A tightly coupled GIS and distributed hydrologic modeling framework

Gopal Bhatt*, Mukesh Kumar, Christopher J. Duffy

Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16802, USA

Article info

Article history:
Received 1 September 2013
Received in revised form 4 August 2014
Accepted 5 August 2014
Available online xxx

Keywords:
Distributed hydrologic model
GIS
PIHM
PIHMgis
Shared geodata model

Abstract

Distributed, physics-based hydrologic models require spatially explicit specification of parameters related to climate, geology, land-cover, soil, and topography. Extracting these parameters from national geodatabases requires intensive data processing. Furthermore, mapping these parameters to model mesh elements necessitates development of data access tools that can handle both spatial and temporal datasets. This paper presents an open-source, platform independent, tightly coupled GIS and distributed hydrologic modeling framework, PIHMgis (www.pihm.psu.edu), to improve model-data integration. Tight coupling is achieved through the development of an integrated user interface with an underlying shared geodata model, which improves data flow between the PIHMgis data processing components. The capability and effectiveness of the PIHMgis framework in providing functionalities for watershed delineation, domain decomposition, parameter assignment, simulation, visualization and analyses, is demonstrated through prototyping of a model simulation. The framework and the approach are applicable for watersheds of varied sizes, and offer a template for future GIS-Model integration efforts.

© 2014 Elsevier Ltd. All rights reserved.

Software availability

PIHMgis
Developers: Gopal Bhatt, Mukesh Kumar
Contact Address: Department of Civil & Environmental Engineering, 212 Sackett Building, University Park, PA 16802, USA
Email: gopal.bhatt@psu.edu, mukesh.kumar@duke.edu
Year First Available: 2006
Hardware Required: Desktop/Laptop with 2 GHz CPU, 2 GB RAM or more
Operating System Required: Macintosh OSX 10.4 or newer; Windows XP or newer; Linux
Libraries Required: SUNDIALS, Qt4, GDAL, SQLite, GEOS, GSL, Expat, and PostgreSQL
Availability: http://www.pihm.psu.edu
Cost: Free
Source Code: http://sourceforge.net/projects/pihmgis/
Program Language: C/C++

1. Introduction

Physics based, fully coupled distributed hydrologic models such as FIHM/PIHM3D (Kumar et al., 2009a), InHM (Vanderkwaak, 1999), MIKE-SHE (Abbott et al., 1986a,b; DHI, 2005), MODFLOW-SURFACT (McDonald and Harbaugh, 1988; Panday and Huyakorn, 2008), ParFlow (Kollet and Maxwell, 2006), Penn State Integrated Hydrologic Model (PIHM) (Qu and Duffy, 2007; Kumar 2009), PREVAH (Vivirol et al., 2009), WASH123D (Yeh and Huang, 2003), and WATFLOOD (Kouwen, 1988), simulate spatially explicit hydrologic response. These models also capture the heterogeneities in hydrogeologic and meteorological parameters within the watershed at finer spatial resolutions (Freeze and Harlan, 1969; Clark, 1998; Singh and Fiorentino, 1996; Entekhabi and Eagleson, 1989; Haverkamp et al., 2005; Pitman et al., 1990; Kollet and Maxwell, 2006; Kumar et al., 2009b), and have been demonstrated to enhance understanding and prediction of hydrologic processes (Rogersgaard, 1997; Boyle et al., 2003; Meixner et al., 2003; Kirchner, 2006; Shrestha and Rode, 2008; Lu et al., 2009; Kumar et al., 2013). One of the key challenges in application of distributed, physics based models is the lack of a framework for efficient prototyping of model simulations, evaluation of a-priori parameters, and for simulation, analysis and visualization (Goodchild, 1992; DeVanter and Feldman, 1993; Nyerges, 1993; McDonnell, 1996; Moore, 1996; Sui and Maggio, 1999; Duffy et al., 2011).

