
Detecting Fake Accounts in Online Social Networks
at the Time of Registrations

Dong Yuan1,2, Yuanli Miao1,2, Neil Zhenqiang Gong3, Zheng Yang1,2, Qi Li1,2, Dawn Song4,
Qian Wang5, Xiao Liang6

1Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China
2Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China

3Department of Electrical and Computer Engineering, Duke University, Durhamn, NC
4Computer Science Division, University of California, Berkeley, CA
5School of Cyber Science and Engineering, Wuhan University, China

6Tencent, China
{yuand15@mails, myl16@mails, yz17@mails, qli01@}tsinghua.edu.cn, neil.gong@duke.edu, dawnsong@cs.berkeley.edu,

qianwang@whu.edu.cn, doodleliang@tencent.com

ABSTRACT
Online social networks are plagued by fake information. In particu-
lar, using massive fake accounts (also called Sybils), an attacker can
disrupt the security and privacy of benign users by spreading spam,
malware, and disinformation. Existing Sybil detection methods rely
on rich content, behavior, and/or social graphs generated by Sybils.
The key limitation of these methods is that they incur significant
delays in catching Sybils, i.e., Sybils may have already performed
many malicious activities when being detected.

In this work, we propose Ianus, a Sybil detection method that
leverages account registration information. Ianus aims to catch
Sybils immediately after they are registered. First, using a real-
world registration dataset with labeled Sybils from WeChat (the
largest online social network in China), we perform a measurement
study to characterize the registration patterns of Sybils and benign
users. We find that Sybils tend to have synchronized and abnormal
registration patterns. Second, based on our measurement results,
we model Sybil detection as a graph inference problem, which
allows us to integrate heterogeneous features. In particular, we
extract synchronization and anomaly based features for each pair
of accounts, use the features to build a graph in which Sybils are
densely connected with each other while a benign user is isolated or
sparsely connected with other benign users and Sybils, and finally
detect Sybils via analyzing the structure of the graph. We evaluate
Ianus using real-world registration datasets of WeChat. Moreover,
WeChat has deployed Ianus on a daily basis, i.e., WeChat uses Ianus
to analyze newly registered accounts on each day and detect Sybils.
Via manual verification by the WeChat security team, we find that
Ianus can detect around 400K per million new registered accounts
each day and achieve a precision of over 96% on average.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3363198

CCS CONCEPTS
• Security and privacy → Security services; Network secu-
rity.

KEYWORDS
Fake account detection; Sybil detection

ACM Reference Format:
Dong Yuan, Yuanli Miao, Neil Zhenqiang Gong, Zheng Yang, Qi Li, Dawn
Song, Qian Wang, Xiao Liang. 2019. Detecting Fake Accounts in Online
Social Networks at the Time of Registrations. In 2019 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS’19), November 11-
15, 2019, London, United Kingdom. ACM, NewYork, NY, USA, 16 pages.
https://doi.org/10.1145/3319535.3363198

1 INTRODUCTION
Online social networks, e.g., Facebook and WeChat, are particu-
larly popular nowadays, which have a huge influence on our daily
life. Meanwhile, they are also important targets for attackers. For
instance, in a Sybil attack [14], an attacker registers and main-
tains massive fake accounts to perform various malicious activities
such as spreading spams, phishing URLs, malware, and disinforma-
tion [21, 35] as well as stealing private user data [4].

Many methods [2, 6, 10–13, 16–18, 20, 27–30, 33, 34, 37–40, 44,
49–51, 54, 55, 57, 58] have been developed to detect Sybils in online
social networks. These methods leverage content (e.g., URLs in
tweets), behavior (e.g., clickstreams, likes, photo uploads), and/or
social graphs (e.g., friendship graphs, follower-followee graphs)
generated by Sybils. They face a key limitation: they incur signifi-
cant delays at detecting Sybils. Specifically, they require Sybils to
generate rich content, behavior, and/or social graphs before detect-
ing them. Therefore, Sybils may have already performed various
malicious activities before being detected.

In this work, we aim to detect Sybils at the time of registration.
CAPTCHA seems a natural choice to prevent registrations of Sybil
accounts. However, a number of studies (e.g., [7–9, 52]) have shown
that an attacker can use machine learning techniques to automati-
cally bypass CAPTCHAs, making them ineffective. We propose to
detect Sybils based on registration information.

https://doi.org/10.1145/3319535.3363198

First, using an anonymized real-world registration dataset from
WeChat, an online social network designed for mobile devices, we
perform systematic measurement studies about the registration
patterns of Sybils and benign users. The dataset is collected in No-
vember, 2017, 770K of which are benign users and 647K of which are
Sybils. Each registration has a list of attributes such as IP address,
phone number (can be used as a user ID in WeChat), device ID
(e.g., IMEI), nickname, etc..1 We find that Sybils share synchronized
registration patterns with respect to these attributes. For instance,
many Sybils use IP addresses with the same 24-bit IP prefixes for
registration, which means that they could be registered in clusters
from the same subnetwork. However, synchronization is insuffi-
cient to distinguish between Sybils and benign users. In particular,
some benign users also share synchronized registration attributes,
e.g., they use IPs with the same prefix. Whether two accounts that
share synchronized registration attributes are Sybils or not further
depends on the risk/anomaly of the synchronized attributes. There-
fore, we further study abnormal registration patterns. For instance,
when two Sybils use the same IP prefix for registration, the IP prefix
itself is abnormal, e.g., many registrations from the IP prefix are
during late night. However, when two benign users use the same IP
prefix for registration, the IP prefix is less abnormal, e.g., accounts
from the IP prefix are mainly registered in daytime.

Second, based on our measurement results, we design Ianus to
detect Sybils using their registration data. A key challenge is how
to integrate the synchronized and abnormal registration patterns
as they are heterogeneous. Ianus leverages graph inference tech-
niques to address the challenge. Specifically, our goal is to leverage
the synchronized and abnormal registration patterns to build a
weighted graph to represent the complex relationships between
accounts, and then we detect Sybils via analyzing the structure
of the graph. We build the graph in a way such that each node is
an account, Sybils are densely connected with each other, while
benign accounts are sparsely connected with each other and with
Sybils. To achieve the goal, Ianus has three components, i.e., feature
extraction, graph building, and Sybil detection. In feature extraction,
for a pair of accounts, we extract binary synchronization based fea-
tures (e.g., the two accounts use the same device for registration)
and anomaly based features (e.g., the shared device is abnormal),
which are inspired by our measurements on the synchronized and
abnormal registration patterns, respectively.

In graph building, we construct a weighted graph between ac-
counts using their synchronization based features and anomaly
based features. Specifically, we assign a sync-anomaly score for a
pair of accounts based on their features. A sync-anomaly score char-
acterizes the synchronization and anomaly patterns between two
accounts, and a pair of accounts have a higher sync-anomaly score if
they have more synchronized and abnormal registration attributes.
One way to assign a sync-anomaly score for a pair of accounts is
to sum their binary features and treat the sum as the sync-anomaly
score. However, such feature-sum-based method does not consider
features’ different weights. Therefore, we use machine learning
techniques (logistic regression in particular) to learn sync-anomaly
scores that automatically weight different features. Then, we create

1We performed experiments at WeChat who anonymized the dataset to the extent
such that the dataset is just enough for our study.

edges between accounts using their sync-anomaly scores. In partic-
ular, to build a graph in which only Sybils are densely connected
with each other, we create an edge between two accounts only if
both of them are predicted as Sybils based on their sync-anomaly
score. Moreover, we treat the sync-anomaly score as the weight of
the edge.

In the Sybil detection component, community detection is a
natural choice to detect Sybils as Sybils are densely connected in
our graph. Moreover, we design a simple weighted node degree
based method to detect Sybils. Specifically, a node in our graph has
a larger weighted degree if it is connected to more Sybils by edges
with larger weights, which indicates that the node is more likely
to be Sybil. Therefore, Ianus can predict a node to be a Sybil if its
weighted degree is large enough.

Third, we evaluate Ianus using registration datasets fromWeChat.
Ianus can detect a large fraction of Sybils (recall is 80.2%) with a
high precision (92.4%). Moreover, we extensively evaluate different
design choices for each component of Ianus. Specifically, in fea-
ture extraction, our results show that the synchronization based
features and anomaly based features are complementary and com-
bining them does improve detection accuracy. In graph building,
we find that learning the sync-anomaly scores using logistic regres-
sion outperforms the feature-sum-based sync-anomaly scores. In
the Sybil detection component, we evaluate the popular Louvain
method [5] as a community detectionmethod. Our results show that
the Louvain method and our weighted node degree based method
achieve close detection accuracies. However, our weighted node
degree based method is more efficient than the Louvain method.
For instance, the Louvain method takes 40 minutes to analyze the
graph, while our weighted node degree based method takes only 10
minutes. WeChat has deployed Ianus on a daily basis, i.e., applying
Ianus to detect Sybils among the accounts registered within each
day. The security team of WeChat confirmed that Ianus can detect
around 400K per million new registered accounts per day with a
precision of over 96% on average.

In summary, we have the following contributions:

• We perform a large-scale measurement study to characterize
the registration patterns of Sybils and benign users. We find
that Sybils have both synchronized and abnormal registra-
tion patterns.
• We propose Ianus to detect Sybils using registration data.
Ianus builds a weighted graph for accounts based on their
synchronized and abnormal patterns, and then detects Sybils
via analyzing the graph’s structure.
• We evaluate Ianus using registration datasets from WeChat.
Moreover, WeChat has deployed Ianus, demonstrating the
industrial impact of Ianus.

