ2 + 549.0 µ -103.6 

EcRNAP elongation rate (base/s) kPE = 108.7 - 63.6 µ-0.1797 

Ribosome number (molecule) NR = 0.8×(13.1µ2 – 6.89µ + 6.46) × 103 

Ribosome elongation rate 

(residue/s)  
kE = 102.9 - 55.5µ-0.3609 
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Amino acid number (molecule) c dP  = (-0.73µ2 + 2.74µ + 1.48) × 2(C+D)µ/60 × 108  

NTP number (molecule) c R = 1.30 P µ / kE 

DNA content (genome equivalent) dGc = 60 / (C ln2) (2(C + D)µ/60 – 2µ/60)  

a All the equations are directly taken from reference (Bremer & Dennis 1996) or derived from the data 
therein unless otherwise indicated. 
b From reference (Donachie & Robinson 1987). 
c The NTP level represents the total RNA content of the host cell, and the amino acid level represents 
the total protein content of the host cell. 
d C and D are the lengths of the C and D periods, respectively; they are related to the growth rate as 
follows: C = 42.4 + 132.7 e-2.812µ (min); D = 22.3 + 15.4e-1.16µ (min). 

 
 
2.1.2 Representation of the viral genome 

The viral genome is represented as an array of genetic elements; each genetic 

element is defined as a segment of DNA in the viral genome, with a unique function 

(genes, promoters, RNA splicing sites, etc.) or no known function (spacer DNAs). The 

wild-type T7 genome consists of 145 genetic elements, including two genome ends, 59 

genes 9 , seven EcRNAP promoters, 17 T7RNAP promoters, two transcription 

terminators, ten ribonuclease (RNase) III processing sites and 48 spacer DNAs (Figure 

2.2). The viral genome is specified in an input file, where each genetic element is 

assigned five attributes: a name, a starting position and an ending position along the 

genome, type, and efficiency. Shown below is part of the input file specifying the wild-

type T7 genome: 

Name Start End Type Efficiency 

… … … … … 

A3 750 815 2 1 

R0.3 816 890 6 0 

                                                 
9 Here every protein-coding gene is counted as a separate one, even if two genes may overlap. 
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Blk6   891 924 9 0 

gp0.3 925 1278 0 0 

… … … … … 

     

For example, A3 is the third major promoter for EcRNAP, it starts at 750 base 

pairs (bp) relative to the left genome end and ends at 815 bp, its type is 2 (0 = non-

essential gene, 1 = essential gene, 2 = EcRNAP promoter, 3 = T7RNAP promoter, 4 = 

EcRNAP transcription terminator, 5 = T7RNAP transcription terminator, 6 = RNase 

III site, 9 = spacer DNA, 10 = genome end), and its relative activity (indicated as 

Efficiency) is 1. 

The current model is general enough to deal with in silico T7 mutants with 

genomes in which the genetic elements are reordered. In these mutants, some or all 

elements can be relocated to positions different from their wild-type positions. During 

the relocation, a group of overlapping elements is treated as a block to be moved 

together.  Since a spacer DNA does not have any defined functions, it is treated as part 

of the proceeding block. Therefore, in cases where we need to rearrange T7 genetic 

elements, we end up having 74 blocks. For example, one such block consists of gene 3.8 

(start = 11225 bp, end = 11590 bp), gene 4A (11565, 13265), gene 4.1 (11635, 11757), 

gene 4B (11754, 13265), φ4.1 (12671, 12706), gene 4.2 (12988, 13326), and spacer DNA 

23 (13327, 13340). For simplicity, in this dissertation, the term genetic element is used to 

represent a non-overlapping genetic element or a genetic block unless stated otherwise. 
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Figure 2.2 The wild-type T7 genome. Boxes represent genes. Vertical lines with half bars 
above the genes represent EcRNAP (blue) and T7RNAP (green) promoters; the heights of 
these lines represent the relative activities of the promoters (not to the scale). Vertical lines 
with full bars above the genes represent EcRNAP (red) and T7RNAP (dark purple) 
terminators. Vertical lines below the genes represent RNase III processing sites. The two 
green bars on both ends represent the left end (LE) and right end (RE) of the genome. In 
altering the genetic-element order, these two elements are always fixed. The horizontal bars 
below the genome represent the various processed T7 mRNAs; the thickness of a bar 
represents the transcriptional capacity allocated to the mRNA (not to the scale).

2.1.3 Translocation of T7 genome into the host cell 

The translocation of the T7 genome into the host is simulated by starting with a 

90-second delay representing the time between the addition of phage to a shaker flask of 

host cells and the beginning of genome entry. Then it is modeled as a three-stage 

process based on experimental results (Garcia & Molineux 1995b; Garcia & Molineux 

1996; Struthers-Schlinke et al  2000). The first stage involves the efficient ejection of 

approximately 850 bp of the leading end of the T7 genome at a rate of 70 bp/s. This 

section of T7 genome contains three major EcRNAP promoters (A1, A2 and A3). As 
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these promoters initiate the transcription of class I genes, the T7 genome is pulled into 

the host at 40 bp/s. When T7RNAP is expressed, it recognizes the class II promoters 

and begins the transcription of class II genes, and pulls the T7 genome into the host at 

200 bp/s. The length of the internalized T7 DNA is calculated at each time point until 

the entire genome enters the cell at about seven minutes post infection.  

The modes of genome entry may change when T7 genetic elements are reordered. 

For example, other EcRNAP promoters (B, C, or E) may be moved into the first 

850bp, and they can initiate EcRNAP-mediated entry even if the three major EcRNAP 

promoters are not present in this region. However, because the second stage of the 

genome entry is coupled with the transcription by EcRNAP, T7 will fail to deliver its 

DNA, thus fail to grow, if none of the six EcRNAP promoters are located within the 

first 850bp of the genome. 

2.1.4 Transcription of T7 genes 

The model accounts for the synthesis of unique mRNA species from the 

promoters that have entered the host cell. Most T7 primary mRNAs are efficiently 

cleaved at the ten RNase III sites. For simplicity, we assume the cleavage at these sites is 

instantaneous and 100% efficient. Further, the model accounts for the termination and 

read-through of RNA polymerases at terminators TE (early terminator, for EcRNAP) 

and Tφ (phage terminator, for T7RNAP). The mRNA species are generated on the fly 

during the simulation, based on the organization of the promoters, terminators, and 
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RNase III sites on the genome. Twelve categories of mRNA species will be generated 

during the simulation (Table 2.2).  

The rate of concentration change in each mRNA species is accounted for using 

the following equation. 

]mRNA[
]mRNA[

77 idmiTPTEiPE
i kSkSk

dt
d

−+=    2.1  

where [mRNAi] is the concentration of the ith mRNA as a function of time, kPE and kPT7 

are the elongation rates of EcRNAP and T7RNAP respectively, SEi and ST7i are the 

densities of EcRNAP and T7RNAP along the internalized region of the genome that 

codes for the mRNA, and kdm is the decay rate constant of the mRNA.  

Table 2.2 Categories of mRNAs that can be generated during the simulation* 

Starting from Ending at Transcribed by 

 TE  

EcRNAP promoter RNase III site EcRNAP 

 Genome end  

 Tφ  

T7 RNAP promoter RNase III site T7 RNAP 

 Genome end  

TE EcRNAP  

 RNase III site EcRNAP 
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Genome end EcRNAP 

Tφ T7 RNAP 

RNase III site T7 RNAP 

 

RNase III site 

Genome end T7 RNAP 

* For the wild-type genome 28 mRNA species will be generated 

 

In calculating SEi and ST7i, we assume that EcRNAP and T7RNAP molecules are 

allocated to the portions of the genome that code for the mRNAs according to the 

relative transcription capacities of these mRNAs, which in turn are calculated from the 

relative activities of the promoters (Tables 2.3 & 2.4). The maximum density of either 

EcRNAP or T7RNAP along any mRNA is determined from the RNAP spacing 

requirement. Currently the same spacing requirement data are used for both the 

EcRNAP and T7RNAP due to the lack of data for the latter. 

Table 2.3 E. coli RNA polymerase promoter data used in the model 

Promoter Relative Activity 

A1a 1 

A2a 1 

A3a 1 

Bb 0.05 

Cb 0.05 

Eb 0.05 
a Some in vitro data indicate that A2 and A3 are less active that A1 (Dunn 1976). 
b Promoters B, C, and E are shown to be utilized but their activities are much weaker than 
the major promoters (Dayton et al  1984). 
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2.1.5 Translation of T7 mRNAs 

We assume that the rate of translation is limited by ribosome elongation, until all 

amino acid residues are exhausted, at which point the translation is abruptly stopped. 

We further ignore possible effects of the mRNA secondary structures and codon usage 

on translation, and assume that the translation rate of a protein is proportional to the 

total concentrations of the mRNAs that code for it. With these assumptions, Eq. 2.2 is 

used to track the concentration of protein i: 

∑ −−=
k

didpikdE
i vkRk

dt
d

]protein[]mRNA[
]protein[

 2.2 

where [proteini] is the concentration of the ith protein, kE is the elongation rate of the 

ribosome, Rd is the ribosomal density along mRNAs, kdpi is the decay rate constant of the 

protein, vd accounts for the consumption of the protein by assembly of the procapsids or 

the packaging of the progeny particles, and the summation accounts for all the mRNA 

species that code for the ith protein. kdpi is assumed to be the same constant for all T7 

proteins. 
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Table 2.4 T7 RNA polymerase promoter data used in the model (Endy 1997) * 

Promoter Relative Strength**  Initiation Efficiency Relative Activity*** 

φ1.1A 0.15a 0.296c 0.044 

φ1.1B 0.34 0.361 0.123 

φ1.3 0.045 0.163 0.007 

φ1.5 0.15a 0.296c 0.044 

φ1.6 0.15a 0.296c 0.044 

φ2.5 0.15a  0.296c 0.044 

φ3.8 0.07 0.364 0.025 

φ4C 0.15a 0.296c 0.044 

φ4.3 0.15a 0.296c 0.044 

φ4.7 0.15a 0.296c 0.044 

φ6.5 0.61 0.748 0.456 

φ9 0.80b 0.721d 0.577 

φ10 1.00 0.681 0.681 

φ13 0.79 0.734 0.580 

φ17 0.80b 0.721d 0.577 

* Relative strength and initiation efficiency data taken from (Ikeda & Bailey 1992). 
** All promoter strengths are scaled relative to φ10. 
*** Relative activity is the product of the relative strength and the initiation efficiency. 
a 0.15 is the average strength of the three known class II promoters. 
b 0.80 is the average strength of the three known class III promoters. 
c 0.296 is the average initiation efficiency of the three known class II promoters. 
d 0.721 is the average initiation efficiency of the three known class III promoters. 
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In calculating Rd, we assume that the ribosomes are uniformly allocated to all the 

available mRNAs based on their levels and lengths, and that all the ribosomes are 

directed to the translation of T7 mRNAs once infection starts. That is, 

)/1,]mRNA[/min( mRNA R
i

iRd dLNR
i∑= , where the function min(a, b) returns 

the smaller of a and b, NR is the total number of ribosomes, dR is the minimum distance 

between neighboring elongating ribosomes, LmRNAi and [mRNAi] are the length and the 

level of mRNA i, respectively, and the summation accounts for all T7 mRNA species. 

According to this equation, Rd will change with the total mRNA level when the latter is 

high, but will reach its maximum and become a constant (1/dR) when the latter is low. 

This dependence of Rd on the mRNA level marks a major difference between T7v2.5 

and its precursors where ribosomes were never limiting and Rd was thus always constant. 

2.1.6 Protein-protein interactions 

We treat the following protein-protein interactions as rapidly equilibrated 

reactions: 

EcRNAP + gp0.7 ⇔ EcRNAP-gp0.7,  K1 

EcRNAP + gp2 ⇔ EcRNAP-gp2,   K2 

T7RNAP + gp3.5 ⇔ T7RNAP-gp3.5, K3 

where K1, K2 and K3 are the association constants for the corresponding interactions. K1 

and K2 are derived from published data (Endy 1997), and K3 is directly taken from 
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published data (Kumar & Patel 1997).  These interactions can be formulated in the same 

form: A + B ⇔ AB, with an association constant of K. They are implemented as 

constraints on the concentrations of the involved species. At each time point, the 

concentrations of the free and associated proteins are updated using the following 

algebraic equations: 

{ }
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
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
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−=

−++−++=

][][][
][][][
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00

2
0000
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       2.3 

where the subscript 0 indicates the total concentration of A or B, including both free 

and bound forms.  

2.1.7 Replication of the T7 genome 

During the T7 infection cycle, approximately 85% of the host genome is 

efficiently digested by T7 endonuclease (gp3) and exonuclease (gp6) into acid-soluble 

fragments during about 7.5 to 15 minutes after infection initiation (Sadowski & Kerr 

1970)10. We model the digestion of the host genome with a 0th-order reaction and 

assume instantaneous conversion of the acid-soluble fragments into 

deoxyribonucleoside triphosphates (dNTPs), which are the direct precursors for DNA 

synthesis. 

                                                 
10 These data were measured at 37°C; they may be significantly delayed at 30 °C 
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In addition to dNTPs, T7 DNA replication in vivo requires T7RNAP, DNA 

polymerase (gp5), primase/helicase (gp4A/B) (Egelman et al  1995; Kusakabe et al  

1998; Kusakabe & Richardson 1997; Mendelman et al  1992), single-stranded DNA 

binding protein (gp2.5) (Kim & Richardson 1993), and probably T7 lysozyme (gp3.5) 

(Zhang 1995). Gp5 is only processive when it forms a 1:1 complex with thioredoxin, a 

host protein (Huber et al  1987; Tabor et al  1987). We assume thioredoxin is always in 

excess and all gp5 molecules are processive. We further assume that a replisome consists 

of one gp5 molecule and six gp4A molecules and replisomes form instantaneously given 

stoichiometric amounts of these components. Finally, we assume that up to two 

replication forks can form per complete T7 genome, given sufficient numbers of 

replisomes. The roles of T7RNAP, gp2.5, and gp3.5 are accounted for by incorporating 

“hard” switches such that DNA synthesis occurs only when the concentrations of gp2.5 

and the T7RNAP:gp3.5 complex are above zero.  

Having met these constraints, we treat replisome elongation as the rate-limiting 

step in DNA synthesis. This rate is set as a function of dNTP concentrations using 

Michaelis-Menten kinetics: 

7
DNA)]dNTP([2
]dNTP[]DNA[
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m

rPD v
LK

Nk
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where [DNA] is the number of T7 progeny DNA, [dNTP] is the concentration of free 

dNTPs, kPD is the elongation rate of the replisome, Nr is the number of elongating 

replisomes and Nr = min (the number of replisomes, 2[DNA] ), Km is the half-maximum 

velocity constant, LDNA is the length of a T7 DNA in base pairs, vT7 is the production 

rate of phage progeny, kdNTP is the rate for the release of dNTPs from digestion of the 

host genome, and t0 ( = 7.5 min) is the time point for the initiation of host DNA 

digestion (Sadowski & Kerr 1970). 

2.1.8 Procapsid assembly and phage particle formation 

Procapsid assembly is simulated with a 4.8th-order nucleation-limited reaction 

derived from data for phage P22 (Prevelige et al  1993), which has similar shape and size 

as T7. The P22 kinetic data for procapsid assembly is the most comprehensive for any 

phage and allows the development of a procapsid rate expression. This representation 

for the formation of procapsids includes the requirement that the major capsid protein 

concentration exceeds a nucleating concentration (Cn) before assembly starts. The 

consumption of procapsids as progeny are formed requires complete procapsids, T7 

DNAs, and enough other structural proteins to complete the phage. Further, we assume 

that packaging of DNA into the procapsid is the rate-limiting step for T7 progeny 

formation, given DNA, procapsids, and non-zero concentrations for all particle proteins 

and the DNA maturation proteins, gp18 and gp19. Based on these assumptions, we use 

the following equations to simulate the procapsid assembly and progeny formation: 
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7

8.4]gp10A[]procapsid[
T

c

a v
N

k
dt

d −=  2.6 

RpackT Pk
dt

dv =≡ ]T7[
7   2.7 

where [procapsid] is the number of procapsids, ka is the procapsid assembly rate 

constant, Nc is the number of gp10A molecules per procapsid, kpack is the packaging rate 

of T7 DNA into the procapsids, and PR = min ([procapsid],  [DNA] ). 

As procapsids and progeny phage particles are assembled the model accounts for 

the depletion of various T7 proteins. The model also accounts for the utilization of the 

scaffold protein during procapsid assembly (Roeder & Sadowski 1977). Based on Eqs. 

2.6 & 2.7, we can write out the equation for the consumption terms of different proteins 

(vd of Eq 2.2): 

c

a
sd N

k
Nv

8.4]gp10A[
=  for gp9  2.8 

8.4]gp10A[ad kv = (if [gp10A] > Cn) for gp10A  2.9 

7Tid vNv =  for other particle proteins 2.10 

where Ns is the number of scaffolding proteins (gp9) consumed for each procapsid 

produced, Ni is the number of protein i molecules per progeny phage. The 

stoichiometric data for phage particle formation are listed in Table 2.5. 
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Table 2.5 Functions and phage particle stoichiometry data of selected T7 proteins (Steven & 
Trus 1986; Studier & Dunn 1983)  

Protein Function or stoichiometry data 

gp0.3 Anti-restriction protein 

gp0.7 Protein kinase; also inhibits EcRNAP 

gp1 T7 RNA polymerase 

gp2 Inhibitor of EcRNAP 

gp3 Endonuclease 

gp3.5 Lysozyme, inhibitor of gp1 

gp4A/B Primase/helicase 

gp5 DNA polymerase 

gp6 Exonuclease 

gp8 Capsid-tail connection protein (12)* 

gp9 Capsid assembly protein (137) * 

gp10A Major capsid protein (415) * 

gp11 Tail protein (18) * 

gp12 Tail protein (6) * 

gp13 Core protein (33) * 

gp14 Core protein (18) * 

gp15 Core protein (12) * 

gp16 Core protein (3) * 

gp17 Tail fiber protein (18) * 
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gp17.5 Lysis protein 

gp18 DNA maturation 

gp19 DNA maturation 

* Number of protein molecules needed for each phage particle. 

 

Table 2.6 The default setting for T7-specific parameters 

Parameter Value References 

T7 DNA translocation rate 
(bp/s) 

70, 40, and 200 (Garcia & Molineux 
1995b; Garcia & Molineux 
1996; Struthers-Schlinke 
et al 2000) 

Promoter activities  Tables 2.3 and 2.4 
TE efficiency eTE = 0.99 (Dunn & Studier 1983) 
Tφ efficiency eTφ = 0.85 (Macdonald et al  1993) 
T7 mRNA decay rate constant  *kdm = 2 × 10-3 s-1 (McCarron & McAllister 

1978; Pfennig-Yeh et al  
1978; Yamada & Nakada 
1976; Yamada et al  1974) 

T7 protein decay rate constant  kdp = 2.85 × 10-5 s-1 (Lee & Bailey 1984) 
EcRNAP and gp0.7 association 
constant  

K1 = 5.5 × 106 M-1 (Endy et al 1997) 

EcRNAP and gp2  
association constant  

K2 = 5.0 × 107 M-1 (Endy et al 1997) 

T7RNAP and gp3.5  
association constant 

K3 = 1.087 × 107 M-1 (Kumar & Patel 1997) 

Replisome elongation rate kPD = 370 bp/s (Rabkin & Richardson 
1990) 

Procapsid assembly  
rate constant  

ka = 5.085×1015 (M-3.8/s)(Endy et al 1997) 

Procapsid assembly  
nucleation concentration 

Cn = 6.23 × 10-6 M (Endy et al 1997) 

DNA packaging rate constant 467 bp/s (Son et al  1993) 

* The functional half-lives reported for T7 mRNAs vary from 5 to 7 minutes. For simplicity, 
we assume all the mRNAs have the same decay rate constant (kdm = 2 × 10-3 s-1), which 
corresponds to a half-life of 5.77 minutes.  
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2.2 Simulation output 

The output of the model, which can be easily configured by the user, includes the 

simulated state of genome entry and the concentrations of T7 mRNAs, proteins, DNA, 

procapsids, and progeny, each as a function of the time. The tabulated output files can 

then be used for detailed analysis. An additional module is designed to wrap the base 

model to enhance flexibility and simulation capacity. The wrapper takes care of the 

input/output to the base model and provides functionality for performing sensitivity 

analysis on the model system (Chapters 3 and 4), simulating the T7 variants with 

alternative gene orderings (Chapter 4, also in (Endy et al  2000)), either by sliding a 

genetic element along the genome or randomly shuffling the entire genome, and 

simulating the optimization of T7 gene ordering or parameter setting using a Monte 

Carlo algorithm (unpublished).   