Distributed hydrologic models require assignment of watershed parameters related to geology, topography, land use, land cover, initial conditions, precipitation, and meteorological conditions, to all mesh elements within the model domain. Because of the inherent heterogeneity in geospatial data sets, the process of assigning parameters to large number of mesh elements is an error

* Corresponding author.
E-mail address: gopal.bhatt@psu.edu (G. Bhatt).

http://dx.doi.org/10.1016/j.envsoft.2014.08.003
1364-8152/© 2014 Elsevier Ltd. All rights reserved.
prone and a time intensive step. Traditionally, Geographic Information Systems (GISs) have been used for offline data processing, and post-simulation data analysis and visualization to support hydrologic models (DeVentier and Feldman, 1993; Maidment, 1996). However, faster prototyping and implementation of large-scale distributed hydrologic models necessitates more than pre-processing of geospatial data to generate model inputs. Distributed hydrologic models also require: generation of numerically efficient mesh network, definition of mesh network topology, derivation of watershed parameters from geospatial data, development of mapping functions for assigning both spatial and temporal data to mesh elements, and simulation, analyses and visualization of multiple hydrologic states. Satisfying these functions from within a GIS framework is challenging. The required effort is daunting, especially for GISs that are platform dependent with closed-source architectures and proprietary data structures, as they limit capabilities to add libraries and tools including those for transient watershed modeling.

Hence there is a strong motivation for coupling GISs and modeling systems to support and improve watershed research and decision-making (Maidment, 1993; Abel and Kilby, 1994; Kopp, 1996; Deckmyn et al., 1997). One of the several efforts in this context is from Smith and Maidment (1995) who developed Hydrologic Data Development System (HDDS), where ARC/INFO was used to generate parameters such as average sub-basin slopes, time of concentration, and SCS curve numbers, as inputs to the Texas Department of Transportation Hydrologic Program (THYSYS). Other examples include the Water Erosion Prediction Project (WEPP) interface on Geographic Resources Analysis Support System (GRASS) (Engel et al., 1993); the interface between ARC/INFO and the Hydrologic Engineering Center (HEC) modeling system (Hellweger and Maidment, 1999); the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) by Environmental Protection Agency (EPA) (Lahlou et al., 1998) for Soil and Water Assessment Tool (SWAT) (Luzio et al., 2002); and ArcGIS-SWAT as an extension to ArcMap (Olivera et al., 2006). Several interfaces have also been developed using Map Window, a non-proprietary desktop GIS for Microsoft Windows operating system. These include a model setup interface to SWAT, Map Window SWAT (MW-SWAT) (Leon, 2009), and version 4.0 of BASINS (Kinerson et al., 1999). In contrast to other attempts, development of Watershed Modeling System (WMS) (Nelson, 1997) was notable in the sense that it was a GIS developed with a dedicated purpose of conducting hydrological analyses.

In this paper, we present the development and structure of PIHMgis, an open-source, platform independent, extensible, tightly coupled GIS and distributed hydrologic modeling framework. PIHMgis establishes a formal strategy for prototyping a distributed hydrologic model simulation supported by national geospatial data products, simulation, analysis, and visualization of model results. Tight coupling between the GIS with the distributed hydrologic model was achieved by the development of an integrated user interface that uses a shared data model paradigm explained in Kumar et al. (2010). The underlying architecture that integrates the two systems and the procedural data flow between PIHMgis tools are also discussed. Advantages of the framework in terms of ease in prototyping of a physics based, fully coupled, distributed hydrologic model simulation using national geospatial data products is demonstrated using a case study application at Mahantango Creek Watershed (430 sq. km), in Pennsylvania, USA. It is noted that the scope of this paper is limited to demonstrating the capability and effectiveness with which PIHMgis framework enables setup, operation, and analysis of PIHM simulations. The model results shown in this paper were neither calibrated nor validated against field observations. Readers are referred to Yu et al. (2013) for details about an automated calibration strategy for PIHM simulations. The approach and structure of PIHMgis, especially its procedural and architectural framework, and the integration of relevant software libraries needed for data access, domain decomposition, and model simulation and visualization of the results, can be used in similar model and GIS integration efforts. Other models can also be integrated within the framework, after making relevant model-specific modifications.