2 RELATEDWORK
Existing Sybil detection methods [2, 3, 6, 10–13, 16–18, 20, 27–
30, 33, 34, 37–40, 44, 47, 49–51, 54–58] for online social networks
mainly leverage content, behavior, and/or social graphs generated
by Sybils. Content and behavior based methods [12, 16, 18, 30, 33,
38, 40, 44, 49] often model Sybil detection as a binary classifica-
tion problem and leverage machine learning techniques. Specifi-
cally, they first extract features from a user’s content (e.g., posts,

tweets) and/or behavior (e.g., frequency of tweeting, likes, photo
uploads, and clickstreams). Then, they detect Sybils via analyzing
the features through either supervised machine learning techniques
(e.g., logistic regression) or unsupervised machine learning tech-
niques (e.g., community detection, clustering). For instance, Syn-
chroTrap [12] leverages clustering techniques to detect Sybils based
on synchronized user behavior, e.g., photo uploading.

EvilCohort [34] leverages users’ IP addresses to detect Sybils.
Specifically, given users’ logins, EvilCohort builds a user-IP bipartite
graph, where an edge between a user and an IP means that the
user once logged in from the IP. Then, EvilCohort uses the Louvain
method to detect Sybils in the user-IP graph. EvilCohortmay require
multiple user logins such that Sybils form communities in the user-
IP bipartite graph. During the multiple logins, Sybils may have
already performedmalicious activities. Ourmethod does not require
user logins except the registrations.

Social graph based methods [2, 6, 10, 11, 13, 17, 20, 27, 28, 37,
39, 50, 51, 54, 55, 57, 58] detect Sybils via leveraging graph-based
machine learning techniques (e.g., random walks [6, 11, 13, 23, 28,
50, 51, 54, 55], belief propagation [19, 20, 41–43], and community
detection [10, 39]) to analyze the structure of the social graphs
between users. The key limitation of these methods is that they
incur significant delays at detecting Sybils because they rely on
rich content, behavior, and/or social graphs generated by Sybils.
Ianus addresses this limitation by leveraging registration data to
detect Sybils.

Hao et al. [22] proposed PREDATOR to detect malicious domains
at time of registration. One key difference is that detectingmalicious
domains and detecting Sybils require different features, e.g., our
Ianus leverages features from the mobile device, OS, user location,
and nickname. Xie et al. [48] proposed Souche for early recognition
of legitimate users. Different from Ianus, Souche relies on vouching
activities between users, e.g., users send messages to each other.
Leontjeva et al. [26] proposed a method to detect Sybils in Skype.
Instead of using only registration features, they leverage a variety
of features, which require the accounts to have generated enough
content and social data.

The work by Thomas et al. [38] is perhaps the most related to
ours. They leveraged registration data to detect Sybils in Twitter.
However, they leveraged the registration data (e.g., signup flow,
user agents, form submission timing) that are specific to Twitter,
while Ianus leverages different registration data such as IPs, phone
numbers, devices, etc..

3 MEASURING REGISTRATION PATTERNS
We briefly reviewWeChat, a popular online social network in China,
and use a real WeChat dataset to measure the registration patterns
of Sybils and benign users. These measurements will be the basis
of our Ianus.

3.1 WeChat and Dataset
WeChat is the largest mobile social network application in China
with over 1 billion monthly active users. Users can only register ac-
counts on WeChat through mobile devices. With an account, a user
can send instant text, voice, and video messages to their friends
via group chat or one-to-one chat, as well as publish posts. We

Table 1: Registration attributes.

Attribute Example
IP ***.***.***.***

Phone Number +86-157-7944-xxxx
Timestamp 1499270558
Nickname ***

WeChat Version 6.6.7
OS Version iOS 10.3.2

Hashed WiFi MAC a9d0cf034aa4e113e8ca27e9110928c7
Hashed Device ID d5c027d91d1df579d6ad1bffbb638cee

obtained a user registration dataset from WeChat. The dataset was
collected in November, 2017. Specifically, the dataset includes 1.4M
registered accounts, consisting of roughly 0.77M benign accounts
and 0.65M Sybil accounts. The labels were obtained from WeChat’s
existing behavior-based Sybil detection system (this system pre-
dicts the labels months after these accounts were registered as it
requires sufficient account behavior) and user reports (users can
report others as Sybil in WeChat). The security team of WeChat
manually inspected some randomly sampled accounts and found
that the accuracy is more than 95%. We acknowledge that 95% ac-
curacy instead of 100% may introduce bias to our measurement
results. However, we believe such bias should be small and our
measurement results are representative.

Registration attributes: Each registration has a list of attributes,
which are shown in Table 1. The Phone Number is the number a
user used to register an account. Each number can only register one
account and can be used as account ID. In China, a phone number is
in the format +86-xxx-xxxx-xxxx, where the first two digits +86 is
the country code of China, the next three digits represent a mobile
phone service provider (e.g., China Unicom), the middle four digits
represent an area code (e.g., mobile phone numbers obtained from
Beijing have specific area codes), and the last four digits indicate a
customer code. A user can also specify a Nickname, which could
be a combination of digits, English characters, Chinese characters,
and other special characters. The WeChat Version (e.g., 6.6.7) and
OS Version (e.g., iOS 10.3.2) indicate the WeChat app and mobile
operating system that were used to register an account, respectively.
WiFi MAC is the MAC address of the Access Point the phone used
to register an account, while Device ID is the IMEI/Adsource of the
phone used to register an account.

Ethical and privacy considerations: The collected data are al-
ready specified in WeChat’s privacy policy, which a user consents
before using WeChat. Moreover, to protect user privacy, WeChat
has anonymized the attributes to the extent such that they are just
enough for our analysis. Specifically, an IP address has four seg-
ments and each segment is hashed individually. The last four digits
(i.e., customer code) of a phone number are removed. All datasets
were stored on WeChat’s servers and we accessed them through
an internship program.

(a) (b)

Figure 1: (a) The number of 24-bit IP prefixes that registered
a given number of accounts. (b) The fraction of Sybils among
the accounts registered from the 24-bit IP prefixes that reg-
istered a given number of accounts.

3.2 Synchronization
We find that Sybil accounts exhibit common registration patterns,
e.g., they are likely to use the same IPs, phone numbers from the
same areas, same devices (identified by their device IDs), and nick-
names with the same patterns. We suspect the reason is that an
attacker has limited resource (i.e., IPs, phone numbers, and devices)
and uses certain scripts to automate registrations of Sybil accounts.
With a little abuse of terminology, we call these synchronized regis-
tration patterns.2 Next, we describe our measurement results.
IP: WeChat currently only supports registrations from IPv4. An
IPv4 address has four segments. We treat the first three segments
(i.e., the first 24 bits) as a local network identifier. We acknowledge
that, in some scenarios (e.g., CIDR is used), the first three segments
may not represent a local network. Nevertheless, we find that us-
ing the first three segments to represent an IP is useful for Sybil
detection. Therefore, if two IPs have the same 24-bit prefix, then we
view them as the same. In total, we have 264,830 24-bit IP prefixes
in our dataset. For each 24-bit IP prefix, we group together the
benign (or Sybil) accounts that were registered using the IP prefix.
Therefore, the size of a group indicates the number of benign (or
Sybil) accounts registered from the corresponding 24-bit IP prefix.
Figure 1(a) shows the number of IP prefixes that registered a given
number of benign (or Sybil) accounts. We observe power-law phe-
nomena for both benign and Sybil registrations, i.e., a majority of
IP prefixes registered a small number of accounts, while a small
number of IP prefixes registered a large number of accounts. For
instance, 34.5% and 15.5% of IP prefixes registered 80% of benign
and Sybil accounts, respectively.

Moreover, Sybil accounts aremore likely to be registered from the
same IP prefixes. In particular, the IP prefixes that registered a large
number of Sybil accounts are much more than those that registered
a large number of benign accounts, i.e., the curve corresponding to
Sybil is above the curve corresponding to Benign at the tail part in
Figure 1(a). Figure 1(b) further shows the fraction of Sybils among
the accounts registered from the IP prefixes that registered a given
number of accounts. For instance, when the x-axis is 0-1, we find
all the IP prefixes that registered 0-500 accounts, and the y-axis is
the fraction of Sybils among these accounts. We observe that, when

2Synchronization typically indicates time synchronization.

(a) (b)

Figure 2: (a) The number of phone number prefixes that reg-
istered a given number of accounts. (b) The fraction of Sybils
among the accounts registered from the phone number pre-
fixes that registered a given number of accounts.

an IP prefix registered a small number of accounts (e.g., 0-500), it is
hard to tell whether these accounts are Sybils or not solely based
on the fact that they share IP prefix. However, when a large number
(e.g., >2,500) of accounts were registered from the same IP prefix,
these accounts are more likely to be Sybils.
Phone number: Each phone number can register one account and
an attacker could use phone numbers from a certain phone service
provider and a certain geographical area to register Sybils. Recall
that a phone number except the last four digits indicate a phone
service provider and an area code. Therefore, we study the prefix
of a phone number with the last four digits removed. Like IP pre-
fix, Figure 2(a) shows the number of phone number prefixes that
registered a given number of accounts, while Figure 2(b) shows the
fraction of Sybils among the accounts registered from the phone
number prefixes that registered a given number of accounts. Like
IP prefix, we observe similar synchronization patterns for phone
number prefix. In particular, a large number of phone number pre-
fixes registered a small number of accounts, while a small number
of phone number prefixes registered a large number of accounts
(power-law phenomena); Sybils are likely to be registered in clus-
ters using the same phone number prefixes; and if a phone number
prefix registered a large number of accounts (e.g., ≥30), then those
accounts are very likely to be Sybils.
Device: Similar to IP prefix and phone number prefix, Figure 3(a)
shows the number of devices (identified by IMEI or Adsource) that
registered a given number of accounts, while Figure 3(b) shows the
fraction of Sybils among the accounts registered from the devices
that registered a given number of accounts. We observe similar
synchronization patterns: Sybils are likely to be registered from the
same devices. An attacker could spoof a device ID, e.g., by modify-
ing the Android application framework. Our results demonstrate
that attackers have not performed such device spoofing for the
registrations of a large amount of Sybil accounts.
Nickname: Here, we show some qualitative results on nickname
pattern analysis. In Section 4.2, wewill use natural language process-
ing tools to extract patterns and features from nicknames. Table 2
shows three nickname patterns, an example for each pattern, and
the fraction of Sybils among the accounts whose nicknames follow
a particular pattern. Note that the nicknames in our dataset are
anonymized at the character level by WeChat and we could not

(a) (b)

Figure 3: (a) The number of devices that registered a given
number of accounts. (b) The fraction of Sybils among the
accounts registered from the devices that registered a given
number of accounts.