2.3 Summary of assumptions in the current T7 model 

The default parameter set used by the model is summarized in Tables 2.1, 2.3, 2.4 

& 2.6; other assumptions follow: 

1. The host cell grows at the exponential phase at the time immediately prior to T7 

infection; it is a spatially homogeneous resource reservoir with a constant volume 
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during the infection process; the only change to the host during infection is 

consumption of the resources by T7. 

2. The T7 DNA enters at a constant rate (different for different stages) during each of 

the three stages of DNA entry -- injection of the first 850 base pairs, EcRNAP-

mediated translocation, and T7RNAP-mediated translocation. 

3. Active EcRNAP and T7RNAP (a) have constant elongation rates over time, (b) can 

instantaneously recognize their promoters and effect translocation and transcription, 

and (c) are instantaneously allocated (and redistributed at each time step) to their 

promoters that have entered the host cell based on their relative activities 

4. All T7 primary mRNAs are instantaneously cleaved at all RNase III sites with 100% 

efficiency. 

5. EcRNAP and T7RNAP do not block each other on the T7 DNA; EcRNAP and 

T7RNAP do not block the replisomes and vice versa. 

6. The number of active ribosomes remains constant during T7 infection. 

7. Ribosomes are allocated among available T7 mRNAs based on the levels and the 

lengths of these mRNAs. 

8. The inhibition of EcRNAP by gp0.7 and that by gp2 are non-competitive. 

9. gp0.7 inhibits EcRNAP by forming a 1:1 complex. 



 

 

39 
10. The elongation of the replisomes is the rate-limiting step of T7 DNA replication, 

and this process follows Michaelis-Menten kinetics with dNTP as the substrate. 

11. The concentration of gp4B does not affect replication kinetics. 

12. Digestion of the host DNA is a zeroth-order reaction; it will occur if and only if gp3 

and gp6 are present and only during 7.5 and 15 minutes after the initiation of 

infection. 

13. Nucleotides released from the digestion of the host DNA are instantaneously 

converted into dNTPs for incorporation into T7 DNAs. 

14. The host protein thioredoxin is always in excess compared with gp5, so that all gp5 

molecules are in the processive form. 

15. DNA replication occurs only if T7RNAP, gp2.5, and gp3.5 molecules are present. 

16. A replisome consists of one gp5 and six gp4A molecules. 

17. Up to two replication forks can form on each T7 genome. 

18. T7 procapsid assembly follows the same kinetics as that of phage P22.  

19. Unlimited energy is available for T7 DNA metabolism. 
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C h a p t e r  3  

EFFECTS OF E. COLI PHYSIOLOGY ON PHAGE T7 GROWTH IN SILICO 

AND IN VIVO11 

“You are a product of your environment. So choose the environment that will best 

develop you toward your objective. Analyze your life in terms of its environment. 

Are the things around you helping you toward success – or are they holding you 

back?” 

W. Clement Stone  

 

Abstract 

Phage development depends not only upon phage functions, but also on the 

physiological state of the host, characterized by levels and activities of host cellular 

functions.  We established Escherichia coli at different physiological states by continuous 

culture under different dilution rates and then measured their production of phage T7 

during a single cycle of infection.  We found that the intracellular eclipse time decreased 

and the rise rate increased as the growth rate of the host increased. To develop 

mechanistic insight we extended a computer simulation for the growth of phage T7 to 

account for the physiology of its host.  Literature data were used to establish 

mathematical correlations between host resources and the host growth rate; host 

resources included the amount of genomic DNA, pool sizes and elongation rates of 

                                                 
11 The content of this chapter has been published in You, Suthers, and Yin (2002) J. Bacteriology. 184: 1888-1894. 
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RNA polymerases and ribosomes, pool sizes of amino acids and nucleoside 

triphosphates, and the cell volume.  The in silico dependence of the phage intracellular 

rise rate on the host growth rate gave quantitatively good agreement with our in vivo 

results, increasing five-fold for a 2.4-fold increase in host doublings/hr, and the 

simulated dependence of eclipse time on growth rate agreed qualitatively, deviating by a 

fixed delay.  When the simulation was used to numerically uncouple host resources from 

the host growth rate, phage growth was found to be most sensitive to the host 

translation machinery, specifically, the level and elongation rate of the ribosomes.  

Finally, the simulation was used to follow how bottlenecks to phage growth shift in 

response to variations in host or phage functions. 

3.1 Introduction 

Bacteriophage studies played a key role in setting the foundations of molecular 

biology (Cairns et al  1992).  As a result, phage ranks among the best-characterized 

organisms at the molecular level.  Mathematical models or computer simulations can 

add value to this wealth of phage information by showing how the molecular 

components and interactions, when taken together, can define developmental processes.  

For example, in recent years simulations have shown how the physicochemical 

interactions that govern gene regulation in lambda phage correlate with its lysis-lysogeny 

decision (Arkin et al  1998; McAdams & Shapiro 1995; Reinitz & Vaisnys 1990; Shea & 

Ackers 1985), how the coupling of RNA and replicase production enables rapid 

takeover of the host during phage Qβ infections (Eigen et al  1991), and how the 
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intracellular development of phage T7 depends on the organization of its genome (Endy 

1997; Endy et al 2000; You & Yin 2001). 

The relative simplicity of phage developmental processes, compared with those of 

microbes or higher organisms, is balanced in part by the complexity of the resources 

they need for growth.  Phage require at least nucleic-acid precursors, protein precursors, 

and translation machinery from their hosts.  Consequently, phage infection processes 

depend not only on the physicochemical characteristics of their genome-encoded 

functions, but also on the intracellular resources of their hosts, which depend further on 

the physiological state of their hosts.  Studies spanning 60 years have demonstrated this 

dependence (Adams 1959; Cohen 1947; Cohen 1949; Cohen 1953; Delbrück 1946; Ellis 

& Delbrück 1939; Hadas et al  1997; Hedén 1951; Kutter et al 1994).  Different stages of 

phage growth, including the attachment of the phage particle to its host, the penetration 

of phage DNA into its host, and the synthesis of the phage components, have been 

found to be sensitive to the physiological state of the host, which has been modulated 

by its growth medium (Cohen 1949; Hadas et al 1997; Hedén 1951), temperature (Ellis 

& Delbrück 1939; Kutter et al 1994), oxygen tension (Kutter et al 1994), and 

pretreatment using chemical agents (Adams 1959; Cohen 1949; Hadas et al 1997; Hedén 

1951).  These studies have shown that the faster the host grows at the time of phage 

infection, the faster the phage will grow, corresponding to a shorter latent time (or a 

shorter intracellular eclipse time), faster progeny production rate, and larger burst size.  
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How is phage production influenced by the levels of different essential 

intracellular resources?  The answer is not obvious because of the coupling of resources 

to host growth.  As the growth rate of the host increases, so does its cell size (Donachie 

& Robinson 1987), as well as its intracellular levels of genomic DNA, RNA polymerase, 

ribosomes, nucleoside triphosphates (NTPs), and amino acids (Bremer & Dennis 1996). 

These are all essential resources that, to unknown extents, affect phage growth. In 

addition, the effects of these factors may be convoluted: the increase in the cell volume 

as the host cell grows faster will affect the concentrations of various resources, which in 

turn may affect phage growth. Mutant hosts may help uncouple these effects.  For 

example, the effects of DNA levels can be uncoupled from growth rate by growing a thy 

mutant under thymine limitation (Zaritsky & Woldringh 1973).  The one-step growth 

(OSG) behavior of phage T4 on this mutant was used to infer the key role of the protein 

synthesis machinery in phage growth (Hadas et al 1997).  Such results, while useful, do 

not exclude possible confounding effects of the mutation on other host resources. 

Using phage T7 as the model system, we explored the effect of the host 

physiology on phage growth using both experimental and computational approaches. 

Phage one-step growth experiments were conducted by infecting E. coli cells growing at 

different rates, achieved by using a chemostat. These experiments suggested a similar 

dependence of phage growth rate on the host growth rate as observed for other phage 

studied: the faster the host grows, the faster the phage infection. To better quantitatively 

understand this dependence, we employed the T7 model to probe the effect of the host 

physiology at the molecular level. In particular, we explored the effects of host resources 
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on phage growth by accounting for the coupling or uncoupling of the host resources to 

its growth rate.   

3.2 Materials and methods 

3.2.1 Experiment 

Strains and growth conditions.  Escherichia coli BL21 (Gal- λs hsdS) and wild-type 

bacteriophage T7 were generously provided by I. J. Molineux (University of Texas, 

Austin, TX).  BL21 cultures were grown aerobically on Luria-Bertani (LB) broth (Difco) 

containing 0.4g/L glucose at 30ºC and pH 7 in a 3-liter KLF 2000 Fermenter 

(Bioengineering AG).  The fermenter was inoculated with 20mL of an overnight of 

BL21 grown on LB at 30ºC. A 500 Series Fermentation Controller (Valley Instrument 

Company) kept the pH, the temperature, and the impeller rotation rate (300 rpm) at set 

points. The feed rate to the fermenter was continuous and controlled at various rates, 

and the working volume was kept constant at 1740 mL using an overflow tube. A 

MasterFlex pump (ColeParmer) maintained the flows in both the feed and the outflow 

lines.  PharMed MasterFlex tubing (ColeParmer) was used for the feed and overflow 

tubing, CFlex tubing (ColeParmer) for the 4N H2SO4 acid and the 4M NaOH base 

feeds, and platinum-cured silicone (ColeParmer) for the air flow tubing. 

Intracellular one-step growth experiments.  Established methods were used in 

the preparation, preservation, and assay of the phage (Adams 1959; Miller 1992; Studier 

1969).  Bottom agar for plates and soft agar for overlayers were LB broth containing 

1.5% and 0.7% Bacto-agar (Difco), respectively. The host cells went through at least 6-8 
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doublings after reaching the new steady state for each change in flow rate, as determined 

by OD600. Sampling of the chemostat was performed under sterile conditions. Ten mL 

of the sample was added to a shaker flask already at 30ºC, which was then infected with 

phage T7. The multiplicity of infection was 0.05, and all phage growth was carried out at 

30ºC. At three minutes post infection, a sample from the infected shaker flask was 

diluted 500-fold into 30mL of cell-free LB medium to minimize further binding of 

phage to bacteria.  Samples of the diluted infected cell culture flask were treated with 

chloroform (Sigma) to release intracellular phage and titered on BL21 grown in shaker 

flasks on LB. The number of infective centers was determined as the difference between 

the chloroform-treated sample and a sample that was not chloroform-treated, both 

taken immediately after dilution. Phage dilutions for titering were performed in buffer 

containing 10 mM Tris–HCl (pH 7.5), 1 mM MgCl2, 0.1 M NaCl, 10 mg/L gelatin, and 

10 mM CaCl2.  Phage growth curves were generated in triplicate at each host growth 

rate. 

Parameter estimation. The objective function to extract eclipse time, rise rate, 

and burst size from the intracellular one-step growth curves was defined as 
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where φ is the number of phage progeny as a function of time, a is the eclipse time, r is 

the rise rate, and B is the burst size.  The non-linear fit function (nlinfit) of Matlab 6.0 

(The Mathworks, Inc.) was used to estimate the three parameters along with their 95% 

confidence intervals. 

3.2.2 Simulation 

 We performed a sensitivity analysis on all the E. coli physiological parameters that 

affect the growth of T7 (Table 2.1).   Here we use the term “sensitivity analysis” in its 

broad sense, i.e., the determination of changes in the value of model variables in 

responding to the change in a parameter value. The base case value of the host growth 

rate was set to 1.5 doublings/hr, and the corresponding base case values of the other 

parameters were calculated using the equations in Table 2.1. In each sensitivity analysis, 

one parameter was varied over a range from 0.1 to 10 times its base case value while the 

other parameters were kept constant, and a simulation was conducted for each value of 

the selected parameter. For scenarios where host physiology was defined by a single 

growth rate, we coupled host resources to the growth rate using the equations in Table 

2.1. To provide a basis for comparison with the experiments we conducted, the host 

growth rate was varied from 0.7 to 1.7 doublings/hr. Each simulation was conducted 

over a time period of 60 minutes with a time step of 0.02 seconds for numerical 

integration, except for those where the host-cell volume was less than half its base case 

value. In this case, a time step of 0.001 seconds was used to avoid computational errors 

resulting from the integration of stiff equations (e.g., the assembly of procapsid is 4.8th-

order in terms of the concentration of major capsid protein; significant computational 
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errors may occur when this concentration is high, which may arise for small volumes 

and large time steps).  The sensitivity of phage growth to both EcRNAP and ribosomes 

was studied by generating a mesh of 400 (or 20×20) nodes ranging from 0.1-fold to 100-

fold of the base case values, and the rise rate was determined at each node.  Derivatives 

with respect to EcRNAP number and ribosome number were then determined at each 

node, and local changes in these derivatives were used to demarcate transitions in 

resource limitation.  Specifically, the boundary between the EcRNAP-limited and 

ribosome-limited growth was defined between nodes where the derivative of the rise 

rate with respect to the EcRNAP numbers changed from positive to either negative or 

zero.  Further, the boundary between growth limitations by protein synthesis and DNA 

synthesis was defined between nodes where the derivative of the rise rate with respect to 

both EcRNAP numbers and ribosome numbers changed from positive to either 

negative or zero.   

3.3 Results 

3.3.1 T7 growth was sensitive to E. coli growth rate 

The host E. coli cell can affect phage T7 growth in many ways. From the 

perspective of the intracellular processes comprising the phage infection cycle, the E. coli 

cell serves at least as a set of material resources. Additionally, the cell volume may affect 

viral growth by affecting the concentrations of interacting molecular species. The 

physiological parameters that characterize the levels of these cellular resources and the 

cell volume are all closely correlated with the cell growth rate (Bremer & Dennis 1996). 

Therefore, changes in the cell growth rate will change the physiological parameters; in 
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turn, these changes may affect the rate of phage development. We found from our 

experiments and simulations that phage infections indeed became increasingly 

productive as the growth rate of the host E. coli increased from 0.7 to 1.7 doublings/hr 

(Figure 3.1). 

Figure 3.1 Intracellular one-step growth of phage T7 on E. coli BL21 growing at different 
rates. The host cells were grown at 0.7, 1.0, 1.2, 1.5 and 1.7 doublings/hr. Experimental data 
of the intracellular plaque forming units (PFU) for each host growth rate are from three 
separate infections indicated by ●, , ♦, ▼, □, in the order of the growth rates above; 
output from the simulation is shown by solid lines. 

To better compare simulations and experiments, we characterize each intracellular 

one-step growth curve using three variables: the time required by the infected host to 

produce the first phage progeny (eclipse time), the rate of intracellular phage progeny 

production (rise rate), and the total number of viable progeny per infected host (burst size), 

as shown in Figure 3.2A. Since the mechanism for the phage-induced lysis of the host 

cell is not well understood and not included in our simulation, we focus here on the 
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behaviors of the eclipse time and the rise rate, which are lysis-insensitive. The simulation 

agreed well with experiments in predicting the dependence of the eclipse time and the 

rise rate on the E. coli growth rate (Figure 3.2B-C): the rise rate monotonically increased, 

and the eclipse time monotonically decreased, with increasing E. coli growth rates. The 

agreement for the rise rate was better overall than for the eclipse time, where there was a 

systematic mismatch between simulation and experiment (Figure 3.2C, solid line). Also 

note from Figure 3.2 that the rise rate was much more sensitive to the changes in the E. 

coli growth rate than was the eclipse time. As the E. coli growth rate increased from 0.7 to 

1.7 doublings/hr, the rise rate increased approximately five-fold, whereas the eclipse 

time decreased by less than 30 percent. This sensitivity analysis gives an overall picture 

of the dependence of T7 growth on the E. coli physiological state. 

3.3.2 Simulated T7 growth most strongly depended on the host translation machinery 

To investigate in silico the effect of individual E. coli physiological parameters on 

T7 growth, we uncoupled them from the E. coli growth rate and from each other, and 

analyzed the sensitivity of the rise rate and the eclipse time to each, independently. As in 

the case of the sensitivity analysis on the E. coli growth rate (Figure 3.2), the rise rate was 

overall much more sensitive to the host parameter changes than was the eclipse time. In 

addition, the rise rate and the eclipse time always changed in inverse directions with any 

parameter changes; therefore, we focus here on the rise rate. 
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Figure 3.2 Phage T7 growth dependence on host growth rate. (A) An intracellular one-step 
growth curve can be characterized by three variables: eclipse time is the time period between 
infection initiation and the time point when phage progeny first appear, the rise rate is the 
slope of the straight line starting from the end of the eclipse period, and the burst size is the 
final number of phage progeny produced from a single infection. (B) The intracellular rise 
rate and (C) the eclipse time, both extracted using a three-parameter model from the data in 
Figure 3.1, as a function of E. coli growth rate. The experimental results are shown in ● and 
95% confidence intervals are indicated. Results of processing the computer simulation 
growth curves are shown by solid lines. A one-parameter adjustment to the eclipse time is 
shown by a dashed line. This adjustment incorporated a constant delay in the initiation of 
phage adsorption to the host cell. 
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The number and the elongation rate of ribosomes had the strongest effect on the 

rise rate (Figure 3.3). They had virtually the same effect until they were large, where the 

rise rate leveled off at different levels. The increase in ribosome elongation rates 

increased rise rate more than did the increase in the ribosome numbers. The dependence 

of the rise rate on the cell volume was overall moderate, and interestingly, biphasic; the 

rise rate first increased and then decreased as the cell volume increased from 0.1 to 10 

times its base case value (Figure 3.3). The optimal rise rate occurred at the base-case cell 

volume. 
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Figure 3.3 Sensitivity of the intracellular rise rate to host physiological parameters. The 
parameters were normalized to their base case values, which were calculated based on an E. 
coli growth rate of 1.5 doublings/hr using equations from Table 2.1. The rise rate was 
normalized to the value calculated from the base case parameters. Because NTP number did 
not affect the rise rate over the parameter range examined, it is omitted from the figure. 
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The dependence of T7 growth on the other host parameters was less significant 

(Figure 3.3). An increase in the DNA content had a slightly positive effect on the rise 

rate. The amino acid pool size did not have any significant effect on the rise rate until it 

was smaller than about 0.25 times its base case value, when the rise rate became sensitive 

to the parameter: as the amino acid pool size dropped from 0.25 to 0.1 times its base 

case value, the rise rate decreased from close to its base case value to nearly zero. The 

number and the elongation rate of EcRNAPs had similar effects on T7 growth within 

the range of parameter values examined: the rise rate decreased to a similar degree as 

either increased (Figure 3.3). In the range of parameter values examined, the variation in 

the NTP pool size did not have any effect on the rise rate (data not shown).  

To better understand how an increase in the EcRNAP number could slow down 

T7 growth, we examined the effect of the increase in the EcRNAP number on the 

production of several phage components. We found that, with the other parameters 

kept constant at their base case values, an increase in the EcRNAP number reduced the 

rate of procapsid synthesis (Figure 3.4). This reduction corresponded with significant 

increases in the number of ribosomes allocated to the mRNAs for the early T7 genes, 

such as 0.7 (T7 kinase gene) and 1 (T7 RNAP gene), and reductions in the number of 

ribosomes allocated to the mRNAs for the late T7 genes, such as 9 (scaffold protein 

gene), 10A (major capsid protein gene) and 19 (DNA maturation protein gene) (Figure 

3.4B).  
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3.4 Discussion 

We employed experiments and computer simulations of the phage T7 intracellular 

growth cycle to investigate how the host physiological conditions affect phage growth. 

Although previous studies have shifted host physiologies in shaker cultures by using 

media based on different carbon sources (Hadas et al 1997), we found that chemostat 

cultures using constant growth media but different dilution rates yielded greater 

flexibility, control, and reproducibility of results. Further, by using chemostat-cultured 

hosts for our one-step growth studies we provided a better basis for comparison with 

our simulations, which employed host resource parameters measured from continuous 

cultures (see Table 2.1). 
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Figure 3.4 Effect of the EcRNAP number on (A) the procapsid assembly process and (B) 
the allocation of ribosomes to different mRNAs (a snapshot taken at 21 minutes post 
infection initiation). The total procapsid number accounts for both mature capsids and 
procapsids. 