2. Model-GIS coupling strategy

Model-GIS integration can be achieved using one of the three potential coupling strategies outlined in Table 1 (Goodchild et al., 1992; Sui and Maggio, 1999; Brimicombe, 2003). Here, we use a tight coupling approach to integrate PIHM in Quantum GIS (QGIS, http://www.qgis.org) framework. Tight coupling requires development of a shared data model and data access methods so that both GIS and model functions are able to access the shared data.
geodatabase. Shared data model concept has been previously used in ArcHydro (Maidment, 2002) to process and develop geospatial data that can be henceforth used in hydraulic and hydrologic analyses. The tight coupling strategy has the advantage of independent development of both GIS and the hydrologic model, as is the characteristic of loosely coupled systems, while also allowing shared geospatial data access between the GIS and hydrologic model. The two systems are linked through object oriented tools that mimic many of the advantages of an embedded system, such as providing access to model parameters.

2.1. GIS framework

QGIS was used as the GIS platform to perform GIS-Model integration. The selection of QGIS was based on multiple factors including: its compatibility with multiple operating systems (Microsoft Windows, Macintosh, Linux etc.), an uncluttered user friendly interface, easy plugin-development functionality, support of wide range of data formats, an active developer community to support state-of-the-art software and hardware developments, and finally its open-source structure that allow function calls to models, data and numerical libraries. QGIS has been developed in C++ and extensively uses Qt (http://trolltech.com/products/qt) and Python libraries. It is composed of four major subsystems: (1) input/capture; (2) management; (3) manipulation/analysis; and (4) output/display. The data input/capture subsystem, provides operational functions for reading, collecting, capturing, and querying geospatial data. The data management subsystem organizes and stores spatial data and their attributes to enable efficient query and quick retrieval for display, processing, and analysis. It also manages the modification and update of existing databases through editing tools. The manipulation and analysis subsystem executes the transformation of data from one form to another depending on model applications. The data display subsystem provides visual aids for quick interpretation of geospatial data in the form of diagrams, maps, or tables as well as data output providing access to the analyzed data in one of the several supported file formats.

The data management subsystem of QGIS offers an easy link point for integration with the hydrologic model through development of shared data structures that define both GIS feature objects and hydrologic features in the model. The data model for a GIS includes constructs for spatial data, topological data, and attribute data (Nyerges, 1987). In contrast, data structure of hydrologic features is determined by the topological relations between physiographic prototypes and coupling between processes. Open-source access to a QGIS facilitates the development and use of native QGIS classes and functions, which offer the interface and linkages necessary for supporting data structures of both GIS and hydrologic feature objects.

2.2. Hydrologic modeling framework

Penn State Integrated Hydrologic Model (PIHM) (Qu and Duffy, 2007; Kumar, 2009) is a physics-based, fully coupled, distributed hydrologic model that uses finite volume method (FVM) based discretization of the governing physical conservation equations and constitutive relationships on each control volume element. The FVM based formulation in PIHM guarantees mass balance locally and globally (Leveque, 2002). The local system of ordinary differential equations (ODEs) defined on each control volume are combined to form a global system of ODEs and solved altogether using CVODE (Cohen and Hindmarsh, 1994), a state of the art numerical solver in SUNDIALS (Hindmarsh et al., 2005). Fig. 1 shows discretization of a watershed (with triangular and rectangular control volume elements) in PIHM. Major hydrologic processes operating on prismatic (triangular or rectangular) control volumes are illustrated. PIHM simulates transient dynamics of numerous hydrologic processes including channel routing, overland flow, infiltration, groundwater recharge, groundwater flow, interception, evapotranspiration, and snowmelt as a fully coupled system. Table 2 shows the requirements of geospatial data sets (such as state variables, hydrologic fluxes and hydrogeologic parameters) in simulating respective hydrologic processes in a PIHM simulation. The model has been previously applied at multiple scales by Qu (2004), Kumar (2009), Li and Duffy (2011), Bhatt (2012), Shi et al. (2013), Wang et al. (2013), Chen et al. (2014), Yu et al. (2014) etc.