Table 2: Nickname pattern.

Pattern Example Fraction of Sybils
Chinese+Digits 李四2416 32.2%

Lowercase+Digits cii2133, vqu7868 94.4%
Digits+Lowercase+Digits 07740922a179 95.0%

understand the semantic patterns in the nicknames. The results in
Table 2 were obtained with the help of WeChat security engineers.
We observe that some nickname patterns (e.g., Chinese+Digits)
are more likely to be used by benign accounts, while some nick-
name patterns (e.g., Lowercase+Digits, Digits+Lowercase+Digits)
are more likely to be used by Sybils. We suspect the reason why
Sybils share nickname patterns is that they were registered by
scripts, which generate nicknames following certain patterns.
Implications: On one hand, our measurement results indicate that
the synchronization patterns are useful to detect Sybils. For instance,
we could design a simple method (we will show more details in
our experiments in Section 5) to detect Sybil accounts based on
the popularity of IP, phone number, or device. Specifically, given
all registrations on a single day, we can predict all the accounts
registered from an IP prefix (or phone number prefix or device),
which registered more than a certain threshold of accounts, to be
Sybils. For instance, we can predict all the accounts registered from
a phone number prefix that registered more than 30 accounts to be
Sybils. Such simple detector achieves a precision of almost 100%
in our dataset. On the other hand, our results also indicate that
synchronization of a single attribute (e.g., IP, phone number, or
device) is insufficient to detect Sybils. For instance, the detector
based on phone number popularity achieves a recall of only 59%,
i.e., 41% of Sybils cannot be detected. Therefore, we will combine
1) synchronization patterns of multiple attributes and 2) anomaly
patterns, which we will discuss next.

3.3 Anomaly
Two registrations are synchronized if they share the same IP pre-
fix, phone number prefix, device, or nickname pattern. Our mea-
surement results in the above section demonstrate that Sybils are

(a) Benign (b) Sybil

Figure 4: The number of accounts registered from an IP pre-
fix in each 15-minutes time interval within a day. Each verti-
cal line represents accounts registered from a certain 24-bit
IP prefix, and the size of a dot represents the number of ac-
counts registered in a particular 15-minutes time interval.

likely to exhibit synchronization patterns. However, synchroniza-
tion alone is insufficient to distinguish between benign accounts
and Sybils. For instance, suppose two accounts are registered from
the same IP prefix that registered a small number of accounts, e.g.,
0-500; whether the two accounts are Sybils or not further depends
on the risk of the shared IP prefix. In other words, if two accounts
are registered from the same IP prefix that is also abnormal, then
the two accounts are more likely to be Sybils. Suppose two accounts
share a nickname pattern. Table 2 shows that both benign accounts
and Sybils share nickname patterns. Therefore, whether the two
accounts are Sybils or not further depends on the risk of the shared
nickname pattern. Synchronization characterizes whether two ac-
counts share certain registration attributes, while anomaly further
characterizes the risk of the shared attributes. Next, we show results
on several example anomaly patterns.
Registration time: Figure 4 shows the distribution of accounts
registered from the same IP prefix with respect to time. Each graph
shows results for 20 example IP prefixes. We divide the 24 hours
in a day into 96 15-minutes intervals. Each vertical line in a graph
shows the accounts registered from a certain IP prefix in these
96 time intervals, where the size of a dot is proportional to the
number of accounts registered in the corresponding time interval.
We observe that when a large amount of benign accounts were
registered from the same IP prefix, they were evenly registered in
the daytime and a small number of them were registered during
midnight. However, when many Sybils were registered from the
same IP prefix, they were registered in clusters and during late
night. Note that we normalized the times with respect to their time
zones determined by their IPs.
Geolocation inconsistency: An IP address can be mapped to a
geolocation, and a phone number can also be mapped to a geoloca-
tion using its area code. We find that 65% of Sybils have different
IP-based location and phone-number-based location at the time of
registration. A possible reason is that attackers use remote com-
promised machines or cloud servers and phone numbers obtained
from local areas to register Sybils. Another possible reason is that
attackers buy phone numbers from other areas [36] and use local
machines to register Sybils. Moreover, a user can specify its location
(e.g., country) as a part of its account profile when registering an

 Graph Building

Detected
Sybils

Registration
Data

Feature Extraction

Sychronization
Based Features

Anomaly Based
Features

Ianus

Constructing
Registration Graph

Sybil Detection

Weighted Node
Degree

Community
Detection

Learning Sync-
Anomaly Scores

Figure 5: Overview of Ianus

account. We find that 96% of Sybils specified countries that are
inconsistent with the IP-based ones. A possible reason is that these
Sybils aim to target benign users from particular locations. We note
that such geolocation inconsistency was also observed in dating
fraud [15].
Rare and outdated WeChat and OS versions:We observe that
accounts registered from rare and outdatedWeChat andOS versions
are more likely to be Sybils. We say a WeChat or OS version is rare
if the number of accounts registered from it is small (i.e., less than
3%). For instance, a certain Android version only registered 2K
accounts in our dataset and 96.5% of them are Sybils. Likewise,
99% of accounts registered from iOS 8 (an outdated OS version)
are Sybils. Possible reasons include that attackers use old devices
with outdated WeChat and OS versions to register Sybils and that
attackers automatically register Sybils using scripts and have not
updated their WeChat and OS versions in the scripts.

4 DESIGN OF IANUS
4.1 Overview
Ianus aims to detect Sybils using their registration data. Ianus con-
sists of three key components, i.e., feature extraction, graph building,
and Sybil detection. Figure 5 shows the three components. In feature
extraction, we extract features for a pair of registrations. Inspired
by our measurements on synchronization and anomaly patterns in
the previous section, we extract synchronization based features and
anomaly based features. Synchronization based features characterize
whether a pair of registrations have the same registration attributes
(e.g., IP prefix, phone number prefix, device ID), while anomaly
based features further characterize whether these attributes are
abnormal.

The graph building component aims to construct a weighted
graph to integrate the heterogeneous synchronization and anomaly
patterns. We call the graph registration graph. A node in the graph is
a registration. We aim to build a registration graph such that Sybils
are densely connected with each other by edges with large weights,
while benign accounts are sparsely connected with each other
and Sybils. To build such a graph, we first learn a sync-anomaly
score for each pair of registrations using a logistic regression classi-
fier. We use the sync-anomaly score to quantify the synchronized
and anomaly patterns between two registrations. A higher sync-
anomaly score means that the two registrations are more likely to
be Sybils. Then, we create an edge between two registrations if their

sync-anomaly score is large enough when building the registration
graph.

The Sybil detection component aims to detect Sybils via analyz-
ing the structure of the registration graph. For instance, community
detection is a natural choice to detect Sybils since Sybils are densely
connected in our registration graph but benign accounts are not.
Moreover, we propose a simple weighted node degree based method
to detect Sybils in the registration graph, which achieves similar
accuracies with the community detection method but is much faster.
In our registration graph, a node that has a higher weighted degree
is more likely to be Sybil. Therefore, we predict a node to be Sybil
if its weighted degree is larger than a threshold, which is learnt
using machine learning techniques.

4.2 Extracting Features
We define features for a pair of registrations. Specifically, our mea-
surement results in Section 3 indicate that Sybils demonstrate both
synchronized and abnormal registration patterns. Therefore, we ex-
tract two categories of features, i.e., synchronization based features
and anomaly based features. Synchronization based features charac-
terize what attributes (e.g., IP, phone number, device) are shared by
the two registrations, while anomaly based features further char-
acterize whether the shared attributes or the two registrations are
abnormal. All of our features are binary.

4.2.1 Synchronization Based Features. Table 3 shows our synchro-
nization based features. We add a prefix “S-” to each feature to
indicate that they are synchronization based features. Most of these
features are self-explained. For instance, the feature S-IP24 is 1 if
and only if the two registrations use IPs with the same 24-bit prefix.
S-PN is 1 if and only if the two registrations use the same phone
number prefix, where the last four digits of a phone number are
removed. Recall that, in China, a phone number prefix without the
last four digits indicates the phone service provider and location
where the number is obtained from. Therefore, using the same
phone number prefix could indicate that the two accounts were
registered in clusters by an attacker. The nickname based features
(S-NP1 and S-NP2) are the most challenging features to compute
because users can specify their nicknames arbitrarily. We leverage
natural language processing techniques to extract patterns from
nicknames and compute these features. The feature S-IP32 was also
used by EvilCohort [34]. S-IP24, S-NP1, and S-NP2 were used by

Table 3: Synchronization based features. All features are bi-
nary. If two registrations have the same value for the cor-
responding attribute, the corresponding feature is 1, other-
wise the feature is 0.