Consistent with our experimental results, the simulations predicted that faster 

growing host cells supported faster T7 growth (Figure 3.1, Figure 3.2B-C). The 
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simulations give overall better predictions on the rise rate than on the eclipse time. The 

systematic mismatch between predicted and experimental values for eclipse time (Figure 

3.2) may result from the instantaneous nature of several “hard-switches” that we 

implement in the simulation, where data or mechanisms are not available. These 

switches include the initiation of phage DNA entry, the initiation of T7RNAP-

modulated translocation and transcription, and the initiation of host DNA digestion. 

For instance, we assume a 90-second delay for the initiation of phage infection to 

account for the time required for phage adsorption, which can take longer. Increasing 

this delay by 5.3 minutes can eliminate the mismatch (Figure 3.2, dashed line). 

Nonetheless, this correction does not exclude potential contributions from other 

factors. Although the intracellular OSG curves cannot distinguish between these 

mechanisms, available experimental data on the intracellular processes of T7 infection at 

the molecular level may provide some hints. A close examination of earlier data on T7 

protein expression (Endy et al 2000) suggests that the mismatch is unlikely due to a 

delay in phage absorption because T7 proteins begin to appear around two minutes after 

infection. Further, since expression of class II proteins initiates in less than two minutes 

after the appearance of T7RNAPs (Endy et al 2000), the second mechanism cannot 

completely account for the mismatch either. The last mechanism seems to contribute 

the major part of this mismatch. In fact, we assumed that the host DNA is digested 

between 7.5 minutes and 15 minutes after infection. These time points were based on 

experiments that measured the degradation of host DNA by T7 infection at 37ºC 

(Sadowski & Kerr 1970), and could be significantly delayed at 30ºC, the temperature 
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used in the current study. Similar experiments conducted at 30ºC will help to explain the 

mismatch and improve the simulation by providing more accurate parameters.  

Previous efforts to identify key host constraints to phage growth have been 

hindered by the experimental challenge of independently modulating and studying the 

effects of different host resources on phage growth (Hadas et al 1997; Hedén 1951). We 

have addressed this challenge by using the simulation to numerically uncouple the host 

intracellular resources from the host growth rate and then independently examine their 

effects on phage growth. While such studies may appear to distort relationships among 

the host resources, they are useful for two reasons. First, they allow us to better 

understand how uncertainties in parameters may affect the behavior of the simulation. 

While empirically determined cell compositions and activities are well defined, it is not 

always clear what may be accessible for phage growth. For example, NTP pool size in 

the simulation is based on the total host cell RNA content, which includes both stable 

and unstable RNAs (Bremer & Dennis 1996). However, we do not know for certain 

what fraction of the total NTPs per cell are accessible to T7 processes during infection. 

On the one hand, since stable RNAs constitute parts of ribosomes that are needed by 

T7 for protein translation, they are improbable precursors for producing T7 mRNAs. 

On the other hand, the unstable RNAs alone are probably inadequate to support phage 

growth. Further, the host cell may have means of providing NTPs for phage growth, for 

example, by continuing to synthesize NTPs during infection; to our knowledge there has 

been no evidence that T7 infection shuts down host NTP synthesis. Because of the 

resultant uncertainty in the accessible NTP pool size, it is useful to explore the effects 
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on phage growth of a broad range of values.  Second, studying the sensitivity of the 

simulated phage growth to extreme changes in single host parameters may reveal aspects 

of phage development in cells growing in complex environments or in highly distorted 

hosts like anucleate minicells (Ponta et al  1977).  By varying host growth rates in a 

chemostat we have considered only a narrow range of conceivable host resource 

distributions. Hosts growing in complex environments, where spatial gradients and 

dynamic variations in nutrients, temperatures, and pH can be significant, may well have 

intracellular resource distributions that drastically differ from our experiments.  While 

we lack detailed information about how resources might be correlated in these cases, 

determining the sensitivity of phage growth to variations in single or pairs of host 

parameters can begin to provide insights into potential constraints under such 

conditions. 

The sensitivity analysis with the individual host physiological parameters indicates 

that T7 growth most strongly depends on the number and the elongation rate of the 

ribosomes, suggesting that the rate-limiting step of phage growth is the synthesis of 

phage proteins. However, since the ribosome elongation rate only increases slightly as 

the cell growth rate increases, its contribution is probably less important than the 

ribosome number, which increases much more rapidly with the cell growth rate (Table 

2.1). Thus our simulation results support the hypothesis that the amount per cell of the 

host translation machinery is one of the most crucial factors in determining the rate of 

phage growth (Hadas et al 1997). This result is also consistent with the weaker 

dependence of phage growth on the number and elongation rate of EcRNAPs, the sizes 
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of the NTP and amino-acid pools, and the DNA content, although all these factors also 

play indispensable roles during T7 growth.  

Because of the complex nature of the viral infection dynamics, increasing the 

amount of an essential component may actually slow down viral growth, as 

demonstrated by the counter-intuitive observation that an increase in the EcRNAP 

number can decrease the T7 growth rate (Figure 3.3). One may expect that increasing 

the EcRNAP number would increase mRNA levels, protein synthesis rates, and finally 

the T7 growth rate. This expectation holds when the EcRNAP number is sufficiently 

small or when the ribosome number is sufficiently high (data not shown). In either 

scenario, T7 growth is limited by transcription and this limitation can be relieved by an 

increase in the EcRNAP number. When the EcRNAP number is too large, however, T7 

growth will be limited by translation. In this case, increasing the number of EcRNAPs, 

which are mainly responsible for the transcription of T7 class I genes, will result in a 

higher level of early mRNAs and divert the ribosomes away from the translation of 

several late proteins that are needed in large quantities for phage particle formation 

(Figure 3.4B), particularly the scaffold protein (gp9) and the major capsid protein 

(gp10A). Gene product 10A is especially important for two reasons: first, compared with 

other T7 proteins, it is needed in the largest quantity for each T7 particle (Steven & Trus 

1986); second, the rate of procapsid assembly is assumed to be proportional to 

[gp10A]4.8 (Endy 1997; Endy et al 1997). Hence, even a slight decrease in gp10A level 

may significantly decrease the procapsid assembly rate (Figure 3.4A) and in turn 

significantly decrease the rise rate. In summary, when translation is already limited by the 
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ribosome number, an increase in EcRNAP number causes ribosomes to distribute in a 

manner that is unfavorable for the expression of important late proteins, thus reducing 

the rise rate (Figure 3.3). 

Our simulations indicate that T7 growth is more sensitive to the processivity of 

T7 RNAPs than to the processivity of EcRNAPs, although the effect of either factor is 

much weaker than that of the ribosomes (see Figure 4.2).  This is to be expected because 

the transcription of T7 genes is primarily dependent on the T7 RNA polymerase, which 

is more efficient than EcRNAP in internalizing and transcribing T7 DNA.  This point 

further suggests that T7 growth limitation by the host translation machinery may well be 

due to the fact that the phage provides its own highly efficient RNA polymerase, thus 

creating a bottleneck for processing of its mRNAs.   

The biphasic effect of the cell volume on T7 growth is another demonstration of 

the complexity of the infection dynamics. A large cell volume may slow down the 

intracellular interactions by causing a decrease in the concentrations of interacting 

species. This is particularly true for the assembly of procapsids from major capsid 

proteins (gp10A). An increase in the cell volume can result in a decrease in the gp10A 

concentration, which in turn can cause a major decrease in the procapsid assembly rate. 

When the cell volume is too small, however, other effects may dominate: the inhibition 

of EcRNAP by gp0.7 and gp2, and the inhibition of T7RNAP by gp3.5 will be 

enhanced because of the increased total concentrations for these proteins. 

Consequently, under such conditions fewer free T7RNAP and EcRNAP molecules are 
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available for the transcription of viral genes, and the rate of viral protein expression 

decreases, which in turn reduces the rate of phage progeny formation. This idea is 

supported by the observation that the numbers of active EcRNAPs and T7RNAPs 

decrease with a decreasing cell volume (data not shown). In summary, extremes in cell 

volume can, through different mechanisms, have detrimental effects on T7 growth.  
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Figure 3.5 A “bottleneck landscape” for phage T7 growth with respect to two host 
parameters, the levels of the host RNA polymerase (EcRNAP) and ribosome. At any point 
on this figure, phage growth is limited by the rate of translation by the host ribosomes, 
transcription by the EcRNAP, or by the rate of phage DNA synthesis. The base case setting 
is labeled by the filled circle.   

As the activity of host or phage functions vary, so too may bottlenecks to phage 

production, as shown in the “bottleneck landscape” of Figure 3.5.  For the base case 

parameters T7 growth is bottlenecked or limited by the rate of protein synthesis, 

determined by the level of ribosomes. If one relieves this bottleneck by increasing the 

ribosome number, then the phage growth becomes limited by the host transcription 

rate, determined by the level of EcRNAP. When levels of both ribosomes and 
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EcRNAPs are large, then the bottleneck to phage growth can become the rate of its 

own DNA synthesis. While such a scenario may be unlikely for wild-type phage growth 

on a wild-type host, due to the greater than 10-fold increases that would be required for 

both the EcRNAP and ribosome levels, phage mutants that expressed reduced DNA 

synthetic capacities could alter the landscape by expanding the DNA-synthesis limiting 

region.  In summary, specific features of the bottleneck landscape will change with 

genetic or environmental modifications to phage or host functions, but so long as the 

simulation accounts for the modifications, the corresponding landscapes can be created. 

Although simulations can facilitate the analysis of complex processes like the 

growth of phage T7 in its host cell, what the results of simulations truly reflect is the 

behavior of the model. How well the model predictions apply to the real system 

depends on the accuracy and completeness of the knowledge-base and the validity of 

the simplifying assumptions implemented in the model. The knowledge-base in turn has 

been accumulated and will be enriched through continued laboratory experiments. To 

this end, simulations may facilitate the learning process by revealing key deficiencies or 

inconsistencies in the knowledge-base and by making experimentally testable 

predictions. For example, the prediction that the rate of T7 growth was limited primarily 

by the synthesis of the late proteins, especially the major capsid protein (gp10A), could 

be tested by designing specialized ribosomes (Hui & de Boer 1987) that preferentially 

translated gp10A mRNA. If the simulation is correct, then enhanced expression of 

gp10A should increase the rate of T7 progeny formation. If experimental results do not 

match the prediction, then the mismatch serves as a foundation for refining the model.  
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It is the iterative experimental testing and refinement of simulation by experiments that 

gradually promotes a systems-level integration of data, and aims ultimately to shed light 

on relationships that would be otherwise difficult to observe. 
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C h a p t e r  4  

PROBING THE DESIGN OF PHAGE T7 IN SILICO12 

“Designers must do two seemingly contradictory things at the same time: They must 

design for perfection, and they must design as though errors are inevitable. And they 

must do the second without compromising the first.”  

Bob Colwell 

 

Abstract 
We aim to better understand how evolution of organisms depends on constraints 

imposed by their environments. Insights may be gained by probing how the growth of 

viruses depends on the intracellular resources provided by their host cells. We employed 

an in silico approach to study how phage T7 growth depends on the intracellular 

resources of its Escherichia coli host.  We explored how T7 growth would be affected by a 

broad range of in silico mutations, spanning from perturbations in the transcriptional 

activity from single promoters to vast transformations that were attained by randomly 

rearranging genetic elements in the T7 genome. We generated more than 150,000 T7 

mutants and evaluated their growth in two host environments: (1) a limited environment 

that corresponds to transcription, translation, and DNA replication resources of an E. 

coli cell growing at 1.0 doublings/hr, and (2) an unlimited environment where all host 

resources are unbounded.  We found that in the unlimited environment many mutants 

                                                 
12 The content of this chapter is being prepared for publication (with John Yin). 



 

 

63 
grew faster than wild-type T7. However, most of these winners grew more slowly than 

the wild type in the limited environment. The wild-type growth was indeed nearly 

optimal in the limited environment. Our results suggest that limited host environments 

played an important role in the evolution of both the genome organization and 

regulatory activities of phage T7. 

4.1 Introduction 

All naturally existing organisms are winners in the competition for survival during 

evolution. Why have they succeeded? One may argue that the design of these winners, 

for example the organization of underlying reaction networks, somehow guarantee their 

success. With increasingly detailed understanding of many prototype biological systems, 

we are beginning to understand, at the molecular level, how the interaction between 

individual components provides key properties of the functioning of the overall system 

(Alon et al  1999; Barkai & Leibler 1997; von Dassow et al 2000). For example, both 

computer simulations (Barkai & Leibler 1997) and experiments (Alon et al 1999) 

illustrated that the structure of the E. coli chemotaxis signaling network leads to robust 

behaviors in response to perturbations in the biochemical parameters of the network. Yi 

and coworkers analyzed the mathematical model by Barkai & Leibler (Barkai & Leibler 

1997) from a system control perspective, and concluded that the robustness of the 

system can be attributed to an integral feedback loop imbedded in the network (Yi et al  

2000). Further, computer simulations suggested that the segmentation network in 

Drosophila embryonic development is a robust functional module that ensures the correct 

patterning of the Drosophila embryo (von Dassow et al 2000). 
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These pioneering studies provide an integrated view of how components of a 

biological system interact with one another to ensure its proper functioning. Moreover, 

they provide guidance for further work to elucidate how the design of an organism 

ensures the survival of an organism, although these studies focused on biochemical 

networks isolated from a broader context – the organisms that these networks are part 

of. It remains a major challenge to characterize the growth of a whole cell at the genetic 

level. However, simpler and better-characterized organisms, such as bacteriophage T7, 

may provide an opportunity for exploring how the design of an organism facilitates its 

survival. Because of its nearly 50-year foundation of genetic, physiological, biochemical, 

and biophysical data (Dunn & Studier 1983; Molineux 1999; Studier & Dunn 1983), 

phage T7 serves as an excellent model organism to explore the genotype-phenotype 

relationship mechanistically. By incorporating the existing experimental data and 

mechanisms on bacteriophage T7 biology, we previously developed a genetically 

structured model of T7 intracellular growth. The model accounts for all the major steps 

of T7 infection, including entry of the viral genome into the host cell, transcription of 

viral genes, translation of mRNAs, DNA replication, procapsid assembly, and finally, 

formation of viral progeny.  

In essence, the T7 model bridges the genotype of a phage with its phenotype. 

This feature offers an opportunity to examine the design principles of this virus by 

computer simulations. Previously, we explored this issue by testing the dependence of 

phage T7 growth on the ordering of genetic elements (Endy et al 2000). One interesting 

observation was that close to three percent of T7 mutants with random genomes grew 
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faster than the wild type. In light of the significant percentage of faster growing mutants, 

a question naturally follows: why has evolution selected the wild type instead of these 

mutants? Here we argue that the presence of a high percentage of faster growing 

mutants is primarily due to the model assumption that the virus has access to unlimited 

levels of ribosomes, amino acids, and nucleoside triphosphates (NTP) provided by the 

host cell. In reality the host cell will have limited amounts of all these resources; thus it 

seems plausible that phage T7 may have been optimized for such limited environments 

after millions of years of evolution. In this work we tested this hypothesis by 

investigating how phage T7 would respond to various perturbations in two contrasting 

environments: one has limited resources but the other has unlimited resources. If our 

hypothesis were correct, we would anticipate that the wild-type T7, compared with 

mutants, would grow faster in a limited environment than in an unlimited one. 

4.2 Methods 

4.2.1 Computer simulations 

We explored the effects on T7 growth of four types of perturbations as detailed 

below. All these analyses were carried out in two contrasting environments: the limited 

and unlimited environments. The host physiological parameters that define the limited 

environment correspond to a host cell growing at 1.0 doublings/hr (Table 2.1). The 

unlimited environment is the same as the limited one except that it has infinite levels of 

EcRNAPs, ribosomes, NTPs, amino acids, and DNA contents in the cell. 
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In analyzing the results, the growth rate was used as the measure of T7 

intracellular growth (Figure 4.1). Although alternative growth measures, for example the 

maximum doubling rate (Endy et al 2000) and the rise rate (You et al 2002), could be 

used instead, conclusions of this study would remain the same. When comparing the 

performance of a T7 mutant in two environments, we focused on the growth rate 

relative to the wide-type growth rate in the corresponding environments. By doing this, 

we were able to evaluate the performance of the wild-type T7 relative to mutants in 

either environment. If we were to compare the absolute growth rates directly, the same 

mutant would always grow faster in the unlimited environment than in the limited 

environment. 

Single-parameter sensitivity analysis. We performed a sensitivity analysis on 30 

model parameters. These parameters included relative activities of six EcRNAP 

promoters (A1, A2, A3, B, C, and E), relative activities of 15 T7RNAP promoters (1.1A, 

1.1B, 1.3, 1.5, 1.6, 2.5, 3.8, 4C, 4.3, 4.7, 6.5, 9, 10, 13 and 17), T7RNAP elongation rate 

(kPT7), T7 DNA polymerase elongation rate (kPD), T7 procapsid assembly rate constant 

(ka), T7 DNA packaging rate (kpack), gp0.7-EcRNAP association constant (K1), gp2-

EcRNAP association constant (K2), T7RNAP-gp3.5 association constant (K3), 

degradation rate constants of T7 mRNAs (kdm) and T7 proteins (kdp). Default values of 

these parameters are listed in Chapter 2. In each sensitivity analysis, one parameter was 

varied over a range from 0.1 to 10 times its base-case value while the other parameters 

were kept constant, and a simulation was conducted for each value of the selected 

parameter.  
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Random mutagenesis in T7 promoters. We generated 50,000 T7 mutants that 

each had random values for 28 out of the 30 parameters listed above. Each random 

value was selected within the range from 0.1 to 10 times the base value of the 

corresponding parameter following a uniform distribution on a logarithmic scale. Since 

relative activities of promoters were used as weighting factors for distributing EcRNAPs 

or T7RNAPs, it is necessary, for either RNAP, to keep one promoter activity constant 

while changing those of others. In this work, we chose to hold constant the relative 

activities of promoter 10 (for T7RNAP) and promoter A1 (for EcRNAP). 
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Figure 4.1 A simulated T7 intracellular growth curve. The growth rate is defined as the slope 
of the straight line starting from the origin and in tangent with the growth curve. 

Sliding mutations. In a sliding mutation, an internal T7 genetic element was 

moved from its wild-type position along the genome to a different position. Here an 

internal genetic element is any element other than the left or right T7 genome end. The 

relocation of an element may affect T7 growth by affecting the timing of expression for 
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some genes because the latter is coupled with entry of T7 genome (Studier & Dunn 

1983). To test the sensitivity of T7 growth with respect to the position of selected 

elements, we moved each selected element to 72 possible positions (including its wild-

type position), and at each location we evaluated the corresponding T7 growth rate by 

simulating the growth of the strain.  

Genomic permutations. We generated 100,000 T7 mutants by randomly 

permuting the 72 internal elements of the T7 genome. The permutation space is 

astronomically huge: the total number of possible permuted genomes is 72! ≈ 6 x 10103, 

and the 100,000 mutants accounted for only an infinitesimally small sampling of the 

entire space. However, they seemed to be sufficient to give a representative view: the 

distribution of the growth rates remained overall similar for sample sizes above 10,000.  

4.3 Results  

4.3.1 Effects of parametric perturbations  

The sensitivity of the T7 growth rate with respect to 30 T7 parameters in two 

contrasting environments is shown in Figure 4.2. If we define “robustness” as the ability 

to grow in a diversity of environments, T7 seemed to be robust: it grew in both 

environments despite up to 10-fold change in these parameters from their base value. 

This is particularly true for the unlimited environment, where the decrease in the growth 

rate was within 50% for a 100-fold change in the activity of any promoter (Figure 4.2A). 

Also, in the unlimited environment, there was much room for T7 to grow much faster: 

decrease in decay rate constant of mRNAs (kdm) and increase in T7RNAP elongation 
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rate (kPT7) both led to significant increase in T7 growth rate (Figure 4.2C). Overall, the 

wild-type T7 growth rate was nearly in the middle among mutants in the unlimited 

environment. In the limited environment, T7 growth responded more negatively to 

perturbations in the parameters. The growth rate could decrease to below 30% of the 

wild-type value when any of promoters 10, 13, 17 was too strong (Figure 4.2B).  In 

contrast with the case of the unlimited environment, the growth rate for the wild type 

was close to optimal compared with those of mutants in the limited environment 

(Figure 4.2B, D). 

Random mutagenesis with 28 parameters led to similar observations (Figure 4.3). 