2.3. A shared data model for distributed watershed modeling

To facilitate seamless translation of hydrogeologic and climatological information from GIS to hydrologic model, a shared data model that uses common ontology to describe both GIS and hydrologic model objects (Kumar et al., 2010) is used. The shared data model allows consideration of numerous geospatial feature objects, associated data attributes and time series datasets, e.g., precipitation, meteorology, and boundary conditions. It also provides a template for storing spatial-hydrographic and time-series data in the form of a database that is accessible by the hydrologic model during simulation and GIS using access methods. Furthermore, because of its object-oriented design, the shared data model is extensible and can incorporate new data descriptors for physical, chemical or biological processes. For further details about the shared data model, readers are referred to Kumar et al. (2010). Using a collection of conceptual tools (see Section 3) for describing data, data relationships, data semantics, and consistency constraints, PIHMGis uses the shared data model to parameterize all mesh elements and to organize the simulation results for visualization and analyses. Consistency constraints of the data model ensure that certain minimum standards for compatibility are met. It is to be noted that the shared data model strategy can be used to couple other hydrologic models with the GIS. However such efforts will require model specific modifications in the shared data model, such as in definition of mesh topology, attribute information, and model input/output data structure.

3. PIHMGis user interface

PIHMGis user interface is integrated with the QGIS, as a plugin based toolbar (Fig. 2). PIHMGis tools support organization, development, and assimilation of spatial and temporal data into the hydrologic model, while the GIS provides tools for display, navigation and editing of geospatial data layers. Therefore, the hydrologic model becomes one of the analytical functions of the GIS. User interface of PIHMGis tools are accessible from the dropdown menus of the toolbar.

3.1. PIHMGis design: architectural and procedural details

PIHMGis tools incorporated in the shared model-GIS user interface accomplish three functions: Data Development, Hydrologic Model and Data Analysis (Fig. 3). Data Development includes functionalities necessary for a hydrologic model setup. The Hydrologic Model and Data Analysis components provide the ability to run hydrologic model simulations, and to perform spatio-temporal analyses and visualization of the simulated outputs, respectively. Bidirectional arrows in Fig. 3 illustrate the possible data flow (input and output) between the processing tools and the shared geodatabase. For example, Data Development functionalities when executed harvests the input data from the geodatabase
using Data Access libraries and enriches the shared geodatabase back with processed data products. This is achieved by synthesizing a predefined structure of data flow between PIHMgis tools and the geodatabase. Overall the shared geodatabase makes the user interface less error prone, removes data redundancy, and enhances accuracy during data processing. This reduces complexity involved in model setup, operation, and analysis of simulation results. It is noted that subsystems of the integrated framework, data flow and the shared geodatabase strategy can be used in other similar model-GIS integration efforts, after incorporating model-specific modifications in definition of mesh topology, attribute information, and model input/output data structure.

PIHMgis functionalities detailed in Fig. 3 are organized as a sequence of procedural tools (Fig. 4) to (a) create and manage a model application; (b) perform raster processing steps on digital elevation data to delineate watershed; (c) prepare watershed polygons and other vector constraints for generation of quality irregular triangular mesh for the watershed; (d) perform domain discretization and assign topology information to each triangular and linear mesh elements; (e) estimate and map hydrogeologic and meteorological parameters to each mesh elements; (f) perform model simulation; and (g) analyze simulation outputs. Functional details of each PIHMgis toolsets are summarized in Table 3. More details of the procedural tools are provided in Section 4.

3.2. PIHMgis development

PIHMgis source code has been integrated within the QGIS source code (http://download.qgis.org/qgis/src/) using an internal plugin-based architecture. This involves calling a PIHMgis object and its dependent libraries from within the QGIS open-source code, which provides a template function for integration of new plugins. Development of PIHMgis tools includes implementation of many new geospatial data processing functions that can read and create geospatial data layers. These geospatial data processing functions use dependent libraries such as Geospatial Data Abstraction Library (GDAL) and OGR (http://www.gdal.org/ogr/) to access geospatial data in raster and vector formats respectively, and PostgreSQL (http://www.postgresql.org) to query and support relational databases.