Feature Description (Both registrations...)
S-IP24 use the same 24-bit IP prefix
S-IP32 use the same IP address
S-PN use the same phone number prefix
S-OS use the same OS version

S-WeChat use the same WeChat version
S-MAC use the same WiFi MAC address
S-Device use the same device
S-NP1 have the same syntactic nickname pattern
S-NP2 have the same semantic nickname pattern

Thomas et al. [38]. Next, we discuss details on extracting nickname
based features.
Nickname based features:We extract a syntactic pattern and a se-
mantic pattern from a nickname. The features S-NP1 and S-NP2 are
based on the syntactic and semantic patterns, respectively. We de-
fine a syntactic pattern as a string of characters from the vocabulary
V = {C,L,U ,D, · · · }, where C represents Chinese characters, L and
U represent lowercase and uppercase English letters, respectively,
D represents digits, while each punctuation and special character
(e.g., ;, ., +) is still a character in the vocabulary. For instance, the
syntactic pattern of the nickname李雷abAB12++ is CCLLUUDD++.
The feature S-NP1 is 1 for a pair of registrations if their nicknames
have the same syntactic pattern.

The syntactic pattern considers the structure of a nickname but
ignores its semantics. For example, a random Chinese string and a
Chinese name could have the same syntactic pattern but different
semantics. Two accounts are more synchronized if their nicknames
are both random Chinese strings, as random Chinese strings may
be automatically generated by attackers’ scripts. Therefore, we
further extract semantic patterns from nicknames. Specifically, we
define several semantic patterns including Chinese phrase, random
Chinese string, English phrase, Chinese pinyin, and random English
string. We extract the semantic patterns Chinese phrase and random
Chinese string for nicknames that use only Chinese characters, and
we extract the semantic patterns English phrase, Chinese pinyin,
and random English string for nicknames that use only English
letters. Chinese pinyin is a way to represent Chinese characters
using English letters.

To extract these semantic patterns, we collected a large Chinese
corpus consisting of hundreds of thousands of articles fromWeChat
subscription and a large English corpus including hundreds of thou-
sands of English words and millions of Chinese pinyin. Then, we
trained n-gram models separately for Chinese sentences, English
sentences, and Chinese pinyin using the tools called srilm [32] and
Jieba (a tool to segment Chinese sentences) [1]. Finally, we use the
n-gram models to extract semantic patterns for nicknames. Specifi-
cally, if a nickname is Chinese string that has a large probability and

Table 4: Anomaly based features. These features are also bi-
nary. A feature is 1 if the corresponding attribute of both
registrations is abnormal.

Feature Description (Both registrations...)
A-Location have different user-specified and IP-based countries

A-OS use rare or old OS versions
A-WeChat use rare or old WeChat versions
A-Time were registered at late night, i.e., 2am–5am
A-NP have the same nickname pattern that is abnormal

a small perplexity under the n-gram model (we use the thresholds
10−15 and 10,000 for the probability and perplexity, respectively),
then we say the nickname is a Chinese phrase, otherwise it is a
random Chinese string. Likewise, an English nickname is English
phrase or Chinese pinyin if it has a large probability and a small
perplexity under the corresponding n-grammodels, otherwise it is a
random English string. The feature S-NP2 for a pair of registrations
is 1 if their nicknames have the same semantic pattern.

4.2.2 Anomaly Based Features. We also extract anomaly based
features for a pair of registrations. These anomaly based features
characterize whether a pair of registrations both have abnormal
attributes. Intuitively, anomaly can be used to characterize the at-
tributes of each individual registration. Therefore, anomaly based
features can be extracted for each individual registration, and the
features for a pair of registrations can be concatenated as features
for them. More formally, we could extract anomaly based features
FA for registration A. Then, for a pair of registrations A and B,
we can concatenate their features (FA,FB) as the unified features
for them. However, such concatenated feature is significantly in-
fluenced by the ordering of the two registrations (i.e., (FA,FB) vs.
(FB ,FA)), and there is no canonical ordering for a pair of registra-
tions. As a result, it is much harder to learn the sync-anomaly score
for a pair of registrations when building the registration graph.
Therefore, we jointly consider both registrations when extracting
anomaly based features, which does not depend on the ordering of
the two registrations.

Table 4 shows our anomaly based binary features. We add a
prefix “A-” to them to indicate that they are anomaly based features.
Next, we describe details of these features.
Geolocation inconsistency (A-Location): In WeChat, a user can
arbitrarily specify its location, e.g., country, in its profile. This loca-
tion information will be displayed to the user’s friends. Moreover,
when a user A sends a friend request to another user B, user B can
view some basic information (including location) in user A’s profile.
Therefore, some Sybils specify their locations as a particular loca-
tion with a goal to target users in that location, no matter where
the Sybils were really registered from. Note that we can use IP
address to determine the location where an account was registered
from. An account has geolocation inconsistency if its user-specified
location and IP-based location are different. Since our anomaly
based features characterize the abnormal patterns shared by a pair
of registrations, we define a binary feature A-Location for a pair
of registrations, which is 1 if both registrations have geolocation

inconsistency. We consider location at the level of country in our
experiments.
Rare and outdated OS and WeChat versions (A-OS and A-
WeChat): We design two features for OS and WeChat versions,
respectively. We compute the fraction of registrations that use a
particular OS version. If a small fraction of registrations use an OS
version, we say the OS version is rare. In our experiments, we say
an OS version is rare if less than 5% of registrations use it. More-
over, we manually label some OS versions as outdated, according to
domain knowledge. For instance, we label the iOS versions lower
than version 8 as outdated. We view a registration as abnormal if it
uses a rare or outdated OS version, and the binary feature A-OS for
a pair of registrations is 1 if both registrations use rare or outdated
OS versions. Similarly, we define a binary feature A-WeChat for
a pair of registrations, which is 1 if both registrations use rare or
outdated WeChat versions.
Registration time (A-Time):Ourmeasurement results in Figure 4
show that Sybil accounts were registered even at late night, while
benign accounts are mainly registered at daytime. Therefore, we
design a binary feature A-Time, which is 1 if and only if both
accounts were registered at late night, i.e., between 2am and 5am
in our work.
Nickname pattern (A-NP): As we discussed in Section 4.2.1, we
extract syntactic and semantic nickname patterns using natural lan-
guage processing techniques. Example semantic nickname patterns
include Chinese phrase, random Chinese string, English phrase,
Chinese pinyin, and random English string. Intuitively, random
Chinese strings (e.g.,鲍技坦痹) and random English strings (e.g.,
nzadnhen) are rarely used by normal users since they are not mean-
ingful. Therefore, we treat these as abnormal nickname patterns.
If two registrations share a nickname pattern and the nickname
pattern is abnormal, then their binary feature A-NP is 1.

4.3 Building a Registration Graph
We aim to construct a weighted graph to represent the relationships
between accounts, where a node is an account, Sybils are more
likely to be connected with each other by edges with large weights,
and benign accounts are more likely to be sparsely connected. We
call this graph registration graph since it is built using registration
information. We first leverage machine learning techniques to learn
a score for each pair of registrations using their feature vector.
A larger score means that the pair of registrations share more
(abnormal) attributes and are more likely to be Sybils. We call the
score sync-anomaly score. Then, we construct a registration graph
based on the sync-anomaly scores.

4.3.1 Learning Sync-anomaly Score. We derive a sync-anomaly
score for a pair of registrations to quantify their synchronization
and anomaly patterns. Our goal is to compute sync-anomaly scores
such that a pair of registrations have a large sync-anomaly score if
they both are Sybils but a small sync-anomaly score if they both
are benign. A key challenge to compute such scores is that different
synchronization based features and anomaly based features could
have different influences on the scores.

To address the challenge, we leverage supervised machine learn-
ing to automatically learn the weights of different features using

historical data. Specifically, we construct a training dataset using
historical data, which includes 1) a set of registrations and 2) their
labels (i.e., benign or Sybil). Given the training dataset, we compute
the features for each pair of registrations. Moreover, we derive a
label for each pair of registrations, where the label Positive means
that both registrations are Sybils and the label Negative means
that both registrations are benign. Given the features and labels for
each pair of registrations in the training dataset, we learn a logistic
regression classifier and use its output as a sync-anomaly score.

Assigning labels for pairs of registrations: Given a training
dataset, we first compute the feature vector for each pair of regis-
trations. Recall that all our features are binary. The labels of a pair
of registrations can be (0, 0), (0, 1), (1, 0), or (1, 1), where 0 and 1
represent benign and Sybil, respectively. A naive method to derive
a label (Positive or Negative) for a pair of registrations is simply to
use the labels of the two individual registrations. Specifically, a pair
of registrations has a Positive label if both of them are Sybils and
a Negative label if both of them are benign. However, such naive
method could assign inconsistent labels to the same feature vector.
Specifically, two pairs of registrations could have the same feature
vector but are assigned different labels, e.g., due to randomness
in features and inaccurate labels for individual registrations. Such
inconsistent labels make it much harder (if possible) to learn the
sync-anomaly scores using supervised machine learning.

Therefore, we assign a label to a binary feature vector via consid-
ering all pairs of registrations in the training dataset. For instance,
a feature vector has a Positive label if a majority of pairs of reg-
istrations that have this feature vector are Sybils. However, such
method faces another challenge, i.e., some feature vectors only ap-
pear in a very small number of pairs of registrations. To address
the challenge, we consider features individually in a feature vector.
Specifically, suppose we have a feature vector fa . We denote by
S (fa) and T (fa) the set of pairs of Sybils and the set of all pairs of
registrations whose feature vector is fa . We call S (fa) and T (fa)
Sybil support and support of the feature vector fa , respectively. For
any other feature vector fb , if the features that are 1 in Fa are also 1
in fb (i.e., feature vector fb includes fa), then we expand the Sybil
support and support of feature vector fa to include those of fb , i.e.,
S (fa) = S (fa) ∪ S (fb) and T (fa) = T (fa) ∪T (fb).