All 50,000 randomly created mutants grew in the unlimited environment and 99.95% 

(49976) grew in the limited environment. In the unlimited environment, 24%  (11983) of 

the mutants grew faster than the wild type (Figure 4.3A, shaded area), with an average 

growth rate of 0.98 and a maximum growth rate of 43.7. However, merely 5.3% (2657) 

outperformed the wild type in the limited environment (Figure 4.3B, shaded area). The 

average and maximum growth rates were 0.51 and 1.7, respectively, again highlighting 

the relative optimality of the wild type in this scenario. The comparison of relative 

growth rates within the two environments can be more clearly seen in Figure 4.3C. The 

growth rates of these mutants distributed broadly in the unlimited environment (Y-axis 

of Figure 4.3C), and the wild-type value was close to the minimum on a linear scale. The 

distribution was much narrower in the limited environment, especially if measured on a 

linear scale, with the wild type close to the maximum. Interestingly, some mutants 

clustered into an apparent straight line in parallel with the parity line (Figure 4.3C), 
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which indicates that these mutants grew proportionally slower in the unlimited 

environment. 

4.3.2 Effects of perturbations in genomic structure 

Next we analyzed the sensitivity of the simulated growth rate to the position of 

T7 genetic elements along the genome (Figure 4.4). Genes 1, 10 and promoters 9, 10 

were selected for detailed analysis. The two genes were chosen because they play a 

central role in T7 development. The product of gene 1, T7RNAP, is responsible for the 

entry of about 85% of the T7 genome and the transcription of class II and class III 

genes (Dunn & Studier 1983), and T7RNAP is needed for T7 DNA replication as well 

(Molineux 1999). The product of gene 10, gp10A (the major capsid protein), is needed 

in large quantities (415 molecules per procapsid) for assembling the viral procapsid. 

Another reason for choosing gene 10 is that the previous simulations have suggested the 

synthesis of gp10A was limiting T7 growth in a natural host (You et al 2002). For similar 

reasons, promoter 9 (φ9) and T7RNAP terminator (Tφ) were selected because they are 

important in regulating the expression of gp10A. 
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Figure 4.2 The sensitivity of T7 growth rate with respect to T7 promoter activities (A & B) 
and several other parameters (C & D) for unlimited host environment (A & C), and limited 
host environment (B & D). The x-axis represents parameters normalized with respect to 
their default values. The y-axes indicate the corresponding growth rate calculated for the 
chosen parameters. Growth rates were normalized with respect to the values calculated from 
the base-case parameter setting for either environment. Along each curve one parameter is 
varied while the others were kept constant. Filled red circles represent the wild-type T7. 
Since changes in the activities of six E. coli promoters did not have significant effect on the 
T7 growth rate, they are omitted from this figure. 
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Figure 4.3 Growth of 50,000 T7 mutants with random parameters. Figure shows the 
distribution of normalized growth rates in (A) the unlimited environment, and (B) the 
limited environment, as well as (C) the parity plot of the normalized growth rates in the two 
environments, where each dot represents a mutant and its coordinates correspond to its 
normalized growth rates in the two environments. In (A) and (B), the x-axes represent 
growth rates normalized to the wild-type value in either environment, and the y-axes 
represent the number of mutants with growth rates falling into the corresponding bin. The 
wild-type growth rate is shown by the vertical red lines in (A) and (B), and by the open 
square in (C). Along the straight line in (C), T7 mutants have the same growth rates relative 
to the wild-type growth rates in the two environments. 
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Figure 4.4 Growth of selected T7 slider mutants in the unlimited environment (filled circles) 
and the limited environment (open circles). The elements selected for sliding are (A) gene 1,  
(B) gene 10, (C) promoter 9, and (D) T7RNAP terminator. The x-axes represent the position 
of the elements along the genome, and the y-axes represent growth rates normalized to the 
wild-type value in the corresponding environment. The wild-type position of each element is 
indicated by an open square.  

 

For gene 1 (Figure 4.4A), at the wild-type position T7 achieved nearly its largest 

growth rate (0.99 times the maximum) in the limited environment, suggesting the 

optimality of the wild type genome arrangement in this environment. In addition, sliding 

gene 1 along the genome did not have a strong effect on the growth rate. In sharp 
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contrast, the wild-type gene 1 position led to nearly the lowest growth rate in the 

unlimited environment (Figure 4.4A, filled circles). Placing gene 1 downstream of its 

wild-type position actually gave rise to significantly increased growth rate in the 

unlimited environment. The growth rate was also more sensitive to the gene 1 position 

in the unlimited environment. Note that, in both scenarios T7 failed to grow when gene 

1 was placed close to the left end of the genome because gene 1 was then upstream of 

all promoters and not expressed. This point is also true for other essential T7 genes, 

including gene 10 (Figure 4.4B). Gene 10 contrasts with genes 1 in that its wild-type 

position was the distinctively the best in both environments, and the growth rate had 

almost the same dependence on the gene 10 position in the two environments; moving 

gene 10 to any position other than its wild-type one would dramatically slow down T7 

growth (Figure 4.4B). 

The wild-type position of φ9 was optimal in the limited environment but far from 

optimal in the unlimited environment (Figure 4.4C), the position immediately 

downstream the wild-type position, that of gene 9, led to the distinctively larger growth 

rate. In other words, switching positions of gene 9 and its promoter in the unlimited 

environment led to more T7 productive growth. Placing φ9 in any position upstream of 

gene 1 (around 5kb) also led to significantly elevated T7 growth in the unlimited 

environment. Finally, the wild-type position of Tφ, like gene 10, gave maximum growth 

in both environments, although the superiority of the wild type was much more 

distinctive in the limited environment. In the unlimited environment, a couple of 
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adjacent positions before gene 3.5 (around 10 kb) led to growth rates close to the wild-

type value.  

All cases in Figure 4.4 suggest that the wild-type position for the selected genetic 

elements resulted in optimal or close to optimal growth in the limited environment, but 

often had better alternative positions in the unlimited environment. Although we show 

here only four cases, sliding mutations with other elements yielded the same conclusion 

(not shown). 

Compared with other types of perturbations, random permutations of the 

genome had much stronger effects on T7 growth. More than 80% of 100,000 T7 

mutants with random genomes failed to grow in either the limited environment (83663 

dead) or the unlimited environment (82414 dead). Among the viable mutants, 4915 grew 

faster than the wild type in the unlimited environment, in which the maximum growth 

rate was nearly seven times greater than the wild-type value (Figure 4.5A). In contrast, 

no mutants grew faster than the wild type in the limited environment, and the maximum 

growth rate was only about 97% the wild-type value. Moreover, the vast majority (99%) 

of the viable mutants grew comparatively faster in the unlimited environment than in 

the limited environment (Figure 4.5C). 
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Figure 4.5 Growth of 100,000 T7 mutants with permuted genomes. Figure shows the 
distribution of normalized growth rates in (A) the unlimited environment, and (B) the 
limited environment, as well as (C) the parity plot of the normalized growth rates in the two 
environments. The wild-type growth rate is shown by the vertical red lines in (A) and (B), 
and by the open square in (C). Along the straight line in (C), T7 mutants have the same 
growth rates relative to the wild-type growth rates in the two environments. In (A) and (B), 
the filled squares indicate the number of dead mutants in either environment. Since (C) is 
plotted in log scale along both axes, all the dead mutants (growth rate = 0) are omitted. 
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4.4 Discussion 

The response of T7 growth with respect to four types of perturbations in two 

contrasting host environments may provide insight into the design principles of phage 

T7 as a complex biological system in the context of its environment. 

4.4.1 Robustness and fragility 

As evidenced in Figures 4.2 and 4.3, T7 is robust to perturbations in its parameter 

values. The relative insensitivity of T7 growth on individual promoter activities (Figures 

4.2A & B) is primarily due to the redundancy of these promoters (Figure 2.2). A close 

inspection of the T7 genome suggests that none of the promoters for the class II genes 

is absolutely essential. Another reason for the apparent insensitivity is that promoter 

activities come into play only by affecting the distribution of T7RNAPs to different 

genes, in turn affecting the production rate of different proteins. Since resources are 

always abundant in the unlimited environment, changes in the promoter activities will 

normally have smaller effects on T7 growth. In the limited environment, effects of such 

perturbations are more profound because the redistribution of transcription resources 

will lead to the redistribution of translation machinery as well. For instance, an increase 

in φ9 activity from 0.1 to 10 times its base value results in about a 3-fold increase in the 

growth rate. The reason for this increase is that more mRNAs will be produced from 

genes 9 and 10 when φ9 is stronger, resulting in increased production rate for gp9 

(scaffold protein) and gp10A. This observation supports the notion that, in a limited 

environment, T7 growth is primarily limited by the synthesis of gp9 and gp10A (You et 

al 2002; You & Yin 2001). The same argument can be used to explain the dependence 
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of T7 growth rate on φ10 activity. The growth rate increases significantly when the 

activity of φ10 is increased from 0.1 times to about two fold its base value, but sharply 

decreases with further increase in φ10 activity. The initial increase clearly results from 

the increased production rate for gp10A, but the subsequent decrease is due to the 

overproduction of mRNAs from gene 10, which divert ribosomes from producing other 

proteins that are needed for progeny formation, particularly gp9.  

Changes in several other parameters have moderate to strong effects on T7 

growth, particularly in the unlimited environment, because they significantly affect key 

processes of viral infection (Figures 4.2C & D). The growth rate is highly sensitive to 

changes in the DNA polymerase elongation rate (kPD) in both environments when kPD 

is small, because DNA synthesis becomes rate limiting in this scenario. Further, for T7 

mutants with kPD between 0.1 to 0.3 times its base-case value, the normalized growth 

rates in the limited environment are proportionally faster than the corresponding values 

in the unlimited environment (not shown). Because T7 growth is highly sensitive to kPD 

values in this range, the effect of kPD variations will dominate the effect of changes in 

other parameters, which in turn leads to the apparent clustering of mutants into a 

straight line (Figure 4.3C). An increase in the T7RNAP causes an increase in the growth 

rate in both environments by facilitating the transcription process. However, while this 

resulting increase is nearly quadratic in the unlimited environment, it quickly flattens out 

in the limited environment, indicating additional control in the limited environment. 
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This saturation is indeed due to the limitation in translation rate in the limited 

environment where only finite numbers of ribosomes are available. 

In addition to its robustness to parametric perturbations, T7 is robust with respect 

to sliding mutations because the majority of the slider mutants are viable (Figure 4.4). 

Considering the central role that gene 1 plays in the phage metabolism, it is interesting to 

note the rather insensitive dependence of the growth rate on the gene 1 position, 

particularly in the limited environment (Figure 4.4A). In the unlimited environment, the 

growth rate increases significantly when gene 1 is moved downstream of its wild-type 

position; this results from the autocatalytic loop for the production of T7RNAPs when 

gene 1 is placed at the downstream of a T7RNAP promoter. In fact, any position 

downstream of the wild-type position will result in such a configuration. Note that the 

autocatalytic loop is absent in the wild-type genome, where gene 1 is upstream of all 

T7RNAP promoters (Figure 2.2). The same mechanism is responsible for the elevated 

T7 growth when φ9 is placed upstream of gene 1 (Figure 4.4C). While enjoying 

significant increase, the growth rate does not skyrocket as expected for an autocatalytic 

reaction loop (the virus should be able to afford to fast production of any viral 

components in the unlimited environment). The stability of the growth rate in this case 

turns out to be maintained by a negative feedback loop that regulates the level of 

T7RNAP: T7RNAP expresses gene 3.5, whose product, the T7 lysozyme, inhibits 

T7RNAP (Zhang & Studier 1997) (see also Figure 6.5). In the limited environment, an 

additional negative feedback loop further regulates the level of T7RNAP. The protein 

product of gene 2 (another gene transcribed by T7RNAP) inhibits EcRNAP, which in 
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turn is responsible for the transcription of T7RNAP (Figure 6.5). This second feedback 

loop does not function in the unlimited environment, because finite amount of gp2 will 

not affect the transcription by infinite amount of EcRNAP. Therefore the T7RNAP 

level is more stringently regulated in a limited environment, and as a result the T7 

growth rate is less dependent on the position of gene 1. The presence of these loops 

provides further evidence for the ubiquity of negative feedback control in maintaining 

proper functioning of biological systems (Hartman et al  2001; Rao & Arkin 2001; Yi et 

al 2000). 

The superiority of wild-type gene 10 position in both environments underscores 

the requirement for high production rate for gp10. The T7 genome seems to have 

evolved to meet this requirement. The two strongest T7 promoters (φ9 and φ10) are 

located immediately before gene 10 (Figure 2.2), with φ9 also covering gene 9 whose 

product is needed in large quantities. In addition, most transcripts originating from 13 

(out of 15) T7 promoters will end immediately after gene 10, so the total level of the 

transcripts for gene 10 will be much higher than that for other genes. Following the 

same reasoning, we can explain the dependence of the growth rate on the positions of 

φ9 (Figure 4.4C) and Tφ (Figure 4.4D).  Switching the position of φ9 with gene 9 

facilitates the production of gp10, thus resulting in an increase in T7 growth in the 

unlimited environment. This configuration causes a decrease in T7 growth in the limited 

environment for a similar reason as when φ10 activity is increased too much (Figure 

4.2B). It directs too many ribosomes into producing gp10, resulting a bottleneck in 
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producing other proteins. Placing Tφ upstream of gene 10 generally leads to significantly 

decreased T7 growth because of the reduced gp10 production rate. However, this 

decreased T7 growth can be compensated in the unlimited environment when Tφ is 

placed between a promoter and gene 3.5 (Figure 4.4D). In this configuration, the 

negative feedback loop that keeps T7RNAP at low level is partially inhibited owing to 

reduced production rate of gp3.5, thus the overall transcription rate is increased. Again 

in the limited environment, because T7RNAP is more stringently regulated with an 

additional negative feedback loop and because increased levels of early to middle 

transcripts will divert ribosomes away from translating gene 10 transcripts, T7 growth 

rate will not be improved even when gp3.5 production is inhibited (Figure 4.4D).  

According to the Highly Optimized Tolerance (HOT) theory (Calson & Doyle 

2000), engineered or natural complex systems should be robust with respect to 

anticipated, designed-for perturbations but fragile to unanticipated perturbations. In this 

context, perturbations in single or multiple parameters, and in the position of a single 

element, would probably fall in to the category of “anticipated” perturbations because 

they cause, in most cases, quantitative rather than qualitative changes in the virus. By 

contrast, random perturbations of the T7 genome would qualify as unanticipated 

perturbations. The fragility of T7 with respect to such perturbations (Figure 4.5) makes 

intuitive sense. Since T7 genome entry is mediated by EcRNAP after the first 850bp 

enters the host cell (Garcia & Molineux 1995b; Garcia & Molineux 1996), at least one 

EcRNAP promoter needs to be present within 850bp towards the entering end of the 
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genome. Otherwise T7 will fail to grow. With only six EcRNAP promoters out of 72 

internal genetic elements, it is very probable to place all these promoters after 850bp. 

The probability for such fatal configurations is approximately [(39937 – 850)/39937]6 ≈ 

88%, which agrees well with our simulation results (~82%). Therefore, failure to enter 

the cell accounts for the majority of dead T7 mutants. In addition, even if T7 enters the 

cell successfully, it may fail to grow if at least one of its 23 essential genes is upstream all 

promoters.  

4.4.2 Optimality 

Our simulation results suggest that the wild-type T7 is almost optimally designed 

for a limited-resource environment. Phage T7 responds more negatively to 

perturbations in the limited environment. Compared with mutants, the wild-type T7 

performs overall much better in a limited environment than in the unlimited 

environment. This point is clear from the distribution of growth rates of T7 mutants 

with random parameters (Figure 4.3) or permuted genomes (Figure 4.5). Most mutants 

that grow faster than the wild type in the unlimited environment grow much slower than 

the wild type in the limited environment. This observation highlights the potential 

importance of the growth environment in shaping the design of an organism. In the 

context of evolution, this point seems to be reasonable: phage T7 relies on the host cell 

for its growth, and each realistic host cell will have only limited resources; through 

evolution, phage T7 should have been adapted for these environments, resulting in the 

apparent optimality as revealed by our simulation.  
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The optimality of the wild-type T7 is particularly distinct in terms of its genomic 

structure. In the unlimited environment, more than 20% of mutants with random 

parameters grow faster than the wild type, with the maximum growth rate about 40-fold 

greater than the wild-type value. In the same environment, only 4.9% of mutants with 

random genomes grow faster than the wild type, with a maximum growth rate of seven 

times the wild-type value. Further supporting this notion, the corresponding percentages 

are 5.3% and <0.001% respectively in the limited environment. This observation seems 

to highlight an important design principle in engineered or natural systems: the structure 

of a system, be it the structure of a metabolic network, that of an airplane, or the process 

for producing a chemical, is of fundamental importance in ensuring the proper 

functioning of the system. In T7, the proper arrangement of the genetic elements seems 

to lead to proper sequence and timing of various reactions, which in turn result in nearly 

balanced production of viral components for the limited environment, and thus nearly 

optimal growth. In general, we may argue that desirable key properties of any given 

system rely on a proper underlying structure. For example, negative feedback or 

redundancy, or both are usually required for achieving robustness (see above, and 

references (Alon et al 1999; Barkai & Leibler 1997; Yi et al 2000)), and positive feedback 

is often necessary for generating oscillations or for spontaneous pattern formation in 

spatial domain if coupled with diffusion (Becskei et al  2001).  

Although it grows much faster than most mutants, clearly the wild type is still not 

always the best even in the limited environment (Figure 4.2). Faster growing mutants do 

appear. Why? There are several potential explanations. First, the host composition we 
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adopt in this work represents a host cell growing under standard lab conditions (You et 

al 2002). Such a host cell could be very different from one growing in nature, and phage 

T7 could have been more optimized for a naturally existing host cell. Second, it is also 

possible that phage T7 is actually not designed for optimal performance in a single 

environment, but rather for near-optimal performance under different environments, 

each of which has limited resources. To test this notion, further computational work can 

be conducted to evaluate the relative performance of wild-type phage T7 under a wide 

spectrum of realistic growth environments, for example host cells with different growth 

rates. Third, the data and mechanisms incorporated in the model might be inaccurate.  

In constructing the computer model, we have been faithful to literature data and have 

not attempted to adjust any parameters in order to fit existing experimental data (Endy 

et al 2000). However, potential uncertainties in the parameters may lead to biased view 

of the “wild type”. In other words, the wild-type phage T7 as defined by the model 

parameters may be a mutant that is close to the wild type that the model is supposed to 

represent. This gap between model and reality, however, is difficult to completely fill 

because of the experimental difficulty in obtaining accurate parameter values. Finally, as 

argued in the “quasi-species” theory, the variant that is selected by evolution need not be 

the fittest; it can be sub-optimal and still win the race if it is “supported” by its 

mutational neighbors with which it gives highest average fitness (Eigen 1971a; Eigen 

1971b; Wilke et al  2001). Our simulation results seem to agree with this notion: most 

subtle mutations with respect to parameters or genomic structure lead to mutants with 

growth rates comparable to the wild-type value. 
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C h a p t e r  5  

QUANTIFYING GENETIC INTERACTIONS13 

“Macroscopic properties often do not result from static structures, but from dynamic 

interactions playing both within the system and between the system and its 

environment” 

Eirch Jantsch 

  

Abstract 
Understanding how interactions among deleterious mutations affect fitness may 

shed light on a variety of fundamental biological phenomena, including the evolution of 

sex, the buffering of genetic variations, and the topography of fitness landscapes. It 

remains an open question under what conditions and to what extent such interactions 

may be synergistic or antagonistic. To address this question, we employed a computer 

model for the intracellular growth of bacteriophage T7. We created in silico 90,000 

mutants of phage T7, each carrying from one to 30 mutations, and evaluated the fitness 

of each by simulating its growth cycle. The simulations sought to account for the 

severity of single deleterious mutations on T7 growth, as well as the effect of the 

resource environment on our fitness measures. We found that mildly deleterious 

mutations interacted synergistically in poor-resource environments but antagonistically 

in rich-resource environments. However, severely deleterious mutations always 

interacted antagonistically, irrespective of environment.  These results suggest that 
                                                 
13 The content of this chapter has been published in You & Yin (2002), Genetics. 160: 1273-1281 
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synergistic epistasis may be difficult to experimentally distinguish from non-epistasis 

because its effects appear to be most pronounced when the effects of mutations on 

fitness are most challenging to measure. Our approach demonstrates how computer 

simulations of developmental processes can be used to quantitatively study genetic 

interactions at the population level.   