The user interface of PIHMgis tools has been implemented in Qt (http://trolltech.com/products/qt), which is a standard toolkit for high performance, cross-platform graphical widget development. Qt uses an extended version of the C++ programming language, but has bindings for Python, Ruby, C, Perl, and Pascal. It supports development on all major platforms, and has extensive internationalization support. The graphic interface of PIHMgis tool is a Qt dialog object, again called from within the plugin template function. Multiple input/output objects are incorporated within a
Table 2
Summary of data requirements in each triangular mesh element in PIHM.

<table>
<thead>
<tr>
<th>Data requirements</th>
<th>State variables: initial snow depth, snow density, snow cover temperature, snow water equivalent, soil temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interception</td>
<td>Fluxes: precipitation, melt rate, Physical parameters: short wave radiation, long wave radiation, net solar radiation, air temperature, wind velocity, vapor pressure, melt factor</td>
</tr>
<tr>
<td>Snow melt</td>
<td>Fluxes: precipitation, throughfall, Physical parameters: snow hydraulic conductivity, macropore area fraction, maximum infiltration capacity, soil porosity, infiltration depth</td>
</tr>
<tr>
<td>Infiltration/Exfiltration</td>
<td>State variables: surface water, soil moisture, groundwater storage, Fluxes: precipitation, net precipitation, infiltration</td>
</tr>
<tr>
<td>Evapotranspiration</td>
<td>State variables: interception storage, snow storage on canopy and ground, soil moisture, soil temperature, groundwater storage</td>
</tr>
<tr>
<td>Surface flow</td>
<td>Fluxes: interception, throughfall, Physical parameters: soil hydraulic conductivity, macropore hydraulic conductivity, max capillary area fraction, maximum infiltration capacity, soil porosity, infiltration depth</td>
</tr>
<tr>
<td>Unsaturated</td>
<td>State variables: initial soil moisture, groundwater storage, boundary conditions, Fluxes: infiltration, evaporation, transpiration, recharge</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Physical parameters: soil hydraulic conductivity, macropore hydraulic conductivity, max capillary area fraction, van Genuchten soil hydraulic parameters, soil porosity</td>
</tr>
<tr>
<td>Stream flow</td>
<td>State variables: initial stream water storage, stream water storage upstream and downstream, surface and groundwater storage in neighboring triangular mesh elements, boundary conditions</td>
</tr>
</tbody>
</table>

PIHMgis dialog along with push button objects. Depending on the objectives and functionalities extended by a dialog interface, necessary slots are created and attached to objects. To complete the integration of a new slot, a unique combination of signal and action is linked. Operationally a slot executes the associated action (e.g., data processing function) when an acceptable signal (e.g., click, toggle) is received from the interface. Functions for handling and processing of geospatial data and for access and manipulation of data files have been implemented in C and C++. The hydrologic modeling capability of PIHM, which was developed in C, is also available as an action from the PIHMgis user interface. It is noted that the modularity in development of PIHMgis through the use of plugin architecture allows flexibility to extend core QGIS applications, while maintaining independent development paths. New tools such as a different hydrologic model or support for new data formats, hotlink handlers, and data editors can be added to the PIHMgis framework without the need to modify the core QGIS source code.