Finally, we compute a Sybil support ratio of feature vector fa
as |S (fa) |/|T (fa) |. If the Sybil support ratio of a feature vector is
larger than a threshold, then we assign a Positive label to the feature
vector, otherwise the feature vector has a Negative label. We choose
a large threshold (i.e., 0.98) to enforce a high standard of assigning
a Positive label for a pair of registrations. Recall that the labels for
individual registrations could be incorrect. Therefore, we select a
threshold of 0.98 instead of 1.00 to consider such label mistakes.
Our goal is to construct a graph in which Sybils are more likely to
be densely connected. This higher standard of assigning a Positive
label makes it harder for two accounts that are not both Sybils to be
connected in our graph. We study the impact of different thresholds
on Ianus in our experiments.

Learning sync-anomaly scores: After assigning labels to feature
vectors, we have a set of pairs (feature vector, label), which we use
to learn a sync-anomaly score for a pair of registrations. Specifically,
given the pairs (feature vector, label), we learn a binary logistic

regression classifier. The classifier takes a feature vector as an
input and outputs the probability that the feature vector has a
Positive label. After learning the logistic regression classifier using
a historical training dataset, we can apply the classifier to pairs of
registrations in the future. Specifically, for a pair of registrations,
we construct its feature vector and use the classifier to compute
the probability that the feature vector has a Positive label (i.e., both
registrations are Sybils). We treat such probability as the sync-
anomaly score for the pair of registrations. Our sync-anomaly score
ranges from 0 to 1.

Note that the learnt logistic regression classifier can also be used
to predict whether a pair of registrations are both Sybils or not.
Specifically, in a binary logistic regression classifier, an instance
is often predicted to be Positive if its probability of being Posi-
tive is larger than 0.5. Therefore, if a pair of registrations have a
sync-anomaly score larger than 0.5, the logistic regression classi-
fier predicts that both of them are Sybils. We will leverage such
classifier to prune edges when constructing the graph.

4.3.2 Constructing a Registration Graph. Our goal is to construct a
registration graph in which an account is a node, Sybils are more
likely to be densely connected with each other by edges with large
weights, and benign accounts aremore likely to be isolated. Towards
this goal, we create an edge between two accounts only if both
of them are predicted to be Sybils. Recall that a sync-anomaly
score that is larger than 0.5 means that the corresponding two
accounts are both predicted to be Sybils. Therefore, we create an
edge between two accounts only if their sync-anomaly score is
larger than 0.5, and we use the sync-anomaly score as the edge
weight.

A naive method to construct the registration graph is to compute
the sync-anomaly score for each pair of registrations/accounts and
create edges based on the sync-anomaly scores. However, such pair-
wise comparison is not scalable to a large number of registrations.
For instance, WeChat has millions of registrations in a week. If
we plan to detect Sybils on a weekly basis, we need to compute
over 1014 sync-anomaly scores to construct the registration graph,
which is very challenging if possible.

We propose techniques to address this computational challenge.
Our key intuition is that if a pair of registrations are both Sybils,
then they are very likely to have synchronized attributes, e.g., they
have the same IP prefix, phone number prefix, or device ID. There-
fore, for each registration attribute including the 24-bit IP prefix,
phone number prefix, and device ID, we divide registrations into
groups, where each group has the same value for the considered
registration attribute. Then, we only compute sync-anomaly scores
for pairs of registrations within the same group and create edges if
the sync-anomaly scores are larger than 0.5. Note that no matter
how many groups a pair of registrations appear in, we only need
to compute their sync-anomaly score once as the score does not
depend on how many groups the pair of registrations appear in.

4.4 Detecting Sybils
Community detection: In our constructed registration graph,
Sybils are densely connected with each other, while benign ac-
counts are sparsely connected with each other and Sybils. There-
fore, community detection is a natural choice to detect Sybils in the

Table 5: Dataset statistics.

#Sybils #Benign
Dataset I 779k 681k
Dataset II 647k 770k

registration graph. For instance, we can use the popular Louvain
method [5] to detect communities in the registration graph and
predict accounts in the communities whose sizes are larger than a
threshold to be Sybils. Note that the Louvain method was also used
by EvilCohort [34] to detect Sybils based on user logins.
Weighted node degree: We also propose a simple weighted node
degree based method to detect Sybils in our registration graph. The
weighted degree of a node is the sum of the weights of the node’s
edges. Intuitively, if a node is connected with more neighbors in
the registration graph, then the node is more likely to be Sybil.
This is because, for each neighbor of the node, the neighbor and
the node are predicted to be both Sybils using their sync-anomaly
score (i.e., edge weight), according to how we build the registration
graph. Therefore, a node with a larger weighted node degree could
be more likely to be Sybil.

We learn a binary classifier to detect Sybils based on theweighted
node degree. The classifier takes a node’s weighted degree as a fea-
ture input and predicts whether it is a Sybil or not. We find that
weighted node degrees span a very wide range of values, making
detection inaccurate. Therefore, we first normalize them using the
tanh function (output is in the interval (-1, 1)), which acts as feature
normalization. Specifically, for a node, we put the node’s weighted
degree into the tanh function, and we treat the function output as
the node’s normalized weighted degree. Given a training dataset
consisting of both labeled benign nodes and labeled Sybil nodes
(e.g., the training dataset we use to learn the sync-anomaly scores
in Section 4.3.1), we learn a binary classifier to detect Sybils. While
any binary classifier is applicable, we leverage an ensemble classi-
fier called EasyEnsemble [53] in our experiments to cope with the
imbalanced training dataset. Although our dataset is not highly im-
balanced (see Table 5), we found that EasyEnsemble still improves
detection accuracy upon simple classifiers like logistic regression.

We find that our weighted node degree based method and the
Louvain community detection method achieve close accuracies
(see our experimental results in Section 5), but our weighted node
degree based method is much faster than the Louvain method.

5 EVALUATION
We evaluate Ianus using datasets from WeChat. Moreover, WeChat
has deployed Ianus to detect Sybils in the wild. We first describe
our experimental setup. Then, we show detection results of Ianus
and its different variants using labeled datasets. Finally, we discuss
results of real-world deployment of Ianus at WeChat.

5.1 Experimental Setup
Datasets: We obtained two registration datasets collected in Octo-
ber and November, 2017 from WeChat. Dataset I includes registra-
tions in October, whileDataset II includes registrations in November
that is around one week after Dataset I. Our measurement results

in Section 3 were obtained using Dataset II. Table 5 shows the num-
ber of Sybils and benign accounts in each dataset. The labels were
provided by the security team of WeChat, who verified that the
labels have an accuracy larger than 95%. We will use these labels as
ground truth for evaluation. In particular, the labels were obtained
in the same way as we described in Section 3.1.

Training and testing: Our Ianus requires a training dataset to
learn the sync-anomaly scores in the graph building component
and learn the node degree based classifiers in the Sybil detection
component. To simulate real-world scenarios, we construct a train-
ing dataset from historical registrations and detect Sybils in future
registrations. In particular, we sample some registrations in Dataset
I and treat them as a training dataset, while testing Ianus on Dataset
II. We do not use all registrations in Dataset I as a training dataset
because it may be challenging to label all registrations from one
day in practice. Moreover, we explored the performance of Ianus
when different fractions of Dataset I are used as the training dataset
(results are shown in Figure 6(b)). We found that the performance
stabilizes after 10% of Dataset I are used as the training dataset.
Therefore, without otherwise mentioned, we sample 10% of regis-
trations in Dataset I as a training dataset.

Compared methods: We will evaluate different variants of Ianus
and compare Ianus with popularity-based methods.

Variants of Ianus. We consider the following variants:
• Ianus. Ianus uses both synchronization and anomaly based
features; Ianus uses logistic regression to learn sync-anomaly
scores; and Ianus uses the weighted node degree based method
to detect Sybils. Specifically, we used the logistic regression
implemented in Spark with the default parameter setting.
• Ianus-Sync and Ianus-Anomaly. Ianus-Sync and Ianus-An-
omaly use synchronization and anomaly based features, re-
spectively.
• Ianus-FS. Ianus-FS sums the binary features as the sync-anom-
aly score for a pair of registrations and creates an edge between
two registrations if the sync-anomaly score is larger than a
threshold. We will study the impact of different thresholds on
Ianus-FS.
• Ianus-CD. Ianus-CD uses the Louvain method to detect com-
munities in the registration graph and treats the communities
whose sizes are larger than a threshold as Sybils. We will study
different thresholds.
• Ianus-FS-CD. This variant combines Ianus-FS and Ianus-CD.
Specifically, Ianus-FS-CD sums the binary features as the sync-
anomaly scores in the graph building component and uses
community detection in the Sybil detection component. Note
that Ianus-FS-CD is an unsupervised method, as it does not
require a historical training dataset to learn the sync-anomaly
scores and the node degree based classifiers.

Popularity-based methods. Our measurement results in Sec-
tion 3.2 inspire us to design simple popularity based methods to
detect Sybils. Specifically, for an attribute value (e.g., phone num-
ber prefix, device ID), we compute its popularity as the number of
registrations in the testing dataset that use the attribute value. If an
attribute value has a popularity larger than a threshold, we predict
all registrations that have the attribute value to be Sybils.

(a) (b)

Figure 6: (a) Impact of the threshold of Sybil support ratio
on Ianus. (b) Impact of the training dataset size on Ianus.

Evaluation metrics:We use standard metrics in information re-
trieval, i.e., Precision, Recall, and F-Score, to evaluate performance.
Specifically, for a method, Precision is the fraction of its predicted
Sybils that are true Sybils in the testing dataset, Recall is the fraction
of true Sybils in the testing dataset that are predicted as Sybils by
the method, and F-Score is harmonic mean of Precision and Recall.

5.2 Results

Ianus is effective: On Dataset II, Ianus achieves Precision 92.4%,
Recall 80.2%, and F-Score 85.9%, respectively. A key reason why
Ianus is effective is that Sybils are densely connected in our con-
structed registration graph but benign accounts are not. Specifically,
in our registration graph, on average, a Sybil is connected with 280
other Sybils, a Sybil is connected with only 1.3 benign nodes, and a
benign node is connected with only 4.5 other benign nodes.