5.1 Introduction 

The interaction among mutations in their effects on fitness, known as epistasis, 

plays a major role in evolutionary processes (Wolf et al  2000). It affects the mutation 

load of a population (Crow 1970; Kimura & Maruyama 1966), the drift and fixation of 

deleterious mutations (Phillips et al  2000), and the topography of fitness landscapes 

(Phillips et al 2000; Whitlock et al  1995). Epistasis is also an essential component of 

models on the evolution of sex (Kondrashov 1993; Peters & Lively 2000). In small 

populations Muller’s ratchet (Muller 1964) offers sexual organisms an advantage over 

their asexual counterparts even in the absence of interactions among deleterious 

mutations (Haigh 1978). However, the mutational deterministic hypothesis, which 

addresses the advantages to sex for any population size, requires synergistic epistasis 

(Kondrashov 1993); in this case the collective effect of two or more deleterious 

mutations is more severe than their combined effect, had they acted independently. 

Following Lenski et al. (Lenski et al  1999), one may distinguish among different forms 

of epistasis using a power model: 

log(w) = − α nβ      5.1 
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where w is the fitness of the organism relative to wild type, n is the number of 

deleterious mutations the organism carries, and α and β are parameters. For deleterious 

mutations, α > 0 and α is larger for more severe mutations. The type and strength of 

the epistasis among the mutations are determined by β, where β = 1 for independent 

interactions (non-epistasis), β > 1 for synergistic epistasis, and 0 < β < 1 for antagonistic 

epistasis (Figure 5.1). The degree of epistasis increases as |log(β)| increases. The power 

model has an advantage over the more commonly used log-quadratic model 

(Charlesworth 1990), log(w) = − (α′n + β′n2), which can erroneously predict an increase 

in fitness for large n in the case of antagonistic epistasis (β′ < 0).  
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Figure 5.1 Three forms of epistasis as described by the power model (Eq 5.1) Multiplicative: 
α = 0.002, β = 1; synergistic: α = 0.0001, β=2; antagonistic: α = 0.009, β = 0.5.  

Numerous experimental studies have been conducted to determine the 

dependence of fitness on the number of deleterious mutations, in particular, whether 

synergistic epistasis is ubiquitous in nature. Several of them have examined directly the 
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variation in epistasis, and found that both synergistic and antagonistic interactions are 

prevalent among individual sets of mutations (de Visser et al  1997b; Elena & Lenski 

1997; Whitlock & Bourguet 2000). However, the nature of epistasis across populations 

is all but clear. Some studies find synergistic epistasis (Mukai 1969; Spassky et al  1965), 

while others find multiplicative interactions (de Visser et al 1997b; Elena & Lenski 

1997). Further complications follow as different forms of epistasis may occur for 

different fitness components, such as the longevity or the productivity of an organism 

(de Visser et al  1997a; de Visser & Hoekstra 1998; Peters & Keightley 2000; Whitlock 

& Bourguet 2000).  

The confusion results from several factors. First, it is difficult to accurately 

estimate the fitness because of the complex life cycles of the model organisms (de Visser 

& Hoekstra 1998; de Visser et al 1997b; Peters & Keightley 2000; Whitlock & Bourguet 

2000). Second, although the Darwinian fitness is the appropriate measure for w in Eq 

5.1(West et al  1998), the Malthusian parameter, which is the natural logarithm of the 

Darwinian fitness, has been used instead in some studies (de Visser et al 1997a). This is 

problematic because synergism in the Malthusian scale can correspond to multiplicative 

or antagonistic interactions in the Darwinian scale. Third, theories on the advantages of 

sex have suggested that the most relevant interactions are those among mildly 

deleterious mutations, because deleterious mutations with large effects can easily be 

eliminated, even in small populations (Keightley et al  1998). The effect of deleterious 

mutations, however, has yet to be adequately quantified or controlled. Fourth, mutants 

with many deleterious mutations are difficult to construct systematically in experiments 
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even for a relatively simple organism like bacterium E. coli; the resulting data are thus 

insufficient to distinguish at the population level among different types of epistasis 

(Elena & Lenski 1997). Efforts to accumulate many mutations, for instance, by applying 

mutagens (de Visser et al  1996; Peters & Keightley 2000) or by growing the organism 

under minimum pressure of natural selection (Mukai 1969; Wloch et al  2001a), replace 

this difficulty with that of accurately estimating the number of deleterious mutations. 

Finally, two related methods that detect epistasis by comparing the mean log-fitness of 

the parents with that of the offspring after a cross (de Visser et al 1996) or by testing the 

skewness of the log-fitness distribution of these offspring (de Visser et al 1997a; Wloch 

et al 2001a) suffer several methodological limitations that may obscure their conclusions 

(West et al 1998).  

Given current limitations in generating, characterizing, and quantifying the effects 

of mutations on the fitness of organisms in the laboratory or in the field, we chose to 

study how simulated mutations affect the development of bacteriophage T7 in a 

computer model of its life cycle. The construction of this model is detailed elsewhere 

(Endy et al 1997; Endy et al 2000; You et al 2002; You & Yin 2000). Briefly, it 

incorporates biochemical, genetic, and mechanistic data accumulated on phage T7 over 

the last four decades, and it uses ordinary differential equations and algebraic equations 

to describe the major molecular processes of T7 development: entry of T7 DNA into 

the host, transcription and translation of T7 genes, protein-protein interactions that 

regulate transcription, procapsid assembly, DNA replication and progeny formation. It 

predicts, as a function of time post-infection, the intracellular levels of mRNAs, 
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proteins, DNA and, eventually, phage progeny.  In essence, the model bridges the 

genotype of a phage with its growth phenotype, a feature we exploit here to predict how 

simulated phage mutations affect fitness.  

Our use of the phage T7 model here to study epistasis shares advantages with 

approaches based on artificial-life programs (Lenski et al 1999; Wilke & Adami 2001). 

Both approaches allow for the efficient creation and appraisal of thousands of in silico 

mutants.  However, the T7 model is based on established biochemical mechanisms 

while the artificial-life programs are not.  Simulated T7 mutations correspond to changes 

in molecular functions, such as binding constants between interacting proteins, 

promoter strengths, or terminator efficiencies, just as mutations alter molecular 

functions in laboratory mutants of T7. Mutations in any function can quantitatively span 

a broad parameter range and produce a correspondingly broad range of effects on phage 

growth, a unique feature of the T7 model that enables us to probe, at the level of 

individuals or populations, the severity of mutation effects on growth.  

By incorporating the results of extensive experimental studies on T7, we have 

sought with our simulation to create a faithful quantitative representation of its 

intracellular infection dynamics. Nevertheless, gaps in our knowledge remain.  Functions 

and mechanisms for many T7 genes are lacking (Endy et al 2000; Molineux 2001; You et 

al 2002) and only sparse data exists for the effects of host-cell physiology on phage 

growth (You et al 2002).  Our imperfect knowledge was most evident when we 

employed the simulation to predict the behavior of T7 mutants carrying permutated 
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genomes (Endy et al 2000); while the simulation captured qualitatively the detrimental 

effects on growth of repositioning an important early gene to locations downstream of 

its wild-type position, it was unable to account quantitatively for the resulting highly 

perturbed protein expression profiles.  In contrast, under conditions that are closer to 

wild type, the simulation has performed well.  Specifically, it has enabled us to better 

understand how a mutant carrying a single-gene deletion grows faster than the wild type 

(Endy et al 1997), and more recently, the simulation has, together with laboratory 

experiments, provided a means for us to identify likely host-resource limitations to T7 

growth (You et al 2002).  Our current work here employs no permutated genomes or 

other large excursions from wild type.  Instead, we study how slightly deleterious 

mutations interact against a backdrop of essentially wild-type T7 behavior.  As a result, 

we expect that deficiencies or imperfections in our detailed knowledge and simulated 

implementation of T7 biology will have little if any effect on the outcomes of this study. 

5.2 Materials and methods 

5.2.1 Definition of fitness 

The infection of an E. coli cell by phage T7 is often characterized by a one-step 

growth curve, from which we can extract parameters to define its fitness (Figure 5.2). 

Fitness is essentially determined by the interplay between the genotype of an organism 

and the environment in which it grows; so one genotype can exhibit different fitnesses 

in different environments. Here we consider two extreme scenarios. First, if a phage 

grows in an environment that permits only one cycle of infection, the fecundity of the 

phage, characterized by its burst size (Y), or the number of progeny produced per 
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infected host bacterium, will be the most crucial parameter in determining its fitness. 

Phage that maximize their burst size in such poor-resource environments maximize their 

chances of survival. Therefore, an appropriate fitness measure (Wpoor) in this poor-

resource environment is the burst size, or Wpoor = Y = max{N(t)}, where t is the time 

after infection initiation and N(t) is the number of phage particles at t (Figure 5.2a). In 

the second scenario, if the phage grows in a rich environment that allows an infinite 

number of infection cycles, then both the burst size (Y) and the burst time (τ), the time 

when the burst occurs, will contribute to its fitness. For example, let us start with a 

single phage at time zero, and ask how many phage there will be at time tm, assuming 

infinite host resources. For large tm, the number of phage will be approximately 

mm tt YY ][ /1/ ττ = , where tm/τ corresponds approximately to the number of phage 

generations elapsed at time tm. This expression suggests a different measure of fitness: 

Y1/τ. Since the phage with the highest fitness will burst at a time that maximizes Y1/τ, we 

define Wrich = max{[N(t)]1/t} (Figure 5.2b).  

Figure 5.2 Definition of fitness. (a) The fitness measure for a poor-resource environment 
(Wpoor) is defined from the simulated one-step growth curve as the maximum value of N(t), 
where t is the time (minutes) after infection initiation, and N(t) is the number of phage 
progeny at t. (b) The fitness measure for a rich-resource environment (Wrich) is defined as the 
maximum value of N(t)1/t.  In the mid-section of the growth curve, N(t) is approximately 
linear in t, thus the function N(t)1/t will always have a maximum. The rationale for these 
definitions is provided in the text. 
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We further denote the relative fitness values of a mutant phage for the cases 

above with wpoor = Wpoor/Wpoor,wt, and wrich = Wrich/Wrich,wt, respectively, where the subscript wt 

indicates the fitness values for the wild-type phage. Note that both wpoor and wrich are 

fitness measures in the Darwinian scale.  

5.2.2 Constructing T7 mutants in silico 

Although we cannot yet predict how mutations at the DNA, RNA or protein 

level influence molecular function, we do know that such changes can quantitatively 

alter function. By altering function they change molecular properties that are typically 

described by parameters such as enzymatic rates, equilibrium binding constants that 

characterize interactions between molecular components, promoter strengths, or extents 

of regulatory inhibition or enhancement of other molecular functions.  Taking this 

perspective, we simulated the effects of mutations on specific T7 functions by altering 

T7 parameters from their wild-type default values.  We then used one or more altered 

parameters in our simulation to calculate how one or more mutations could affect the 

intracellular development of the phage.  Further, we defined a deleterious mutation as a 

single-parameter change that would reduce the T7 relative fitness, wrich, to a value below 

one.  Different fitness metrics can be used to characterize phage growth, so the same 

mutation may be deleterious for one metric but not for another.  However, for all cases 

examined, single mutations that were deleterious in wrich were also deleterious or at least 

neutral in wpoor   
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Table 5.1 The list of parameters investigated in this study. 

Relative value range * Parameter 

minimum Maximum 

T7 RNAP elongation rate 0 1 

T7 DNAP elongation rate 0 1 

gp0.7-EcRNAP association constant 0 1 

gp2-EcRNAP association constant 0 1 

T7RNAP-gp3.5 association constant 0 0.4 

Procapsid assembly rate constant 0 1 

DNA packaging rate constant 0 1 

EcRNAP terminator efficiency 0 1 

T7 RNAP terminator efficiency 0 1 

A1 1 1.58 

A2 0.3 1 

A3 0.1 1 

B 1 10 

C 0.1 1 

E 0.1 1 

φ1.1A 1 15.4 

φ1.1B 1 5.5 

φ1.3  1 97.3 
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Relative value range * 

φ1.5 1 15.4 

φ1.6 1 15.4 

φ2.5 1 15.4 

φ3.8 1 27.2 

φ4C 1 15.4 

φ4.3 1 15.4 

φ4.7  1 15.4 

φ6.5 1 1.5 

φ9 0 1 

φ10   0 1 

φ13**  0 0.174 

φ13** 1 1.2 

φ17   1 1.2 

* In the given range of values, each single parameter change alone is deleterious for T7 
growth. 

** When the relative activity of promoter 13 is within the range of (0.3, 1), T7 growth is 
enhanced. 

 

Thirty T7 parameters were specified as potential targets for mutations; for each 

parameter, a range was specified from which random selected values corresponded to 

random deleterious mutations. The parameters and their ranges normalized to the 
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default values are listed in Table 5.1. The default values of these parameters are listed in 

Chapter 2. These parameters were identified and their ranges were determined based on 

a single-parameter sensitivity analysis on all T7 parameters. In the sensitivity analysis, 

each parameter was varied from zero to 100-fold its default value and the resulting 

change in wrich was examined for deleterious effect. For instance, if we reduce the T7 

RNAP elongation rate from its default value (200 bp/s) to 0, the simulated wrich will 

decrease from 1 to 0; thus the deleterious range for this parameter is (0, 1). To control 

the magnitude of deleterious mutations, we further partitioned each parameter range 

into five equal-width sub-ranges. Each sub-range was labeled by an index from 1 to 5, 

based on its deviation from the default parameter value, 1 for the least deviant and 5 for 

the most deviant. Again consider the elongation rate of the T7 RNA polymerase as an 

example. Its complete range (0, 1) was partitioned into the five sub-ranges: sub-range 1, 

(0.8, 1.0); sub-range 2, (0.6, 0.8); sub-range  3, (0.4, 0.6); sub-range  4, (0.2, 0.4); and sub-

range  5, (0, 0.2). We call a mutation in sub-range k as a class k mutation. For a given 

parameter, the deleterious effect of a mutation increases with its class index. A special 

sub-range – (0.9, 1.0) – was created to represent mutations with very mild effects, which 

we called class 0.5 mutations. 

A T7 mutant with n random class k deleterious mutations was constructed by 

randomly selecting n parameters and then setting each selected parameter to a value 

randomly sampled from the class k sub-range following a uniform distribution.  
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5.2.3 Simulation and statistical analysis 

For each n, where 1 ≤ n ≤ 30, 500 T7 mutants carrying the same class of random 

deleterious mutations were constructed, and a simulation was performed for each 

mutant to compute its fitness using two measures, wpoor and wrich. The means and the 

standard deviations of log(wpoor ) and log(wrich) were calculated for each n; the means were 

then fitted by least squares against n using Eq 5.1 to obtain α and β values. For each 

fitted curve, R2 was calculated as the ratio of the difference between the corrected total 

sum of squares and the residual sum of squares to the corrected total sum of squares. 

The magnitudes of β values obtained for wpoor and wrich may be compared; however, 

because the α values from which curves depend arbitrarily on the dimensions of time t, 

comparisons between α values obtained for wpoor and wrich will not be meaningful. A 

sample size of 500 appeared to be sufficient; sampling 1000 did not yield significantly 

different results. Further, all the simulations were conducted assuming a host growth 

rate of 1.5 doublings/hr. The same conclusion as presented here was reached when 

assuming other host growth rate values (LY, unpublished). The statistical analysis was 

conducted using Matlab and Mathematica.  

5.3 Results and discussion 

5.3.1 Effects of environment and mutation severity on epistasis 

The power model matched well the fitness loss for phage strains carrying up to 30 

class 1 mutations in poor- and rich-resource environments (Figure 5.3).  Moreover, 

these strains exhibited either synergistic or antagonistic epistasis, when tested in a poor- 
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or rich-resource environment, respectively.  When the analysis was extended to other 

mutation classes, the power model also served well to capture data trends (Figure 5.4).  

By extracting the α and β values from each curve fit and then plotting β versus log(α) 

we were able to probe how the form of epistasis, measured by β,  depended on the 

mutation severity, measured by α, in different environments (Figure 5.5). In a poor 

environment β was greater than one for mildly deleterious mutations (classes 0.5, 1 and 

2), indicating synergism, but it rapidly decreased with increasing α; it was nearly one for 

class 3 mutations, and then became less than one for the most severe mutations (classes 

4 and 5), reflecting antagonism (Figure 5.5a). These results show that the form of 

epistasis can depend on the severity of the mutations. By contrast, in a rich environment 

the epistasis was always antagonistic, but the antagonism decreased with decreasing 

severity of mutations (Figure 5.5b). Note the almost linear dependence of β on log(α) in 

either case. This relationship was stronger in the poor environment, where a least-square 

linear fit between β and log(α) yielded an R2 of 0.9971 compared with an R2 of 0.9655 in 

the rich environment.  Further, the rich environment deviation of the data from linearity 

suggests that β may asymptotically approach unity instead of crossing it (Figure 5.5b), a 

trend that is further discussed below. 
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Figure 5.3 The dependence of the forms of epistasis on the fitness metrics. For mildly 
deleterious mutations (class 1), epistasis is (a) synergistic for wpoor: α = 6.25 × 10-5 (p = 4.25 × 
10-8), β = 2.35 (p < 1 × 10-10 for β - 1), R2 = 0.9970, and (b) antagonistic for wrich: α = 2.25 × 
10-3 (p < 1 × 10-10), β = 0.818 (p < 1 × 10-10 for β - 1), R2 = 0.9972. Each circle represents 
the mean of log(fitness) values of 500 mutants;  each vertical line represents the 
corresponding standard deviation. 

Figure 5.4 The dependence of the two different fitness measures on the number of 
deleterious mutations with varying severity.  Each symbol represents the mean of log(fitness) 
values of 500 mutants. For clarity, standard deviations of the simulated fitness values are not 
shown. Good fit between the power model and simulated data is found in all cases (R2 > 
0.99). 
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Table 5.2 The dependence of epistasis on growth environment and the magnitude of deleterious 
mutations. 

 
ENVIRONMENT   

poor 
 

rich 

mild synergism 
 

weak antagonism 
 

MUTATIONS 

severe 

 
no epistasis or weak 

antagonism 
 

antagonism 

 

From these results we draw two main conclusions, summarized in Table 5.2. First, 

mildly deleterious mutations tend to interact synergistically in a poor-resource 

environment, where fecundity is the primary determinant of fitness.  This result is 

consistent with the notion that synergistic epistasis can emerge from competition for 

food or limited resources (Peck & Waxman 2000).  Second, deleterious mutations tend 

to interact antagonistically in a rich-resource environment, and the degree of antagonism 

increases as the mutation severity increases. This conclusion may provide an intuitive 

explanation to the controversy over the nature of epistasis: perhaps previous studies 

reached different conclusions because they focused on different environments or were 

based on mutations of differing severity.  

5.3.2 Correlation between epistasis and mutation severity 
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Inverse correlations between β and α (Figure 5.5) have also recently been 

observed by Wilke and Adami in self-replicating computer programs and models for 

RNA folding (Wilke & Adami 2001). To probe the relationship between β and α they 

considered sequences composed of a finite fixed number of monomers, where the 

fitness of mutants was defined as either neutral or lethal. Assuming that the fitness 

always decreased with the number of mutations, following a power model (Eq 5.1) they 

suggested that β must be inversely correlated with α due to a conservation law that the 

total number of neutral mutants in the genetic space is constant (Wilke & Adami 2001). 

Figure 5.5 The dependence of β on α for (a) the poor environment and (b) the rich 
environment. Dashed lines indicate multiplicative interactions among mutations (β = 1, non-
epistasis). A linear equation fits well the dependence of β on log(α) in each case, with R2 = 
0.9971 for the poor environment, and R2 = 0.9655 for the rich environment. All β values are 
significantly different from 1.0, with p < 0.01 for β-1, except the β value for wpoor and class 3 
mutations, where p = 0.087 for β-1. 

