Indifference Surfaces for Lotteries

Needs "Graphics'ContourPlot3D"
Needs "Graphics'ImplicitPlot"

Consider an individual whose vonNeuman utility function is equal to the natural log of the payoff

\[u[w_] := \log[1 + w] \]

where \(w \) is measured in millions of dollars and let \((x,y,p)\) denote a lottery that pays $x with probability \(p \) and $y with probability \(1-p \). It follows that this person, let’s call him Nat Log, would be indifferent between a certain prize of $2 and any lottery \((x,y,p)\) for which

\[pu[x] + (1 - p) u[y] == u[2] \]

or, equivalently, for which

\[\text{indiff} = pu[x] + (1 - p) u[y] - u[2] \]

is equal to zero. This surface in \(x,y,p \) space can be plotted as follows where the origin is in the lower left hand corner, the \(x \) and \(y \) axes form the two edges of the bottom of the shallow box and the \(p \) axis forms the third (vertical) edge.

\[\text{ContourPlot3D} \left[\text{indiff}, \{x, 0, 4\}, \{y, 0, 4\}, \{p, 0, 1\}, \text{PlotPoints} \to 5, 5, \text{PlotLabel} \to \text{"Indifference Surface\"} \right]; \]

Representative cross-sections corresponding to different values of \(p \) are illustrated below.

\[\text{ImplicitPlot} \left[\text{Table} \left[\text{indiff} == 0/.p \to i, \{i, 0, 1.2\} \right], \{x, 0, 4\}, \{y, 0, 4\}, \text{PlotPoints} \to 50, \text{PlotStyle} \to \text{Table} \left[\text{Hue}[i], \{i, 0, 1.2\} \right] \right]; \]
Note that each is (weakly) convex. The horizontal line corresponds to $p=0$ - when there is no chance of winning x - and the vertical line to $p=1$ - when there is no chance of winning y. In between, the indifference curves "twist" clockwise as p increases from 0 to 1. Each of these curves is, of course, a cross-section of the three-dimensional indifference surface illustrated before.