In our registration graph, we find that about 69% of false positives
are in communities (detected by the Louvain’s method) with sizes
less than 10 and 7% of false positives are in communities with sizes
between 10 and 100. The main reason of these false positives is that
their features such as phone number based and IP based ones are
similar to those of the Sybils. Moreover, we observed that 3% of
false positives are in communities with sizes between 100 and 1,000
and 21% of false positives are in communities with sizes between
1,000 and 10,000. The main reason of these false positives is that
they were registered from the same organizations and share similar
patterns.

Impact of the threshold of Sybil support ratio: Recall that
Ianus leverages a threshold of Sybil support ratio to assign labels
to feature vectors when learning the sync-anomaly scores. A natu-
ral question is how this threshold impacts the accuracy of Ianus.
Figure 6(a) shows the detection results of Ianus as a function of
the threshold. We observe that Precision increases and Recall de-
creases when the threshold increases from 0.95 to 0.98. The reason
is that a larger threshold makes it harder for two registrations to be
connected in our registration graph. On one hand, the connected
nodes in the registration graph are more likely to be Sybils when a
higher threshold is used, and thus Ianus can detect Sybils with a
higher Precision. On the other hand, more Sybils are disconnected
or sparsely connected in the registration graph, resulting in a lower
Recall. However, when the threshold increases from 0.98 to 0.99,

(a) (b)

Figure 7: a Comparing Ianus, Ianus-Sync, and Ianus-
Anomaly. (b) Weights of features in the logistic regression
classifier that learns the sync-anomaly scores.

Precision just increases slightly but Recall drops significantly, re-
sulting in a significant drop in F-Score. Therefore, we choose 0.98
as a threshold.
Impact of the training dataset size: Figure 6(b) shows the detec-
tion results of Ianus when different fractions of Dataset I are used
as the training dataset. When increasing the training dataset size
from 1% to 10%, the Precision increases and the Recall decreases.
This indicates that, with more training data, connected nodes in
the registration graph are more likely to be Sybils, but less nodes
are densely connected. However, the Precision and Recall start to
stabilize after 10% of training dataset size. This implies that Ianus
does not need a very large training dataset, and a relatively small
training dataset suffices. Ianus uses 10% training dataset size to
achieve a high Precision. WeChat may suspend the detected Sybils.
A higher Precision means that less benign users would need to
reactivate their suspended accounts via a particular procedure (e.g.,
calling the service center of WeChat).
Ianus vs. Ianus-Sync and Ianus-Anomaly: Figure 7(a) shows
the detection results of Ianus, Ianus-Sync, and Ianus-Anomaly. Ianus
outperforms Ianus-Sync and Ianus-Anomaly. Our results indicate
that combining synchronization based features and anomaly based
features does improve detection results. This is because synchro-
nization based features and anomaly based features are comple-
mentary to each other. Specifically, synchronization based features
characterize whether two accounts share common registration at-
tributes, while anomaly based features further characterize whether
two accounts share abnormal registration attributes. We note that
Ianus-Anomaly achieves a high Precision but a very low Recall.
This is because a small number of Sybils have significant abnormal
registration patterns, which distinguish them with other Sybils and
benign accounts; and Ianus-Anomaly can only detect these Sybils.
Feature weights: Figure 7(b) shows the weights of features in the
logistic regression classifier that we use to learn the sync-anomaly
scores. All features have positive weights, which means that all
features have positive impact on the sync-anomaly scores and sub-
sequently on the overall performance of Ianus. When Ianus is de-
ployed and known by attackers, they may adjust their strategies
to evade Ianus, e.g., by adjusting registration features or providing
fake ones. Indeed, some of our features can be spoofed by attack-
ers with low costs. For instance, an attacker could modify the OS

version based features (S-OS, A-OS), the WeChat version based fea-
tures (S-WeChat, A-WeChat), the device based feature (S-Device),
the WiFi MAC based feature (S-MAC), the registration time based
feature (A-Time), and the location based feature (A-Location) with a
low cost, because the attacker could use appropriate OS andWeChat
versions, spoof device ID and WiFi MAC, register during daytime,
as well as specify a location that is consistent with the IP-based
location (the attacker can still modify the specified location at any
time to target benign users in a particular area).

However, some features incur larger costs for attackers to modify.
For instance, to modify the IP based features (S-IP32, S-IP24) and the
phone number based feature (S-PN), an attacker needs more diverse
real IPs and phone numbers, which incurs larger economic costs.
Moreover, to spoof the nickname based features (S-NP1, S-NP2,
A-NP), an attacker needs sophisticated natural language process-
ing techniques. Some of these harder-to-evade features have large
weights, which shows the potential robustness of Ianus against
evasion. Indeed, if we only use the harder-to-evade features (i.e.,
S-IP32, S-IP24, S-PN, S-NP1, S-NP2, A-NP), Ianus achieves a Preci-
sion of 93.6% and a Recall of 45.1%, i.e., Ianus can still accurately
detect Sybils, though it can detect less Sybils.
Ianus vs. Ianus-FS: Ianus-FS uses feature sum to compute sync-
anomaly scores for pairs of registrations and creates an edge be-
tween two registrations if their sync-anomaly score is larger than
a threshold. We study different thresholds. Figure 8 shows the re-
sults of Ianus-FS with different thresholds. We observe that, as the
threshold increases, the Precision increases and Recall decreases.
The reason is that a higher threshold sets a higher standard for cre-
ating an edge between two registrations, which makes less nodes
connected (lower Recall) but the connected nodes more likely to be
Sybils (higher Precision) in the registration graph. Ianus-FS achieves
the largest F-Score when the threshold is 4, which is around 4%
lower than that of Ianus.
Ianus vs. Ianus-CD: Ianus-CD uses the Louvain method to detect
communities and predicts nodes in the communities whose sizes
are larger than a threshold as Sybils. Figure 9 shows the results of
Ianus-CD for different thresholds. Compared to Ianus, Ianus-CD
has a higher Precision, a lower Recall, and no larger F-Score. Ianus-
CD has the same F-Score with Ianus when the threshold is 15 or 30.
However, Ianus is much faster than Ianus-CD. Specifically, given
the registration graph, the Louvain method takes 40 minutes, while
our node degree based method takes only 10 minutes on the same
platform.
Ianus vs. Ianus-FS-CD: Ianus-FS-CD has two key thresholds, i.e.,
the threshold of feature sum to determine whether creating an
edge between two accounts and the threshold of community size
to determine which communities are Sybils. Figure 10 shows the
results of Ianus-FS-CD vs. the threshold of community size, where
the threshold of feature sum is set to be 4 according to the results
in Figure 8. Overall, Ianus-FS-CD achieves a lower F-Score than
Ianus. Specifically, the F-Score of Ianus-FS-CD is around 3.5% lower
than that of Ianus. This is because the logistic regression based
sync-anomaly scores outperform the feature sum based ones. We
also find that, when fixing the threshold of community size (e.g.,
30), the performance of Ianus-FS-CD vs. the threshold of feature
sum has similar patterns with those of Ianus-FS in Figure 8. For

(a) Precision (b) Recall (c) F-Score

Figure 8: Comparing Ianus with Ianus-FS.

(a) Precision (b) Recall (c) F-Score

Figure 9: Comparing Ianus with Ianus-CD.

(a) Precision (b) Recall (c) F-Score

Figure 10: Comparing Ianus with Ianus-FS-CD, where the threshold of feature sum is 4.

instance, Ianus-FS-CD also achieves the highest F-Score when the
threshold of feature sum is 4, which is still around 4% lower than
that of Ianus. For simplicity, we omit the results of Ianus-FS-CD
with respect to the threshold of feature sum.

Ianus vs. popularity-basedmethods:We compare three popularity-
based methods using IP prefix, phone number prefix, and device
ID. Such popularity-based methods are less effective for other reg-
istration attributes such as nickname patterns, and thus we omit
their results. If the number of registrations from a 24-bit IP prefix
(or phone number prefix or device ID) in the testing dataset is more
than a threshold, the popularity-based method predicts all these

registrations to be Sybils. Figure 11, 12, and 13 show the results of
popularity-based methods that use IP prefix, phone number prefix,
and device ID, respectively. We find that the IP popularity based
method is much less effective than the popularity-based methods
that use phone number and device ID with respect to Precision.
The reason is that a large amount of benign accounts are also regis-
tered from IPs with the same prefixes. As the popularity threshold
increases, the popularity-based methods that use phone number
prefix and device ID can have larger Precision than Ianus (Precision
can even reach 100%), but the Recall is much lower than Ianus with
such thresholds.

(a) Precision (b) Recall (c) F-Score

Figure 11: Comparing Ianus with a popularity-based method that uses 24-bit IP prefix.

(a) Precision (b) Recall (c) F-Score

Figure 12: Comparing Ianus with a popularity-based method that uses phone number prefix.

(a) Precision (b) Recall (c) F-Score

Figure 13: Comparing Ianus with a popularity-based method that uses device ID.

Table 6: Combining Ianus and popularity-based methods.

Precision Recall F-Score
Phone-Device 98.0% 68.8% 80.8%

Ianus 92.4% 80.2% 85.9%
Ianus + Phone-Device 92.2% 82.6% 87.1%

We can also combine phone number prefix and device ID as a
unified popularity-based method. Specifically, we take the union of
the predicted Sybils of phone number and device based methods as

the final predicted Sybils of the unified popularity-based method.
We denote the unified method as Phone-Device based method. More-
over, we can further combine Ianus with the Phone-Device based
method, i.e., we take the union of their predicted Sybils as the pre-
dicted Sybils. Table 6 shows the detection results of Phone-Device,
Ianus, and Ianus + Phone-Device, where the popularity thresholds
of phone number prefix and device are chosen as 21 and 4, re-
spectively. We choose these thresholds such that individual phone
number and device based method achieves a very high Precision
and a relatively large Recall.