However, this argument cannot be directly mapped to our study because of the 

infinite diversity of mutational effects on fitness in our system. Furthermore, the 

apparent linear dependence of β on log(α) in Figure 5.5 suggests an alternative 

mechanism. If β and log(α) followed an exactly linear relation, then the different log(w)-
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vs-n curves, each specified by a different pair of α and β values, would share two points 

of  intersection, one at n = 0 (wild type) and the other at some large number of 

mutations (n >> 30, for our examples). The reasoning is as follows. At the large n 

intersection point, we have log(wN) = − αNβ, where N is the number of mutations and 

wN is its corresponding fitness. This equation defines a linear relation between β and 

log(α), since log(−log(wN)) = log(α) + β logN. We assume that the power model is valid 

if and only if n ≤ N; otherwise, for n > N it would predict that mutants carrying severe 

mutations would have a higher average fitness than mutants carrying the same number 

of mild mutations. Within this framework mutations that yield a fitness wN are effectively 

lethal since a fitness equal to zero is not defined. Further, the dependence of fitness on 

the accumulation of mutations will, for differing degrees of mutation severity, all 

originate from wild type but follow different paths that ultimately converge to the same 

fitness wN of the effectively lethal mutants. Hence, to reach this fitness with N 

mutations, mild mutations will tend to reinforce each other, leading to synergistic 

epistasis, whereas severe mutations will tend to buffer each other, resulting in 

antagonistic epistasis.  

5.3.3 Antagonism in rich environments 

In light of the above argument for a linear correlation between β and log(α), it 

appears contradictory that mildly deleterious mutations should still exhibit antagonistic 

epistasis in rich environments. We found that the relative fitness in a rich environment, 

wrich, is generally more sensitive to mutations than the measure in a poor environment, 
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wpoor; mutations that changed the latter also changed the former, but the inverse was not 

true. It would be thus conceivable that the same mutations could have a greater 

deleterious effect on wrich than on wpoor. (Note that the higher sensitivity of wrich to 

mutations is not reflected by the α values, because the absolute value of αrich depends on 

the time units we use in the definition of Wrich). Perhaps if mutations were sufficiently 

mild, their interactions in a rich environment would become synergistic, following the 

pattern of epistasis in a poor environment.  To test this possibility we examined 

interactions among mutations that were more than 100-fold milder than our 0.5 class 

mutations.  These very mild mutations exhibited very slight antagonism in the rich 

environment (not shown) and behavior that was indistinguishable from wild-type in the 

poor environment. This result further confirms the overall trend of changes in β in a 

rich environment (Figure 5.5b): as severity of mutations decreases, the interaction 

among these mutations asymptotically approaches multiplicativity (β=1). Therefore, the 

difference in the forms of epistasis between our metrics do not merely reflect 

differences of degree to which these metrics are affected by mutations, but rather 

intrinsic differences in the nature of their responses to deleterious mutations.   

5.3.4 Limits to observability  

Besides its implication that epistasis and mutational effect could only evolve in a 

coordinated fashion (Wilke & Adami 2001), the correlation between β and log(α) 

further leads to a dilemma for any attempts to distinguish synergistic epistasis (β > 1) 

from non-epistasis (β = 1): if synergistic epistasis is present (for example, in a poor 
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environment), it will be highest under conditions where the effects of mutations on 

fitness are minimal and most challenging to accurately measure (mutation severity class 

0.5).  This challenge may be better understood by considering a quantitative example.  

Weak synergistic epistasis is apparent for class 2 mutations, where 30 mutations decrease 

the fitness by about one half (Figure 5.4a). The average deleterious effect of each 

mutation should thus be no greater than about 1 – (0.5)1/30 = 0.023. That is, each 

mutation on average should decrease the fitness by less than three percent.  

Although fitness effects of around two percent might be experimentally 

established in competition experiments using microbes, the resulting synergistic epistasis 

would be mild (β is only slightly smaller than 1.0). In order to measure such synergistic 

epistasis, one would need to quantify the fitness of a large number of mutants, ranging 

from those with single mutations to those with a large number of mutations. This would 

be a daunting experimental task. If the mutations are overall mild enough to 

demonstrate high degree of synergistic epistasis, the effects of individual mutations may 

be too small and fall within the experimental variability of most fitness measures. For 

example, most experimental studies to date have measured only mutations with average 

selection coefficients greater than 0.01 (Elena & Lenski 1997; Fry et al  1999; Mukai et al  

1972; Spassky et al 1965; Wloch et al  2001b), and it has been suggested that the majority 

of deleterious mutations have effects that are immeasurably small under laboratory 

conditions (Davies et al  1999). 
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5.3.5 Extensions of in silico mutagenesis 

We have focused here on probing the effects of mutational severity and resource 

environment on the form and extent of epistasis in the simulated intracellular growth of 

a well-studied bacteriophage.  This work may serve as a foundation to test the 

consequences of additional mechanisms or assumptions.  For example, to study the 

effects of mutation severity on fitness we have assumed the mutations carried by each 

strain are uniformly distributed across each class of mutation severity.  More natural 

distributions could be implemented by making mild mutations more frequent than 

severe mutations.  From this perspective, our simulations of low severity (class 0.5 and 

class 1) mutations more likely reflect the effects of natural distributions than those 

involving severe mutations. Our current study has also neglected pleiotropic effects, 

where a mutation in one gene may affect more than one phenotypic trait.  For example, 

a mutation that altered the processivity of the T7 RNA polymerase could at the same 

time influence the strength of its association with the T7 lysozyme, which down-

regulates the polymerase activity.  To account for such effects, one would need to obtain 

data that quantitatively described the nature of each pleiotropic effect or assume and 

implement a mathematical model for its form.  
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C h a p t e r  6  

PATTERNS OF REGULATION FROM MRNA AND PROTEIN TIME-

SERIES14 

“Nature uses only the longest threads to weave her patterns, so each small piece of 

her fabric reveals the organization of the entire tapestry.” 

Richard Feynman 

 

Abstract 

The rapid advance of genome sequencing projects challenges biologists to assign 

physiological roles to thousands of unknown gene products. We suggest here that 

regulatory functions and protein-protein interactions involving specific products may be 

inferred from the trajectories over time of their mRNA and free protein levels within the 

cell. The level of a protein in the cytoplasm is governed not only by the level of its 

mRNA and the rate of translation, but also by the protein's folding efficiency, its 

biochemical modification, its complexation with other components, its degradation, and 

its transport from the cytoplasmic space. All these co- and post-translational events 

cause the concentration of the protein to deviate from the level that would result if we 

only accounted for translation of its mRNA. The dynamics of such deviations can create 

patterns that reflect regulatory functions. Moreover, correlations among deviations 

highlight protein pairs involved in potential protein-protein interactions. We explore and 

                                                 
14 The content of this chapter has been published in You & Yin, 2000, Metabolic Engineering. 2: 210-217. 
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illustrate these ideas here using a genetically-structured simulation for the intracellular 

growth of bacteriophage T7.   

6.1 Introduction  

The rapid growth of genomic databases and development of technologies for 

global monitoring of mRNA (Schena 1996; Velculescu et al 1995) and protein levels 

(Eckerskorn et al 1992; Henzel et al 1993; O'Farrell 1975) are creating a need for 

efficient data-mining methods. In the last few years, reverse engineering methods have 

been proposed to infer the structure of chemical reaction networks near a steady state 

(Arkin & Ross 1995; Arkin et al  1997) or, more abstractly, the architecture of Boolean 

networks defined by simple logic rules (Akutsu et al  1999; Liang et al  1998). However, 

little effort has been directed toward inferring relationships among elements of real 

genetic networks. To address this need, we suggest here a framework for organizing 

dynamic mRNA and protein data, with the aim of identifying characteristic patterns of 

function and potential protein-protein interactions. Given initial information about 

mRNA levels, and the processing rates and distribution of the ribosomes and activated 

tRNAs that constitute the translation resources, one can estimate how levels of 

corresponding proteins will change. Other factors, in addition to translation, will 

influence the actual protein levels observed: processes of protein modification or 

degradation, protein transport to or from the cytoplasm, regulatory processes, and the 

formation of protein-protein complexes. When coupled with translation, different 

modes of protein appearance or depletion will produce patterns of expression that may 

reflect aspects of the protein's function. To explore this notion, we employ the T7 
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model to generate dynamic mRNA and protein data. The simulation provides as a 

byproduct the concentration-versus-time trajectories of all T7 mRNAs and proteins 

(Figure 6.1), which we employ in this section as raw data to explore new modes of 

inference. In particular, we analyze these simulated data using a simple algorithm and 

attempt to identify patterns of regulation and infer protein-protein interactions. Finally, 

we evaluate the algorithm by comparing its results with the known mechanisms 

implemented in the model. 

Figure 6.1 The time series of (a) mRNAs and (b) free proteins for seven selected T7 genes as 
labeled. 

6.2 Methodology 

6.2.1 Protein rate  

We define the overall rate change in protein concentration, or the protein rate, as 

follows: 
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where vi is the protein rate for protein i, Pi is the concentration of protein i, vTi is the rate 

of change in protein i concentration due to translation, and vDi is the protein i depletion 

rate. All these variables are the functions of time t. vi is determined from levels of free 

protein taken over time.  

We assume the protein translation rate, vTi, is proportional to the concentration of 

the mRNA: 

iTiiT Rktv =)(   6.2  

where Ri is the concentration of mRNA encoding protein i, and kTi is the translation rate 

coefficient for protein i. We assume kTi is a constant for all proteins that has been 

measured or can be estimated. For simplicity the index i is dropped in subsequent 

analyses. 

In the absence of any depletion effects vi plotted versus Ri yields a line through the 

origin with slope kT. In the presence of depletion effects trajectories on this plot may 

deviate from the linear behavior in revealing ways. In this work the protein rate is 

approximated by taking the first-order finite difference of protein concentrations 

provided by the simulation. 

6.2.2 Dynamic deviation factor (DDF) 

In order to quantitatively investigate and compare the deviations of different 

proteins we introduce a dimensionless parameter, the dynamic deviation factor (DDF) 

for protein i: 
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where Di is the PDF as a function of time. Further, we define a time-averaged DDF as a 

measure of the overall deviation of the protein rate from the translation rate: 
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where Dik is the DDF of protein i at the kth time point of a discretized time course that 

spans N time points. 

6.2.3 Protein correlation coefficient (PCC) 

If pairs of proteins associate, their DDFs should be highly correlated. We assess 

potential pairwise associations by defining a protein correlation coefficient: 

11

11

2

1 ≤≤−≡

∑∑

∑

==

=
ijN

k
jk

N

k
ik

N

k
jkik

ij C
DD

DD
C  6.5  

The larger Cij is, the more likely two proteins are associating with each other. The 

extreme case Cij means that the protein rates of the two proteins deviate proportionally 

from the translation rate in the same direction, i.e., Dik=λDjk for k=1,...,N, where λ is a 

positive constant. A protein correlation matrix (PCM) can be constructed by calculating 

the pairwise PCCs for all the proteins of interest. 
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6.3 Results 

The time series of mRNA and free protein concentrations generated by the 

simulation for different T7 gene products shown in Figure 6.1 reflect little of the diverse 

enzymatic, structural, and regulatory roles the proteins play during T7 development. 

Only gp1 (T7RNAP) provides a hint of its regulated activity through its unusual 

trajectory relative to other proteins (Figure 6.1 (b)). Plotting protein rate versus mRNA 

concentration for the T7 gene products reveals a diversity of trajectories, as shown in 

Figure 6.2(a). For clarity, a representative subset of the total trajectories is shown. A time 

course is implicit for each trajectory, with an initial condition at the origin where neither 

mRNAs nor proteins have been synthesized. All trajectories coincide with or lie below 

the reference line (labeled “Linear”), corresponding to translation without any depletion. 

The trajectories in Figure 6.2(a) may be coarsely classified as linear or non-linear. 

The simplest mechanistic rationale for the linear behavior of gp19, which coincides with 

the reference line, is that it is generated by translation and lacks any depletion effects. 

Other gene products gp0.3, gp2.5, gp4A, gp5, gp6, gp7, gp17.5, and gp18 exhibited 

similar behavior (not shown). 
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Figure 6.2 Protein rate as a function of the corresponding mRNA concentration for (a) 
seven representative gene products, (b) gp1, expanded axes, and (c) gp0.7, gp2, and gp3.5, 
expanded axes. The protein rate is calculated by taking the first order finite difference of the 
corresponding protein concentration, i.e., t

P
i

iv ∆
∆≈ . The straight line is a plot of vTi vs Ri, 

with slope kT determined directly from the parameters used in the simulation, viz, kT = kERd, 
where kE is the ribosomal elongation rate, and Rd is the density of ribosomes along the 
mRNAs. 

The non-linear trajectories may be subdivided into two groups based on their 

shapes. Trajectories for gp9 and gp10A follow the reference line early and deviate later 

(Figure 6.2 (a)). Other gene products, gp8, gp11, gp12, gp13, gp15, and gp16 followed 

similar trends (not shown). Gp10A is noteworthy because its maximum of 500 mRNA 

molecules per cell is the highest achieved by any message, and its protein rate drops to 

near zero as it approaches this concentration, indicating a strong depletion effect. The 
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other set of non-linear trajectories including gp0.7, gp1, gp2 and gp3.5 are more 

complex. The trajectory for gp1, which is the most complex, is shown on expanded axes 

in Figure 6.2(b). We know from the simulation that the sudden jump in protein rate 

from zero to the reference line at low mRNA levels observed for gp1 and other gene 

products is due to the finite time required by the ribosomes to complete synthesis of the 

first proteins. The segment of linear increase coinciding with the reference line indicates 

a growth in mRNA and proteins without any apparent depletion. Then the dramatic 

drop to negative protein rates, even as mRNA is increasing, suggests the appearance of 

some factor, which could be another component or process that significantly depletes 

gp1. After passing through a minimum, the protein rate gradually returns to nearly zero, 

where it remains, even as the mRNA level goes through a maximum. This pattern 

suggests that the translation of gp1 is nearly balanced by its depletion during the later 

stages of development. The trajectories for gp0.7, gp2, and gp3.5 are defined by their 

extended initial deviation from the reference line, shown in Figure 6.2(c). Protein rates 

are near zero well beyond the time required by the ribosomes to complete initial 

synthesis of each protein, indicating that these proteins are immediately depleted when 

they otherwise would have begun to appear. The eventual rise and fall of mRNA 

concentrations along with protein rates trace complex paths that loop back or move 

along the reference line as gp0.7 and gp2, respectively, or always deviate from the 

reference line as gp3.5. The different trajectory patterns for 21 essential T7 proteins are 

summarized in Figure 6.3 using time-averaged DDFs. 
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Using 21 essential T7 proteins, we calculated a protein association matrix for all 

pairwise interactions. As shown in Figure 6.4, high PCCs were found for gp0.7 and gp2, 

gp1 and gp3.5, and among gene products 8 through 16. 

Figure 6.3 The time-averaged DDFs for 21 essential T7 proteins. Proteins that exhibit linear 
(non-shaded) and non-linear (hatched or black) protein-rate versus mRNA trajectories are 
shown. Gene products that started off linear, but later deviated (hatched) are distinguished 
from those that started off with large deviations (black) 

6.4 Discussion 

We have suggested a correlated deviation algorithm (CDA) for identifying 

potential patterns of protein function given time series data for mRNAs and proteins. 

Using data from a genetically-structured simulation for the growth of phage T7 we 

found a variety of expression trajectories, which we classified by their general features, 

from linear, to non-linear, to highly non-linear trajectories that looped back on 

themselves. 
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Figure 6.4 The T7 protein correlation matrix (PCM). Each off-diagonal matrix element 
represents the correlation coefficient between the DDFs of two proteins,ranging from high 
(red) to low (blue) correlation. Diagonal elements,which indicate the self correlation of the 
proteins, are by definition always equal to one. 

The observed trajectory patterns reflect known functions of the T7 proteins. The 

complex trajectories of Figures 6.2(b) and (c) describe proteins that all indirectly control 

their own syntheses, as illustrated by the three negative feedback loops in Figure 6.5. 

Gp0.7 is a protein kinase that is transcribed by EcRNAP, but it also inhibits EcRNAP; 

increased levels of gp0.7 result in a down-regulation of its own transcription. Gp2 is an 

inactivator of EcRNAP, and EcRNAP is required for transcription of T7 RNAP. Gp2, 

however, is predominately transcribed by T7 RNAP, so gp2 ultimately down-regulates 

its own transcription. Gp3.5 is a lysozyme that associates with and inhibits T7RNAP 
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(gp1), but it is also transcribed by T7 RNAP, so it also down-regulates its own 

transcription. Hence, gp0.7, gp2, and gp3.5 share the feature that they all down-regulate 

their own transcription by inhibiting their 

own RNA polymerases. Gp1 is still more 

involved because it not only down-

regulates its own transcription through the 

effect of gp2 on EcRNAP, but also 

transcribes its own inhibitor in gp3.5. 

 

Figure 6.5 Negative feedback loops in the 
early stages of T7 infection. Gp0.7 inhibits 
the EcRNAP via an unknown mechanism, 
but it is assumed in the simulation that 
gp0.7 and EcRNAP form 1:1 complex. Gp2 
inhibits the EcRNAP by forming a 1:1 
complex with the polymerase that prevents 
transcription. Gp3.5 inhibits gp1 by binding 
the polymerase and increasing the rate of 
aborted transcript production. 

The protein correlation matrix (PCM) (Figure 6.4) is overall consistent with the 

known functions. The deviations for gp1 and gp3.5 are correlated because they interact 

with each other, and those of gp0.7 and gp2 are correlated because both proteins are 

depleted through their interactions with EcRNAP. Moreover, gp8 through gp16, 

including especially gp9 and gp10A, are highly correlated with each other because they 

are depleted in a stoichiometric manner during phage particle formation, as shown in 

Table 2.5. The gp9 and gp10A trajectories exhibited few if any early deviations (Figure 
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6.2(a)) because the particle formation process that depletes these proteins occurs late in 

phage development. With the exception of gp9, gp8 through gp16 are components of 

the final phage particle. Although gp9 if not present in the final particle, it is required for 

and consumed by the particle assembly process. Since the matrix provides correlations, 

we caution against attempting to infer mechanisms from it. Spurious associations for 

which no interactions were implemented in the simulation, such as those between gp1 

or gp3.5 with particle proteins, are evident. Extension of the correlation analysis to allow 

for time-lags may improve discrimination. 

The context of the CDA is summarized in Figure 6.6. The CDA assumes that the 

time series of mRNAs and proteins for a given multi-gene process have sufficient 

accuracy and resolution for analysis. The protein rate versus mRNA trajectories may 

reveal patterns that reflect the function of the proteins. The time-averaged DDFs serve 

as a qualitative measurement of the non-linear behavior of proteins. The PCM further 

provides a global picture of the potential associations among the proteins of interest. 

The CDA aims to facilitate the data-mining process of the large volume of output 

generated from emerging high-throughput experimental techniques, while focusing 

subsequent experiments on the proteins that demonstrate interesting behaviors. 

Reverse engineering approaches have been developed to deduce the underlying 

wiring of Boolean logic networks, given sufficient state transition (input-output) pairs 

(Akutsu et al 1999; Liang et al 1998). Such approaches may eventually be useful for 
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identifying biological regulatory functions, but to date their application has been limited 

to the analysis of non-biological networks. 

CDA

and/or protein-protein interactions.
Experimental verification of the plausible protein functions

Protein rate vs mRNA trajectories

Time series of proteinsTime series of mRNAs

Protein correlation matrix (PCM)Time averaged DDF

Dynamic deviation factors (DDF)

Dynamic multi-gene process

 

Figure 6.6 The context of the correlated deviation algorithm (CDA). By organizing and 
presenting the data in the forms of protein rate vs mRNA trajectory, DDF, and PCM, the 
CDA can highlight proteins that demonstrate interesting behavior. These analyses may 
facilitate the processing of the output from the emerging high-throughput experimental 
techniques. 

An important feature of the CDA lies in its use of protein rate versus mRNA 

trajectories to infer mechanisms. It is an intriguing question to ask whether there exists a 

“mapping” between particular protein functions and some unique patterns evident in 

the protein rate versus mRNA trajectories. Our analysis with the simulated T7 system 

suggests this might be the case. We are currently exploring this question by testing the 

CDA with some simple artificial genetic networks. 
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The CDA resembles the correlation matrix construction approach proposed by 

(Arkin & Ross 1995) in its use of a correlation matrix, but differences are apparent. 

Although the PCC is analogous, both in its meaning and form, to the conventional 

correlation coefficient with zero time-lags, there is significant difference between the 

two concepts: the conventional correlation coefficient emphasizes the deviation of a 

variable from its mean when the system is near a steady state or dynamic equilibrium 

(Arkin & Ross 1995), but the PCC focuses on the deviation of a protein rate from its 

“expected” value, and it does not matter whether the system is near a steady state or not. 

6.5 Concluding remarks 

Several issues need to be addressed before one can apply the CDA to real data 

sets. In order to infer functions from mRNA and protein time series we have used a 

model system and employed many simplifying assumptions. In general, the magnitude 

of the translation rate for a given protein species, vTi, will depend on the distribution of 

translation resources among messages, the efficiency of the ribosomes, the level of 

message, the concentration of activated tRNAs, biases in codon usage, and mRNA 

structure. We simplified our analysis by making translation dependent only on message 

levels, but assumed uniform translation rates for all messages and no limitations on 

ribosomes. We have explored the effects of ribosome limitations and obtained similar 

results, while assuming that the limited ribosomes were uniformly distributed across all 

messages (not shown). We have neglected protein degradation, modification, or 

transport out of the cytoplasm, leaving the formation of protein-protein interactions as 

the lone mode for depleting a protein. These assumptions are reasonable for the phage 
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T7 model system, but they will need to be addressed for more complex systems. Finally, 

we have neglected stochastic effects due to the indeterminate behaviors of small 

numbers of molecules, effects that may be especially magnified when transcripts and 

proteins are just beginning to appear (Gillespie 1977; McAdams & Arkin 1997). 

This work has focused on concepts rather than practice. We have saved for later 

questions regarding the data quality or frequency of data sampling needed to 

discriminate among different classes of trajectories. Moreover, although DNA-array 

technologies are beginning to provide global profiles of mRNA over time (DeRisi et al  

1997; Spellman et al  1998), such profiles for free protein present both a significant 

technical challenge and an opportunity. Global protein profiles obtained by two-

dimensional gel electrophoresis are typically carried out under conditions that destroy 

non-covalent protein-protein interactions (Fichmann & Westermeier 1999), which also 

destroy information about the free protein levels that we have used in our analysis. 

Current technologies to detect and analyze protein-protein interactions focus explicitly 

on forming and studying the protein-protein complex (Phizicky & Fields 1995). Our 

analysis suggests an opportunity to indirectly infer protein-protein interactions under 

physiological conditions if free proteins can be isolated from the cell, separated, and 

measured without disrupting existing complexes. 

Acknowledgments 

We thank the Office of Naval Research and the National Science Foundation 

Presidential Early Career Award to J.Y. for supporting this work. 



 

 

121 
C h a p t e r  7  

TOWARDS GENERIC MODELING OF BIOLOGICAL SYSTEMS USING 

DYNETICA15 

工 欲 善 其 事, 必 先 利 其 器 

(Good tools are prerequisite to the successful execution of a job) 

Chinese proverb  

Abstract 
Mathematical modeling and computer simulation may deepen our understanding 

of complex systems by testing the validity and consistency of experimental data and 

mechanisms, by generating experimentally testable hypotheses, and by providing new 

insight into the integrated behaviors of these systems. However, the application of this 

approach in biology has been hindered by the lack of software tools to build and analyze 

models. To meet this need, we have developed Dynetica – a simulator of dynamic 

networks – to facilitate model building for systems that can be expressed as reaction 

networks. A distinguishing feature of Dynetica is that it facilitates easy construction of 

models for genetic networks, where many reactions are the expression of genes and the 

interactions among gene products. In addition, it provides users the flexibility of 

performing time-course simulations using either deterministic or stochastic algorithms. 

Finally, since it is written in Java, Dynetica is platform-independent, allowing models to 

                                                 
15 The content of this chapter has been submitted to Bioinformatics for publication (with Apirak Hoonlor and John 
Yin). 
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be easily shared among researchers. We anticipate that Dynetica will dramatically speed 

up the process of model construction and analysis for a wide variety of biological 

systems. 

7.1 Introduction 

Over the past several decades, mathematical modeling has arguably become an 

important tool in biological research. Owing to the lack of detailed information for 

many biological systems, past efforts in modeling have relied on relatively simple 

approaches, such as Boolean network modeling (Glass 1975; Glass & Kauffman 1973; 

Thomas 1973) and stoichiometric modeling (Clarke 1988; Fell 1992). In Boolean 

representations of gene networks, each gene is treated as having two states, ON or OFF, 

and the dynamics describes how genes interact to change one another’s states over time 

(Hasty et al 2001). Although a Boolean model can provide insight into the qualitative 

behavior of the underlying system, it is usually overly simplified and tends to give 

ambiguous predictions (Kuipers 1986). A stoichiometric model represents the 

underlying system as a series of coupled chemical reactions. It does not require any 

information on the kinetics of the reactions, and as such is particularly attractive for 

systems where only sparse kinetic data are available or when steady-state assumptions 

can be justified (Bailey 2001; Varner & Ramkrishna 1999). Coupled with a technique 

called metabolic flux analysis (Fell 1992), stoichiometric models have played an 

instrumental role in shaping the field of metabolic engineering, by providing theoretic 

guidance for experimental manipulation of metabolic networks (Stephanopoulos et al 

1998). Recently, stoichiometric models have proven powerful in characterizing the 
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underlying structure of metabolic networks by determining the elementary flux modes 

(Schuster et al 2000) or the null space base vectors (Schilling & Palsson 1998) and in 

predicting steady-state metabolic capabilities of several model organisms, such as E. coli 

(Edwards et al 2001; Schilling et al 1999) and H. influenzae (Edwards & Palsson 1999). 

But their applications are limited by their inability to predict the temporal evolution of 

these networks. To make such predictions, the stoichiometric structure of the reaction 

networks needs be supplemented with detailed kinetic information, resulting in kinetic 

models. Thanks to the rapid expansion of our knowledge in biology, kinetic modeling 

has become a realistic goal, particularly for the experimentally well-characterized 

systems. For example, kinetic models have recently been successfully applied to the 

analysis of a wide variety of biological systems, including bacterial chemotaxis signaling 

networks (Barkai & Leibler 1997; Spiro et al 1997), developmental pattern formation in 

Drosophila (von Dassow et al 2000), aggregation stage network of Dictyostelium (Laub & 

Loomis 1998), viral infection (Eigen et al 1991; Endy et al 1997; McAdams & Shapiro 

1995; Reddy & Yin 1999; Shea & Ackers 1985; You et al 2002), circadian rhythms 

(Barkai & Leibler 2000; Smolen et al 2001), single cell growth (Shuler et al 1979), and 

physiological processes (Noble 2002; Quick & Shuler 1999; Winslow et al 2000).  

A kinetic model essentially represents a mathematical integration of existing data 

and mechanisms on a particular system, and may be useful in a number of ways. By 

providing a global view of the underlying system, a kinetic model can be used to test the 

consistency in the experimental data or mechanisms (von Dassow et al 2000) or provide 

mechanistic explanations for counter-intuitive observations (Fallon & Lauffenburger 
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2000), to facilitate the formulation of experimentally testable hypotheses (Abouhamad et 

al  1998; Endy et al 2000; You et al 2002) or to test hypotheses that are difficult, 

expensive, or even impossible to explore experimentally with current technology (You & 

Yin 2002), and to provide insight into emergent properties, such as robustness (Alon et 

al 1999; Barkai & Leibler 1997; von Dassow et al 2000), which may be otherwise 

difficult to grasp intuitively. As models become more “realistic” by incorporating more 

detailed data and mechanisms, they may be treated as in silico organisms and used to 

explore applied or fundamental questions that are beyond the underlying system per se. 

For example, a phage T7 model has been employed to explore anti-viral strategies using 

anti-sense mRNAs (Endy & Yin 2000), to elucidate the nature of genetic interactions by 

in silico mutagenesis at the population level (You & Yin 2002), and to test data-mining 

strategies for identifying potential protein-protein interactions from gene expression data 

(You & Yin 2000). Moreover, advances in high-throughput biotechnologies for genome-

wide gene expression profiling at the transcription and translation level provide 

additional challenges and opportunities for mathematical modeling, which may 

accelerate the characterization of whole organisms by allowing the understanding of 

gene expression data (at the mRNA level or the protein level) in their natural context. 

This point is demonstrated in a recent work where kinetic formulation of DNA 

microarray data was used to determine the timing of transcriptional onsets and cessation 

in Dictyostelium (Iranfar et al  2001). 

Despite its potential benefits for fundamental and applied biological research, 

broader application of kinetic modeling has been hindered by the lack of powerful and 
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easy-to-use software tools for model construction and analysis. This is particularly true 

for experimental biologists who are often unfamiliar with numerical methods and 

programming. This aspect is probably best evidenced by the fact that the majority of 

mathematical models of biological systems have been developed by researchers trained 

in disciplines other than biology. Further, because of the lack of such tools, most 

published models were developed from scratch, which can be a tedious and error-prone 

process.  

To address this issue, a number of programs that aim to facilitate the model 

construction and analysis have been developed in the last several years. These programs 

include Gepasi (Mendes 1993; Mendes 1997), DBsolve (Goryanin et al  1999), E-Cell 

(Tomita 2001; Tomita et al  1999), SCAMP (Sauro 1993), Virtual Cell (Schaff et al  1997; 

Schaff & Loew 1999; Schaff et al 2000), StochSim (Morton-Firth & Bray 1998), and 

STOCKS (Kierzek 2002). It would go beyond the scope of this current work to give a 

detailed account of these tools. Briefly, Gepasi, DBsolve, and SCAMP focus on the 

analysis of biochemical and metabolic networks. In addition to basic time-course 

simulations, these programs provide additional modules to explore the properties of 

metabolic networks. E-Cell aims to construct whole-cell models, and it has been applied 

to model a self-sustaining hypothetic cell (Tomita et al 1999) and a human erythrocyte 

(Tomita 2001). Virtual Cell is advantageous in that it accounts for the diffusion of 

molecules in addition to their reactions in describing cellular processes. Distinct from 

other programs, StochSim and STOCKS simulate the system dynamics using stochastic 

algorithms instead of deterministic algorithms. These two differ in that StochSim 
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employs a semi-empirical algorithm, while STOCKS uses the Gillespie algorithm 

(Gillespie 1977), which is rigorous for spatially homogenous systems. More extensive 

discussion of recent progress in the development of modeling tools may be found in 

excellent recent reviews (Arkin 2001; Loew & Schaff 2001). 

We present here a unique, general-purpose computational framework for creating, 

visualizing, and analyzing mathematical models of biological networks, including 

biochemical, metabolic, signaling, and genetic networks. We call this program Dynetica, 

or a simulator of dynamic networks. Dynetica is distinct from other software packages in 

three aspects: (1) it facilitates the construction of kinetic models of genetic networks 

where most reactions are expression of genes; (2) it provides a visual representation of 

each model for interactive manipulation and interrogation; (3) it allows time-course 

simulations using both deterministic and stochastic algorithms. Furthermore, because it 

is written in Java, a platform-independent, object-oriented programming language, 

Dynetica can be run on most modern computers, which will facilitate the sharing of 

models among researchers. We anticipate that Dynetica will contribute significantly to 

advancing broader application of kinetic modeling in biological systems. 

7.2 Modeling in Dynetica 

7.2.1 Representation of generic reaction networks 
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A reaction network in Dynetica consists of a list of substances that interact with 

one another via a list of reactions. Kinetics of these reactions may be specified by a list 

of parameters (Figure 7.1).  In addition to a tree structure, Dynetica provides a graphic 

representation of each reaction network. Figure 7.2 shows a hypothetical reaction 

network in Dynetica that consists of two reactions (Table 7.1). Each reaction is 

characterized by two basic attributes: its stoichiometry, which specifies the quantitative 

relationship between the substances in a reaction, and its kinetics, which specifies how 

fast (for non-equilibrated reactions) or to 

what extent (for equilibrated reactions) the 

reaction occurs.  

Figure 7.1 Representation of reaction networks 
in Dynetica. Each reaction network is 
represented as three lists: substances, reactions 
through which substances interact with one 
another, and parameters that specify the kinetics 
of the reactions. 

Figure 7.2 Screenshot of a 
hypothetical reaction network 
in Dynetica. The left panel 
shows the tree-structure view 
of the network, and the right 
panel gives a graphic 
representation. In the graph a 
green line indicates the 
production of the connected 
substance by the connected 
reaction, a red line represents 
the consumption of the 
connected substance by the 
connected reaction, and a 
gray dashed line indicates that 
the connected substance 
affects the kinetics of the 
connected reaction. See text 
for details of the reactions. 
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Table 7.1 The reactions in the simple reaction network shown in Figure 7.2. 

Reaction Stoichiometry Kinetics 
R1 A → B k1 [A] [E] a 
R2 B → A k2 [B] 

a The rate expression is actually written as k1 [A] * [E] in Dynetica. 

Dynetica employs two modules to describe generic reaction networks: a reaction 

parser and a mathematical expression parser. The reaction parser can interpret 

conventional chemical reaction formulas (using “→” as the separator between reactants 

and products), which specify the stoichiometry of reactions. The mathematical 

expression parser is used to interpret conventional mathematical expressions, which 

describe the kinetics of reactions. In Dynetica expressions both substances and 

parameters have values associated with them. The expression parser distinguishes 

between these entities by enclosing substance names with brackets. For example, the 

rate expression for reaction R1 in Table 7.1 is k1 [A] [E], which means the value of 

parameter k1 times the level of substance A and the level of substance E. The 

expression parser can interpret mathematical expressions composed of the operations 

and functions shown in Table 7.2.  The kinetics of most chemical reactions can be 

formulated easily within this framework. 

7.2.2 Representation of genetic networks 

Genetic networks can be loosely defined as reaction networks involving gene 

expression processes, such as transcription of genes and translation of mRNAs. In 

Dynetica, a genetic network is treated as a special reaction network that contains one or 

more genomes (Figure 7.3A). Here a genome is defined as an entity composed of an 
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array of genetic elements, such as genes, promoters, and transcription terminators. 

Examples of genomes include genomes of cells and viruses, as well as plasmids.  

Each genetic element is characterized by two attributes, namely, its starting and 

ending positions (in base-pair number) along the genome. A gene in Dynetica is a special 

genetic element characterized by several additional attributes: the RNA polymerase 

responsible for its transcription, the ribosome responsible for its translation, the name 

of its RNA, and the name of its protein (if the gene is to be translated), the relative 

transcription activity, and the relative translation activity. The relative transcription 

activity is essentially a weighting factor by which RNA polymerases are allocated to 

different genes, and the relative translation activity is the weighting factor by which 

ribosomes are allocated to different genes (more precisely, to different mRNAs). 

Genetic reactions can easily be formulated in Dynetica. Figure 7.3B demonstrates the 

Dynetica formulation of the central dogma of molecular biology. Essentially, the 

information transfer process from gene to mRNA to protein can be represented by two 

reactions. The transcription reaction specifies the conversion of nucleoside 

triphosphates (NTP) into mRNA, and is catalyzed by the gene and RNA polymerase 

(RNAP). The translation reaction specifies the conversion of amino acids (AA) into the 

protein, and is catalyzed by the mRNA and the ribosome. 
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Table 7.2 The mathematical operations and functions that are supported by Dynetica 

 Symbols or 
expressions 

Notes 

Basic operations  +, -, *, /, ^ ‘^’ represents to the power of. 

Basic functions a sin(a), cos(a), 
tan(a), sqrt(a), 
log(a) 

log(a) returns the natural logarithm value 
of a 

step(a, b)  returns 1 if a ≥ b, and 0 otherwise 

compare(a, b) returns 1 if a > b, 0 if a = b, and –1 if a < 
b 

pulse(a, x, b) returns 1 if a < x < b, 0 otherwise 

random(a, b) returns a random value between a and b 

rand() returns a random value between 0 and 1 

min(a, b, c, …) returns the minimum value from the list 
of arguments 

Special functions a 

max(a, b, c,…) returns the maximum value from the list 
of arguments 

   a Each of the symbols (a, b, c and x ) may represent a simple variable or a mathematical expression. 
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Figure 7.3 Formulation of genetic networks in Dynetica. (A) A genetic network in Dynetica 
is represented as a special reaction network that contains one or more genomes. (B) The 
central dogma represented in Dynetica. 

Because expression of most genes follows the pattern as specified by the central 

dogma, Dynetica automatically creates a transcription reaction and a translation reaction 

for each gene that the user specifies in a genome. In addition, it also generates two 

reactions to represent the degradation of the gene products, the mRNA and the protein. 

In setting up the transcription reaction, we assume that the limiting step is the 
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elongation of the RNAP, and the transcription follows Michaelis-Menten kinetics with 

NTP as the substrate. For the translation reaction, we assume that the limiting step is 

the elongation of the ribosome, and the reaction follows Michaelis-Menten kinetics with 

AA as the substrate. Note that these automatically generated reactions are essentially 

“first-order approximations” by the program based on the genetic information provided 

by the user. These approximations are useful because they provide an initial estimate of 

gene expression dynamics. The user can then refine the stoichiometry and kinetics of 

such reactions as needed. 

Figure 7.4 The simulation results from the reaction network in Figure 7.2 using both (A) 
deterministic and (B) stochastic algorithms 

7.2.3 Simulation 

A model in Dynetica gives a schematic representation of the corresponding 

system, but it does not specify how the system evolves over time. The latter will be 

determined by an algorithm. Here, an algorithm is defined as the scheme by which the 

system represented by the model will be updated as a function of time. It can be either 

A B
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deterministic or stochastic. Deterministic algorithms include all the traditional numerical 

algorithms that are designed to solve coupled differential equations, such as fixed or 

variable time-step Runge-Kutta algorithms. A deterministic algorithm is appropriate 

when the continuity of the system can be justified. .  

Stochastic algorithms focus on updating reactions in the system. For example, a 

widely used stochastic algorithm proposed by Gillespie (Gillespie 1977) updates a 

reactive system by determining, at each step, which and when the next reaction will 

occur. A stochastic algorithm is appropriate for a spatially homogeneous system where 

the interacting molecules are few that fluctuations in their numbers are significant. A 

number of researchers have strongly advocated the use of stochastic algorithms for 

modeling biological systems, especially for intracellular processes (Arkin et al 1998; Goss 

& Peccoud 1998; Kierzek 2002; Morton-Firth & Bray 1998). 

The structure of a reaction network model in Dynetica is flexible enough to allow 

simulations by either deterministic or stochastic algorithms. Currently we have 

implemented three different algorithms: a fixed time-step 4th order Runge-Kutta 

algorithm, a variable time-step 4th order Runge-Kutta algorithm, and Gillespie’s 

algorithm. By applying an algorithm to a model, we can generate the dynamics of the 

underlying system. Shown in Figure 7.4 are the results of deterministic and stochastic 

simulations with the model in Figure 7.2. In this particular case, both approaches 

generate qualitatively the same result: substance A is gradually converted into substance 

B until equilibrium is reached, whereas the level of substance E remains constant over 
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time. However, the details of the dynamics generated from these different approaches 

are quite different. For instance, there are no fluctuations in the substance 

concentrations as predicted by the deterministic simulation, but fluctuations are evident 

in the result from the stochastic simulation. In addition, because of the stochastic aspect 

of the Gillespie algorithm, every new simulation starting from the same initial condition 

will generate different dynamics (Gillespie 1977). 

In addition to simulating the temporal evolution of a reaction network, Dynetica 

provides the basic functionality to explore how the dynamics of the network responds 

to the perturbations to the network, in terms of variations in parameter values or the 

initial levels of substances. This feature is desirable for simulating dosage curves and for 

identifying key system parameters that are important in determining overall behaviors of 

the system. 

7.3 Applications 

To demonstrate the application of Dynetica we use it to build two models: one 

for the Dictyostelium aggregation stage network, and the other for the intracellular growth 

cycle of phage T7. The aggregation stage network model is shown here as an example of 

a general reaction network. The phage T7 model shown as an example of a genetic 

network. 
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7.3.1 A Dictyostelium aggregation stage network model 

Amoebae of Dictyostelium discoideum grow as independent cells in the soil, but 

aggregate and develop as a multicellular organism under starvation. It has been proposed 

that the aggregation stage network, which consists of seven interacting components, is 

responsible for regulating the expression of developmental genes in homogeneous 

populations of Dictyostelium shortly after starvation (Loomis 1998; Soderbom & Loomis 

1998). Previously, a kinetic model was developed to analyze the dynamics of this 

signaling network (Laub & Loomis 1998). The model accounted for the interactions 

among seven molecular species, and was shown to be able to predict the oscillations in 

the enzyme activities during Dictyostelium development.  