Table 7: Number of accounts that Ianus predicts to be Sybils
per million new registered accounts every day in a certain
week after being deployed at WeChat. The Precision is 96%
on average.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
#Detected Sybils 434K 477K 454K 372K 377K 327K 295K

We find that combining Ianus with the popularity-based methods
can detect more Sybils (i.e., higher Recall) without sacrificing the
Precision of Ianus. On one hand, our results show that some Sybils
can be detected by both Ianus and the popularity-based methods.
On the other hand, Ianus and the popularity-based methods are
complementary to each other, i.e., some Sybils detected by Ianus
are not detected by the popularity-based methods and vice versa.

5.3 Real-world Deployment at WeChat
Implementation of Ianus:We implemented Ianus on Spark with
scala and Python.We use the Jieba and n-gram training tool srilm [32]
to analyze nickname patterns. Moreover, we leverage GraphX and
MLlib on Spark to process graphs and implement machine learning
classifiers.
Detection results: WeChat deploys Ianus to detect Sybils on a
daily basis. Specifically, on each day, WeChat uses Ianus to analyze
the accounts registered in the previous day and detect Sybils. Ianus
detects around 400K Sybils per million new registered accounts ev-
ery day in the wild. Table 7 shows the number of accounts that Ianus
predicts to be Sybils every day in a certain week in three months af-
ter we trained Ianus. TheWeChat security teammanually inspected
40K accounts sampled uniformly at random from the accounts reg-
istered during this period. Specifically, they inspected an account’s
public information such as profile picture, moments/posts, friend
invitations, etc.. The WeChat security team adopted a conservative
criteria when labeling an account as Sybil. In particular, an account
is labeled as Sybil if the account posts a large number of ads, sends
friend requests frequently, posts pornography content, etc. 51.1%
of the 40K accounts were labeled as Sybils and the remaining 48.9%
were labeled as benign. Ianus predicted 39.9% of the 40K accounts
to be Sybils. Moreover, Ianus achieves Precision 96% and Recall 75%.
WeChat runs Ianus alongside its other existing detection systems
and suspends the accounts that are predicted as Sybils by multiple
systems. Some benign accounts may also be incorrectly suspended.
However, users can apply to reactivate their suspended accounts
via a manual verification process. Overall, around 6% of suspended
accounts applied to unlock their accounts.

6 DISCUSSION AND LIMITATIONS
Evading Ianus: An attacker could evade the detection of Ianus
during account registration by manipulating features or generating
fake features that are used by Ianus. We acknowledge that some
of our features can be manipulated or faked with relatively low
costs. As we discussed in Section 5.2, an attacker could use new
and popular OS version and WeChat version, spoof device ID and
WiFi MAC, register during daytime instead of late night, as well
as specify a location that is consistent with the IP-based location.

However, it may take larger costs for an attacker to manipulate
the IP based features, phone number based features, and nickname
based features. Using only these harder-to-evade features, Ianus
still achieves a Precision of 93.6% and a Recall of 45.1%. Finally, we
note that an attacker may evade detection of Ianus by recruiting a
large number of benign users to register Sybils, which is known as
crowdturfing [24, 25, 31, 45, 46]. However, crowdturfing could be
detected by other methods, e.g., [57].
Detection coverage: Ianus obtains a Precision that ranges from
92% to 96% onWeChat. Therefore, Ianus can accurately detect Sybils.
However, the Recall achieved by Ianus is around 80% (using all fea-
tures) and around 45% (using harder-to-evade features). We suspect
the reason is that some Sybils are registered isolated or manually
without significant synchronization and/or anomaly patterns. To
address this limitation, Ianus can be used together with the methods
that leverage other types of data, e.g., content, behavior, and/or
social graphs, to enhance coverage (we will discuss more details on
these methods in Section 2).
Retraining: Sybils’ registration patterns may change over time.
Therefore, Ianusmay require retrainingwhen its accuracy decreases
significantly. Specifically, WeChat deploys multiple systems (e.g.,
Ianus and behavior-based) to detect Sybils and WeChat users can
also report Sybils. Based on the results of other detection systems
(e.g., behavior-based) and user reports, we can decide whether Ianus
requires retraining, e.g., if much more Sybils that are detected by
the behavior-based system or reported by users are suddenly not
detected by Ianus, then Ianus may require retraining.
Applicability of Ianus to other online social networks: Our
study focuses on detecting Sybils in WeChat, which has significant
and real-world impact as WeChat is a very popular online social
network with over 1 billion monthly active users. Moreover, some
of our features–such as the features based on IP, phone number,
timestamp, OS, and nickname–are applicable to other online social
networks (e.g., Facebook and Twitter), while the features based
on device ID, WiFi MAC, and “WeChat version” can be further
applied to other online social networks that are designed for mobile
devices. It would be an interesting future work to extend Ianus to
other online social networks.
Rate limiting registration: Sybils share synchronized registra-
tion patterns, e.g., they use the same IP addresses or devices. There-
fore, limiting the number of registrations per IP or device within
a given period of time (e.g., 1 hour) seems a naive method to pre-
vent Sybils. However, many benign accounts also use the same IP
addresses for registration. Therefore, such IP-based rate limiting
method will substantially influence benign users. Moreover, an
attacker can spoof device IDs to evade device-based rate limiting.

7 CONCLUSION AND FUTUREWORK
In this work, we find that Sybils have both synchronized and ab-
normal registration patterns using real-world labeled registration
datasets from WeChat. Synchronized registration patterns mean
that attackers use the IPs with the same prefixes, phone numbers
from the same areas, same devices, etc. to register Sybils, while
abnormal registration patterns mean that the shared attributes are
further abnormal for Sybils. Based on the measurement results,

we design Ianus to detect Sybils. In particular, Ianus extracts syn-
chronization and anomaly features for a pair of accounts, uses the
features to build a graph in which only Sybils are densely connected
with each other, and detects Sybils via analyzing the structure of
the graph. Our empirical evaluations on registration datasets from
WeChat show that Ianus can effectively detect Sybils. Moreover,
Ianus can detect a large amount of Sybils with a high precision
in the wild when being deployed at WeChat. Our study shows
that Sybils can be effectively detected using registration data. An
interesting future work is to further explore unsupervised Sybil
detection methods based on registration data.

ACKNOWLEDGMENTS
We would like to thank our shepherd Gianluca Stringhini, and the
anonymous reviewers for their insightful comments. This work was
supported in part by the National Key R&D Program of China under
Grant No. 2018YFB1800304, the National Natural Science Founda-
tion of China under Grant No. 61572278, 61822207, U1736209, and
U1636219, DARPAASED under Grant No. FA8650-18-2-7882, Center
for Long-Term Cybersecurity, and the BNRist Network and Soft-
ware Security Research Programunder Grant No. BNR2019TD01004.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not nec-
essarily reflect the views of MOST of China, the National Natural
Science Foundation of China, DARPA, the National Science Foun-
dation, and BNRist. Qi Li is the corresponding author of this paper.

REFERENCES
[1] 2018. Jieba. https://github.com/fxsjy/jieba.
[2] Lorenzo Alvisi, Allen Clement, Alessandro Epasto, Silvio Lattanzi, and Alessandro

Panconesi. 2013. SoK: The Evolution of Sybil Defense via Social Networks. In
IEEE S & P.

[3] Fabrıcio Benevenuto, Gabriel Magno, Tiago Rodrigues, and Virgılio Almeida.
2010. Detecting spammers on twitter. In CEAS.

[4] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. 2009. All Your Contacts Are Belong
to Us: Automated Identity Theft Attacks on Social Networks. InWWW.

[5] Vincent D Blondel, JeanLoup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
2008. Fast unfolding of communities in large networks. Journal of Statistical
Mechanics-Theory and Experiment 2008, 10 (2008), 155–168.

[6] Yazan Boshmaf, Dionysios Logothetis, Georgos Siganos, Jorge Lería, Jose Lorenzo,
Matei Ripeanu, and Konstantin Beznosov. 2015. Integro: Leveraging Victim
Prediction for Robust Fake Account Detection in OSNs.. In NDSS, Vol. 15. 8–11.

[7] Elie Bursztein, Jonathan Aigrain, Angelika Moscicki, and John C. Mitchell. 2014.
The end is nigh: Generic solving of text-based captchas. InWOOT.

[8] Elie Bursztein, Romain Beauxis, Hristo Paskov, Daniele Perito, Celine Fabry, and
John Mitchell. 2011. The Failure of Noise-Based Non-continuous Audio Captchas.
In IEEE Symposium on Security and Privacy. 19 – 31.

[9] Elie Bursztein, Matthieu Martin, and John C. Mitchell. 2011. Text-based
CAPTCHA Strengths and Weaknesses. In CCS. 125–138.

[10] Zhuhua Cai and Christopher Jermaine. 2012. The Latent Community Model for
Detecting Sybils in Social Networks. In NDSS.

[11] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. 2012. Aiding
the detection of fake accounts in large scale social online services. In NSDI.

[12] Qiang Cao, Xiaowei Yang, Jieqi Yu, and Christopher Palow. 2014. Uncovering
large groups of active malicious accounts in online social networks. In CCS.
477–488.

[13] G. Danezis and P. Mittal. 2009. SybilInfer: Detecting Sybil Nodes using Social
Networks. In NDSS.

[14] John R. Douceur. 2002. The Sybil Attack. In IPTPS.
[15] Matthew Edwards, Guillermo Suarez-Tangil, Claudia Peersman, Gianluca Stringh-

ini, Awais Rashid, and Monica Whitty. 2018. The Geography of Online Dating
Fraud. In ConPro.