Based on (Laub & Loomis 1998), we used Dynetica to reconstruct the aggregation 

stage network model (Figure 7.5A, Table 7.3). Figure 7.5B shows a representative 

simulation result demonstrating stable oscillations in levels of the interacting 

components.  
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Figure 7.5 Aggregation stage network model. (A) The graphic representation of the reaction 
network. (B) A representative simulation result. The network was constructed based on the 
reference (Laub & Loomis 1998). The reactions involved in this network are shown in Table 
7.3. The parameter values for the simulation are: k1 =1.4, k2 = 0.9, k3 = 2.5, k4 = 1.5, k5 = 
0.6, k7 = 2.0, k8 = 1.3, k9 = 0.3, k10 = 0.8, k11 = 0.7, k12 = 4.9, k13 = 18, k14 = 1.5 (W. 
Loomis, personal communication). The initial levels of all substances were set to be 1.0, and 
the variable time-step 4th order Runge-Kutta algorithm was used for the simulation. 
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Table 7.3 The production reactions in the aggregation stage network a 

Reaction Stoichiometry Kinetics Notes 
p_ACA → ACA k1 [ERK2] Activation of ACA by 

ERK2 
d_ACA ACA →  k2 [ACA] degradation of ACA 
p_PKA →  PKA k3 [cAMPi] Activation of PKA by 

cAMPi 
d_PKA PKA →  k4 [PKA] degradation of PKA 
p_ERK2 → ERK2 k5 [CAR1] Activation of ERK2 by 

CAR1 
d_ERK2 ERK2 →  k6 [ERK2] [REGA] degradation of ERK2 

(catalyzed by REGA) 
p_REGA →  REGA k7 constant production of 

REGA 
d_REGA REGA→  k8 [REGA] [ERK2] degradation of REGA 

(catalyzed by ERK2) 
p_cAMPi →  cAMPi  k9 [ACA] Activation of cAMPi by 

ACA 
d_cAMPi cAMPi →  k10[REGA][cAMPi] degradation of cAMPi 

(catalyzed by REGA) 
p_cAMPe → cAMPe k11 [ACA] activation of cAMPe by 

ACA 
d_cAMPe cAMPe→  k12 [cAMPe] degradation of cAMPe 
p_CAR1 → CAR1 k13 [cAMPe] activation of CAR1 by 

cAMPe 
d_CAR1 CAR1→  k14 [CAR1][PKA] degradation catalyzed by 

PKA 
aAlthough recent studies have suggested a slightly revised reaction network 
(http://www.biology.ucsd.edu/labs/loomis/network/laubloomis.html), the published model suffices to 
illustrate the usage of Dynetica. 
 
 
7.3.2 A phage T7 model 

The model presented here (Figure 7.6) is a simplified version of the full T7 model 

described in previous chapters. The major difference between the current model and the 

full model is that a simplified genome is used here (Figure 7.6A). This simplified genome 

contains 20 essential T7 genes. The regulatory effect of promoters and transcription 
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terminators is accounted for by specifying the relative transcription activity of each gene. 

As a result, RNA polymerases are allocated to different genes based on their relative 

transcription activities, whereas in the complete model RNA polymerases are allocated 

based on the relative strengths of promoters (Chapter 2). The resulting T7 reaction 

network contains 91 reactions and 55 substances, excluding genes (Figure 7.6B). In this 

network, the reactions describing expression of genes and degradation of gene products 

are automatically generated by Dynetica. Although the network diagram is overall 

complex, it highlights several features of the system. First, most substances are involved 

in two reactions, one for production (green line) and the other for consumption (red 

line). Second, several nodes (as labeled) are highly connected. For example, the nodes 

for amino acid and NTP are highly connected because these two substances are used as 

precursors for transcription and translation reactions, respectively. Likewise, the nodes 

for T7 RNAP and ribosome are highly connected because they are used as catalysts for 

transcription and translation reactions, respectively.  

Like the full model, the current model accounts for the major steps of T7 

infection: transcription of viral genes, translation of the resulting mRNAs, interactions 

between regulatory proteins, host DNA degradation and T7 DNA replication, procapsid 

assembly, and eventually production of phage progeny. A representative simulation 

result showing the time courses of three viral components is presented in Figure 7.6C. It 

illustrates the synthesis of T7 DNAs and procapsids, and the packaging of T7 DNAs 

into procapsids to form viral progeny. Overall, this simplified model captures the main 

features of viral growth as predicted by the more comprehensive model.
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Figure 7.6 A simplified phage T7 model. (A) The simplified T7 genome. The left panel 
shows a list of genes in the genome (not all genes are shown); the right panel shows the 
attributes of the currently selected gene. (B) The graphic representation of the reaction 
network. The reactions describing transcription and translation of genes were automatically 
generated by Dynetica. (C) A representative simulation result showing the time courses of 
three viral components. 
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7.4 Discussion 

We have developed Dynetica to facilitate the construction, visualization and 

analysis of mathematical models for biological systems that can be formulated as a 

coupled system of reactions. With Dynetica, the user need only specify the chemistry of 

this system, that is, what components are in the system and how they interact. 

Throughout the model-building process, the user need not write any differential 

equations, or formulate numerical algorithms to conduct simulations. Instead, the 

numerics is automatically handled by the program. Thanks to this feature, the user can 

focus on the model itself and its practical relevance rather than the technical aspects of 

computer simulation. Furthermore, by providing a graphic view of the underlying 

reaction network Dynetica will facilitate the interactive manipulation and analysis of each 

model. 

Dynetica’s ability to perform both deterministic and stochastic simulations on the 

same model may facilitate comparative studies of these two approaches. Deterministic 

algorithms have been traditionally used to simulate the dynamics of a system of coupled 

reaction network.  However, the small numbers of interacting components in some 

intracellular processes may become an issue. First, the continuity of these systems is no 

longer warranted. Second, fluctuations in the concentrations of the reacting components 

may significantly impact the system dynamics. Because of these issues, some researchers 

have questioned the use of deterministic algorithms in simulating the behaviors of 
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biological systems, and suggested using stochastic algorithms instead (Arkin et al 1998; 

Goss & Peccoud 1998; Kierzek 2002; Morton-Firth & Bray 1998; Srivastava et al  2002). 

They have shown that stochastic simulations often produce dynamics drastically 

different from what is predicted by deterministic simulations. Moreover, some have 

argued that a stochastic simulation more accurately and more completely accounts for 

the temporal evolution of a well-stirred chemical reaction network than does a 

deterministic algorithm (Gillespie 1977; McAdams & Arkin 1998). Nonetheless, since a 

stochastic algorithm only gives accurate solutions for a well-stirred system, it may not be 

applicable for intracellular processes. It is unclear whether it is more appropriate than a 

deterministic approach in modeling such processes. To this end, Dynetica may be 

employed to simulate a system using both deterministic and stochastic approaches and 

explore which approach is more appropriate in a particular situation. 

With its present underlying software structure, Dynetica can easily be extended in 

its functionality and flexibility. It has a software module that automates the construction 

of a genetic network model based on the organization of genetic elements along the 

genome. In achieving this functionality, we made simplifying assumptions regarding the 

organization of the genome. For each gene, Dynetica will automatically generate a 

transcription reaction, a translation reaction, and degradation reactions for the resulting 

mRNA and protein. However, in reality, there are also genes for tRNA and rRNA that 

do not have protein products. Future modifications of the program will be needed to 

represent and distinguish different kinds of genes. New numerical algorithms can be 

implemented, so that the user will have the freedom in choosing the most appropriate 
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one for a given situation. Further, we are developing model templates for different types 

of biological systems, such as signaling pathways, viruses, and single cells. Like the 

document templates one may encounter in many word-processing programs such as 

Microsoft® Word, these templates will further facilitate the model-building process, 

particularly for new users. An emerging challenge for the modeling community lies in 

the interchange of models constructed using different software tools, as listed in the 

introduction section. Recently, there have been many efforts toward developing 

modeling standards for biology modeling, such as the SBML (Systems Biology Markup 

Language) project (http://www.cds.caltech.edu/erato) and the CellML (Cell Markup 

Language) project (http://www.cellml.org). To provide exchangeable mathematical 

models, we plan to implement software modules to import models constructed with 

other tools, or written in standard modeling languages. Finally, we plan to implement 

software modules to annotate models; we expect this functionality will further facilitate 

the communication of mathematical models as a representation of the underlying 

biological systems. 

The evolution of biological network modeling can be compared to that of the 

molecular dynamics simulation, which uses physical principles to compute the structure 

and dynamics of biological molecules. Although the development and use of molecular 

dynamics simulation programs were initially much restricted to researchers with strong 

background in theoretic physics and mathematics, it is the development of powerful and 

user-friendly tools that has established this computational approach as a routine tool for 

structural studies of natural or synthetic biological molecules (Loew & Schaff 2001). 
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Similarly we envision that, Dynetica, together with other emerging modeling tools, will 

promote a broader application of mathematical models in cell biology by serving as a 

computational platform to create, analyze and exchange such models. 
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C h a p t e r  8  

CONCLUDING REMARKS 

“To see a world in a grain of sand 

And a heaven in a wild flower, 

Hold infinity in the palm of your hand 

And eternity in an hour.” 

William Blake 
 

8.1 Lessons from modeling phage T7 

A genetically structured model of phage T7 intracellular growth in E. coli (Endy 

1997; Endy et al 1997) has been recast in an object-oriented framework, extended by 

implementing a simple model representing the host physiology, and improved by 

incorporating a more mechanistic description of several steps of T7 infection. The 

development of the T7 model demonstrates the feasibility of building integrated models 

for complex biological systems based on data and mechanisms at the genetic and 

molecular levels.  

The current phage T7 model, along with the previous T7 models, is distinguished 

from other kinetic models in biology in that it completely links the genotype and the 

phenotype of an organism – phage T7. The ability to account for the host environment 

further distinguishes the current T7 model from its precursors and other models. Many 

models, while detailed, have focused on the systems of interest themselves and treated 
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their environments as black boxes. By explicitly treating the host cell as bag of resources, 

whose levels are characterized by parameters obtained experimentally, we have been able 

to examine the development of phage T7 in the context of its host environment. This 

aspect has been exploited to investigate a number of biological questions of broad 

relevance. These applications have indeed demonstrated the important role of 

environments in various aspects of T7 biology. The environment clearly has a big 

impact on the development of the wild-type phage T7 as a whole (Chapter 3). Chapter 4 

further suggests that the growth environment may play a role in the design of phage T7 

in terms of its parametric configuration and its genomic structure. Specifically, the fact 

that every host cell will have limited resources appears to have forced phage T7 to adjust 

its design, through evolution, so that it can take full advantage of these resources for its 

development. Chapter 5 demonstrates how the environment may affect the nature and 

degree of epistasis among deleterious mutations at a population level.  

In exploring biological questions, a major advantage of computer simulations is 

their high efficiency, which makes it feasible to test sophisticated hypotheses on a scale 

that is unattainable with real biological systems in a practical time frame. Another 

advantage is that by simulation we can accurately “measure” the growth of an organism, 

which is often a very difficult task in lab experiments. However, an immediate question 

regarding these simulations is to what extent the conclusions are applicable for real 

biological systems. Some conclusions of our work can be readily tested by experiment. 

The dependence of T7 growth on the host physiology has been validated by experiment 

(Chapter 3). The outstanding role of the translation machinery in determining this 
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dependence can also be tested by carefully designed experiment (Chapter 3, Discussion). 

Admittedly, other conclusions are based on more drastic extrapolations from the base 

model and may be more removed from lab experiments. To explore the design of phage 

T7 and the nature of epistasis, we created hundreds of thousands of mutants that have 

changed parameters or alternative genomes. In these mutants, parameter changes may 

be more easily realized experimentally. For example, a change in the activity of a 

promoter can be achieved by introducing point mutations to the promoter sequence, 

and the elongation rate of a polymerase (for synthesizing RNA or DNA) may be slowed 

down (Makarova et al  1995) and may even be increased (Sasaki et al  1998) by 

mutations in the polymerase gene. In fact, it has been argued that there has been little if 

any selection pressure to maximize the reaction rate constants for most metabolic 

enzymes (Kacser & Burns 1973). If this is the case, then it is probably feasible to 

experimentally change various kinetic parameters in either direction (Bray & Lay 1994). 

In comparison, changing the genomic structure experimentally will be more difficult to 

make but can still be done to a certain degree (Endy et al 2000).  

Even when some in silico mutations, such as random genome permutations, are 

not readily realizable experimentally, conclusions from simulations are still useful. In 

fact, we can consider the T7 model as a digital virus that captures all the essential aspects 

of T7 infection: entry of DNA, expression of gene products, replication of DNA, 

assembly of viral procapsids, and the formation of progeny. Because of this direct 

mapping between the model and the reality, lessons from simulations may provide 

insights into the understanding of the real system.  
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8.2 Modeling beyond T7: challenges and opportunities 

Although the T7 model is specific to T7 biology and may not be directly applied 

to a different system, the same kinetic principles and mathematical techniques can be 

used to describe other biological processes, as long as experimental data and 

mechanisms are available. As a generic modeling tool, Dynetica will facilitate modeling 

of biological systems, particularly for researchers unfamiliar with programming and 

numerical methods. However, Dynetica will still need the user to specify the details of 

the system, namely the components that are in the system and the interactions among 

these components. With the numerics and programming difficulties taken care of, the 

rate-limiting step for modeling shifts to the collection of experimental data and 

appropriate model formulation. Then, two important questions naturally come up: how 

much information we will need to build a sensible model? Given enough data and 

mechanisms, how much detail we should put into a model? 

Answers to both questions will depend on the objective of modeling. For 

example, if we were to build a kinetic model that can accurately predict the entire life 

cycle of phage T7 infection, starting from the binding of T7 to the host cell (note that a 

simulation with the current model starts from the point when T7 DNA begins to enter 

the host cell) to the lysis of host cell by T7 progeny, we would not have enough 

experimental data. However, the current model is still useful in that it captures well the 

intracellular events of T7 infection. In this sense, we do have sufficient information. The 

same reasoning may apply to more complex systems. Although we may be quite far 

from a complete understanding of the growth of an entire cell or organism, we already 



 

 

148 
have sufficient information to build models for some isolated, well-studied networks 

that have identifiable network output, such as the E. coli chemotaxis signaling pathway 

(Barkai & Leibler 1997) and the segment network for Drosophila development pattern 

formation (von Dassow et al 2000). Similarly, the level of detail to be incorporated in the 

model should be consistent with the goal of the model. Again, take phage T7 model as 

an example. If our goal were to predict only the growth curve of the T7 infection, we 

would not need to put as much detail as we have done. In fact, a simpler model, such as 

the simplified T7 model presented in Chapter 7, may equally well predict the curve. 

However, the power of phage T7 model is beyond predicting a T7 growth curve only. 

The model also provides a means to explore how various host factors and viral 

components, including genes and their products, interact with one another and with 

their environment to determine the integrated behavior of the virus.  

In light of these brief discussions, it seems appropriate to leave the primary 

responsibility of model formulation to the user of Dynetica (or other modeling tools). 

Yet, I should note that future enhancement of the program is likely to further facilitate 

the model-building process. In the long term, the ability of Dynetica to build models for 

generic reaction networks will present an opportunity to create a database of the 

integrated models of a wide spectrum of biological systems. I call such a database 

PhenoBank by analogy to GenBank. PhenoBank will differ from GenBank in that each 

entry in it will be an integrated model representing the knowledge base for a biological 

system, such as signaling pathways, viruses and single cells, and this model can be used 

to perform simulations that may reflect the behavior (in a sense, the phenotype) of the 



 

 

149 
corresponding system. Unlike the existing pathway databases, such as Science’s STKE 

(Signal Transduction Knowledge Environment, http://stke.sciencemag.org/), 

PhenoBank will host models that can be used for dynamic simulations and analysis by a 

modeling tool, such as Dynetica. 

Just as GenBank has greatly impacted biological research at large by facilitating 

the storage and access of genetic sequence data, and the comparative studies based on 

these data (a quick PubMed search with the keyword “GenBank” retrieved nearly 2,700 

research articles as of 5/8/2002), I anticipate that PhenoBank will offer similar benefits 

by facilitating the process of storing and retrieving computer models, and by promoting 

comparative studies on the structures of related biological systems. Moreover, 

PhenoBank may impact the strategies of teaching biology in the future. It is probably 

not unreasonable to predict that, 10 years from now, some of the fundamental principles 

of gene regulation will be taught along with demonstrations using computer simulations, 

which may employ models stored in PhenoBank. With the increasing number of 

biological models documented in PhenoBank, we may begin to track the parameters that 

may appear frequently in different systems, for instance, the processing rates of RNA 

polymerases and ribosomes for various genetic systems. By doing so, we may determine 

a distribution of reasonable values for the parameters of interest. In situations where the 

value of such a parameter is unavailable for a system, we may select a value from the 

predetermined distribution and refine it when necessary. Further, we may also detect 

potentially erroneous parameter values by comparing the input values with the 

predetermined distribution. 
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I envision that Dynetica and the proposed PhenoBank may synergistically benefit 

broad biological research by providing a computational framework for creating, 

analyzing and sharing mathematical models and, at a higher level, the comparative study 

of related biological systems. In addition, it is potentially useful for the pharmaceutical 

industry, since it may facilitate the identification of pharmaceutical targets in disease-

associated pathways, and the evaluation of pharmaceutical efficacy using computer 

simulations. 
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APPENDIX 

Nomenclature and abbreviations 

A0 The leftward EcRNAP promoter in T7 genome 

AA Amino acid 

Ai (i= 1, 2, 3) Major EcRNAP promoter i in T7 genome 

bp Base pairs 

C The length of the C period of the E. coli growth cycle (min) 

CDA Correlated deviation algorithm 

Cij The correlation coefficient of the DDFs of proteins i and j 

Cn The T7 procapsid assembly nucleation level (M) 

D The length of the D period of the E. coli growth cycle (min) 

DDF Dynamic deviation factor 

Di The DDF for protein i 

iD  The time-averaged DDF for protein i 

Dik The DDF from protein I evaluated at the kth time point on a 
discretized time course 

DNAP DNA polymerase 

dNTP deoxyribonucleoside triphosphate 

EcRNAP E. coli RNA polymerase 

eTE Efficiency of the terminator TE 
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eTφ Efficiency of the terminator Tφ 

Gc The total amount of DNA in an E. coli cell (number of E. coli 
genome equivalents) 

K1 The association constant between EcRNAP and gp0.7 (M-1) 

K2 The association constant between EcRNAP and gp2 (M-1) 

K3 The association constant between T7RNAP and gp3.5 (M-1) 

ka The procapsid assembly rate constant (M3.8/s) 

kdp T7 protein degradation rate constant (1/s) 

kdm T7 mRNA degradation rate constant (1/s) 

kE Ribosomal elongation rate (bases/s) 

kpack T7 DNA packaging rate constant (bp/s) 

kPD Replisome elongation rate (bp/s) 

kPE EcRNAP elongation rate (bases/s) 

kPT7 T7RNAP elongation rate (bases/s) 

kTi The translation rate coefficient for protein i ((protein 
molecules)/ [(mRNA molecules)⋅s] ) 

LDNA The length of T7 DNA (base pairs) 

Lin The length of T7 DNA that has entered the host cell 

LRi The length of the internalized part of mRNA i (bases) 

Nc The number of T7 major capsid protein molecules required to 
form a procapsid 

Np The initial number of active EcRNAPs in an E. coli cell. 

NR The initial number of active ribosomes in an E. coli cell 
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Nr The number of elongating replisomes 

NTP Nucleoside triphosphate 

ODE Ordinary differential equation 

P The total amount of protein in an E. coli cell (number of AA 
residues) 

PCC Protein correlation coefficient 

PCM Protein correlation matrix 

PDE Partial differential equation 

Pi The level of protein i (molecules/cell)  

PR The level of the limiting species of procapsid and DNA 
during T7 DNA packaging 

R The total amount of RNA in the host cell (number of 

nucleotides) 

Ri The level of mRNA i (molecules/cell) 

RNAP RNA polymerase 

SEi The density of EcRNAP along the internalized region of 

mRNA i (molecules/base) 

ST7i The density of T7RNAP along the internalized region of 

mRNA i (molecules/base) 
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T7RNAP T7 RNA polymerase 

TE Transcription terminator for EcRNAP 

Tφ Transcription terminator for T7RNAP 

Vc Volume of the host cell (L) 

vd Depletion rate of a protein by assembly of T7 procapsids or 

the packaging of progeny particles (protein molecules/s) 

vDi Depletion rate of protein i (protein molecules/s) 

vTi Production rate of protein i due to translation (protein 

molecules/s) 

vT7 Production rate of T7 progeny (T7 particles/s) 

W(w) Fitness (lower case represents normalized value) 

φi T7RNAP promoter i (i may be non-integer) 
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