[16] Manuel Egele, Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna.
2015. Towards Detecting Compromised Accounts on Social Networks. IEEE
Transactions on Dependable and Secure Computing 12, 2 (2015), 447–460.

[17] D. Freeman,M. Dürmuth, and B. Biggio. 2016. Who are you? A statistical approach
to measuring user authenticity. In NDSS.

[18] Hongyu Gao, Jun Hu, Christo Wilson, Zhichun Li, Yan Chen, and Ben Y Zhao.
2010. Detecting and characterizing social spam campaigns. In IMC. 35–47.

[19] Peng Gao, Binghui Wang, Neil Zhenqiang Gong, Sanjeev R Kulkarni, Kurt
Thomas, and Prateek Mittal. 2018. Sybilfuse: Combining local attributes with
global structure to perform robust sybil detection. In 2018 IEEE Conference on
Communications and Network Security (CNS). IEEE, 1–9.

[20] Neil Zhenqiang Gong, Mario Frank, and Prateek Mittal. 2014. Sybilbelief: A
semi-supervised learning approach for structure-based sybil detection. IEEE
Transactions on Information Forensics and Security 9, 6 (2014), 976–987.

[21] Hacking Financial Market. 2016. http://goo.gl/4AkWyt
[22] Shuang Hao, Alex Kantchelian, Brad Miller, Vern Paxson, and Nick Feamster.

2016. PREDATOR: Proactive Recognition and Elimination of Domain Abuse at
Time-Of-Registration. In CCS.

[23] Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. 2017. Random walk
based fake account detection in online social networks. In 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
IEEE, 273–284.

[24] Kyumin Lee, Prithivi Tamilarasan, and James Caverlee. 2013. Crowdturfers, Cam-
paigns, and Social Media: Tracking and Revealing Crowdsourced Manipulation
of Social Media. In ICWSM.

[25] Kyumin Lee, Steve Webb, and Hancheng Ge. 2014. The Dark Side of Micro-Task
Marketplaces: Characterizing Fiverr and Automatically Detecting Crowdturfing.
CoRR abs/1406.0574 (2014).

[26] Anna Leontjeva, Moises Goldszmidt, Yinglian Xie, Fang Yu, and Martín Abadi.
2013. Early security classification of skype users via machine learning. In AISec.

[27] Changchang Liu, Peng Gao, MatthewWright, and PrateekMittal. 2015. Exploiting
temporal dynamics in Sybil defenses. In CCS. 805–816.

[28] Abedelaziz Mohaisen, Nicholas Hopper, and Yongdae Kim. 2011. Keep your
friends close: Incorporating trust into social network-based Sybil defenses. In
IEEE INFOCOM.

[29] Abedelaziz Mohaisen, Aaram Yun, and Yongdae Kim. 2010. Measuring the mixing
time of social graphs. In IMC.

[30] Jonghyuk Song, Sangho Lee, and Jong Kim. 2011. Spam filtering in Twitter using
sender-receiver relationship. In RAID.

[31] Jonghyuk Song, Sangho Lee, and Jong Kim. 2015. CrowdTarget: Target-based
Detection of Crowdturfing in Online Social Networks. In CCS. 793–804.

[32] Andreas Stolcke. 2002. SRILM-an extensible languagemodeling toolkit. In Seventh
international conference on spoken language processing.

[33] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. 2010. Detecting
spammers on social networks. In ACSAC.

[34] Gianluca Stringhini, Pierre Mourlanne, Gregoire Jacob, Manuel Egele, Christo-
pher Kruegel, and Giovanni Vigna. 2015. Evilcohort: detecting communities of
malicious accounts on online services. In USENIX Security Symposium. 563–578.

[35] Kurt Thomas, Chris Grier, Justin Ma, Vern Paxson, and Dawn Song. 2011. Design
and evaluation of a real-time url spam filtering service. In IEEE S & P.

[36] Kurt Thomas, Danny Yuxing Huang, David Wang, Elie Bursztein, Chris Grier,
Thomas J. Holt, Christopher Kruegel, DamonMcCoy, Stefan Savage, and Giovanni
Vigna. 2015. Framing Dependencies Introduced by Underground Commoditiza-
tion. InWEIS.

[37] Kurt Thomas, Frank Li, Chris Grier, and Vern Paxson. 2014. Consequences of
connectivity: Characterizing account hijacking on twitter. In CCS. 489–500.

[38] Kurt Thomas, Damon Mccoy, Alek Kolcz, Alek Kolcz, and Vern Paxson. 2013.
Trafficking fraudulent accounts: the role of the underground market in Twitter
spam and abuse. In Usenix Security Symposium. 195–210.

[39] Bimal Viswanath, Ansley Post, Krishna P. Gummadi, and Alan Mislove. 2010. An
Analysis of Social Network-Based Sybil Defenses. In ACM SIGCOMM.

[40] Alex Hai Wang. 2010. Don’t Follow Me - Spam Detection in Twitter. In SECRYPT
2010.

[41] Binghui Wang, Neil Zhenqiang Gong, and Hao Fu. 2017. GANG: Detecting
fraudulent users in online social networks via guilt-by-association on directed
graphs. In 2017 IEEE International Conference on Data Mining (ICDM). IEEE,
465–474.

[42] BinghuiWang, Jinyuan Jia, and Neil Zhenqiang Gong. 2018. Graph-based security
and privacy analytics via collective classification with joint weight learning and
propagation. arXiv preprint arXiv:1812.01661 (2018).

[43] Binghui Wang, Le Zhang, and Neil Zhenqiang Gong. 2017. SybilSCAR: Sybil
detection in online social networks via local rule based propagation. In IEEE
INFOCOM 2017-IEEE Conference on Computer Communications. IEEE, 1–9.

[44] Gang Wang, Tristan Konolige, Christo Wilson, Xiao Wang, Haitao Zheng, and
Ben Y Zhao. 2013. You are how you click: Clickstream analysis for sybil detection.
In USENIX Security Symposium. 241–256.

[45] GangWang, TianyiWang, Haitao Zhang, and Ben Y. Zhao. 2014. Man vs. machine:
practical adversarial detection of malicious crowdsourcing workers. In USENIX
Security Symposium. 239–254.

[46] Gang Wang, Christo Wilson, Xiaohan Zhao, Yibo Zhu, Manish Mohanlal, Haitao
Zheng, and Ben Y. Zhao. 2012. Serf and turf: crowdturfing for fun and profit. In
WWW.

https://github.com/fxsjy/jieba
http://goo.gl/4AkWyt

[47] Zenghua Xia, Chang Liu, Neil Zhenqiang Gong, Qi Li, Yong Cui, and Dawn
Song. 2019. Characterizing and Detecting Malicious Accounts in Privacy-Centric
Mobile Social Networks: A Case Study. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM, 2012–
2022.

[48] Yinglian Xie, Fang Yu, Qifa Ke, Martín Abadi, Eliot Gillum, Krish Vitaldevaria,
Jason Walter, Junxian Huang, and Z. Morley Mao. 2012. Innocent by Association:
Early Recognition of Legitimate Users. In CCS.

[49] Chao Yang, Robert Harkreader, and Guofei Gu. 2011. Die Free or Live Hard?
Empirical Evaluation and New Design for Fighting Evolving Twitter Spammers.
In RAID.

[50] Chao Yang, Robert Harkreader, Jialong Zhang, Seungwon Shin, and Guofei Gu.
2012. Analyzing Spammer’s Social Networks for Fun and Profit. InWWW.

[51] Zhi Yang, Jilong Xue, Xiaoyong Yang, Xiao Wang, and Yafei Dai. 2016. VoteTrust:
Leveraging Friend Invitation Graph to Defend against Social Network Sybils.
IEEE Transactions on Dependable and Secure Computing 13, 4 (2016), 488–501.

[52] Guixin Ye, Zhanyong Tang, Dingyi Fang, Zhanxing Zhu, Yansong Feng, Pengfei
Xu, Xiaojiang Chen, and Zheng Wang. 2018. Yet another text captcha solver: A

generative adversarial network based approach. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security.

[53] Xu ying Liu, Jianxin Wu, Zhi hua Zhou, and Senior Member. 2009. Exploratory
undersampling for class-imbalance learning. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 39, 2 (2009).

[54] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. 2008. SybilLimit: A Near-Optimal
Social Network Defense against Sybil Attacks. In IEEE S & P.

[55] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. 2006. SybilGuard: Defending
Against Sybil Attacks via Social Networks. In SIGCOMM.

[56] Yao Zhao, Yinglian Xie, Fang Yu, Qifa Ke, Yuan Yu, Yan Chen, and Eliot Gillum.
2009. BotGraph: Large Scale Spamming Botnet Detection. In NSDI.

[57] Haizhong Zheng, Minhui Xue, Hao Lu, Shuang Hao, Haojin Zhu, Xiaohui Liang,
and Keith Ross. 2018. Smoke Screener or Straight Shooter: Detecting Elite Sybil
Attacks in User-Review Social Networks. In Proceedings of the Network and
Distributed System Security Symposium (NDSS).

[58] Yang Zhi, Christo Wilson, Tingting Gao, Tingting Gao, Ben Y. Zhao, and Yafei
Dai. 2011. Uncovering social network Sybils in the wild. Acm Transactions on
Knowledge Discovery from Data 8, 1 (2011), 2.

	Abstract
	1 Introduction
	2 Related Work
	3 Measuring Registration Patterns
	3.1 WeChat and Dataset
	3.2 Synchronization
	3.3 Anomaly

	4 Design of Ianus
	4.1 Overview
	4.2 Extracting Features
	4.3 Building a Registration Graph
	4.4 Detecting Sybils

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results
	5.3 Real-world Deployment at WeChat

	6 Discussion and Limitations
	7 Conclusion and Future Work
	References