4. PIHMgis application: a demonstration of PIHMgis tools

To demonstrate the capability and effectiveness of the PIHMgis framework, we prototype a new model simulation for a meso-scale Mahantango Creek watershed in the Susquehanna River Basin, USA. The watershed has a surface drainage area of approximately 430 square-kilometers, and partially spans the Dauphin, Northumberland, and Schuylkill counties in Pennsylvania, USA. The topographic elevation in the watershed ranges from 113 to 552 m. Geology of the watershed is predominantly Mauvian, Catskill, Trimmers Rock, Pottsville, and Pocono formations. There are 13 different standard land cover types present across the watershed. Dominant land cover types in the watershed include deciduous forest (53%), pasture/hay (16%), cultivated crops (14%), and developed/open-space (6.5%). The national data products that were used in prototyping of the distributed model simulation include: (a) USGS seamless 30 m resolution digital elevation data; (b) Soil classification map and related tabular texture data from Soil Survey Geographic Database 2 (SSURGO); (c) National Land Cover Database (NLCD) land cover map; and (d) precipitation and meteorological parameters from Phase-2 North America Data Assimilation System (NLDAS-2). Readers are referred to the HydroTerre (Leonard and Duffy, 2013) website (www.hydroterre.psu.edu) for access to basic geospatial data for USA. Next five subsections provide detailed descriptions of the PIHMgis tools. From here onwards use of italics indicate a reference to PIHMgis tool or toset.

4.1. Raster processing

Raster Processing toolset facilitates subwatershed delineation and stream definition. These vector layers are critical for generation of conformed triangular irregular mesh. Generation of sub-watershed boundaries and streams is achieved through seven procedural steps (Fig. 4). The Fill-Pits tool performs hydrologic conditioning of DEM by removing sinks. The **Flow Direction** Grid tool calculates direction of steepest descent by evaluating slope at each grid cell with respect to its eight (maximum possible) neighboring grid cells using eight-direction (D8) algorithm (O’Callaghan and Mark, 1984; Jenson and Dominge, 1988). The **Flow Accumulation** Grid tool computes the cumulative number of grid cells draining to a grid cell based on the flow direction grid. Stream definition threshold is applied to the flow accumulation grid to compute stream grids using the Stream Grid tool. A threshold, indicating the least number of grid cells draining to a grid cell for it to be classified as a stream grid cell, provides ability to control the resolution of delineated stream network. The **Link Grid** tool divides the stream network into reaches by identifying confluence points. The **Catchment Grid** tool partitions the watershed based on the stream reaches to which its grid cells are draining. The stream grids and the catchment grids are converted to vector data types using the Stream Polyline and the **Catchment Polygon** tools to enable further processing. Fig. 5 shows the DEM of the Mahantango Creek watershed.
which is the only input required in Raster Processing apart from the streams definition threshold. Fig. 5 shows the catchment boundary and stream network obtained from digital elevation dataset using Raster Processing toolset. Here, the stream grids were generated using 4000 grid cells (equivalent to a drainage area of 3.6 sq. km.) as the threshold. RunAll combines all of the procedural data processing steps of Raster Processing into a single tool.

4.2. Vector processing

Vector Processing provides tools to condition and consolidate multiple hydrologic features into one vector layer, so that they can be used for generating quality triangular mesh. Consolidation includes merging of watershed boundary, stream network, and other relevant vector objects such as nodes (stream gauge, groundwater observation well locations), polygons (soil classification, land use, political boundaries) and polylines (artificial channels or drainage networks). Data processing steps involved in the Vector Processing are illustrated in Fig. 4. The Dissolve Polygon is an optional data processing tool that may be used to remove the internal (e.g., subwatershed) boundaries, if needed. The Polygon to Polyline tool converts the input polygon watershed features, which are polygon vector objects, to their polyline equivalents. This step is needed because a simplification operation only works on watershed features that are polylines. The Polygon to Polyline tool preserves the external boundaries of polygons as polyline equivalents. The Simplify Line tool removes unwanted irregularities from a polyline by removing unnecessary nodes (Douglas and Peucker, 1973) based on specified simplification tolerance length as shown in Fig. 6a. The reduction in number of nodes for representation of polylines decreases the number of generated mesh elements around it. It is to be noted that simplification tolerance is selected such that semblance of the constraining polyline is maintained. For illustration purposes a qualitative comparison between unsimplified and simplified watershed features has been shown in Fig. 6b. The illustration shows that the aliasing effects that are introduced in watershed boundary and stream features during the Raster Processing are overcome by simplification. This results in significant decrease in the number of triangular elements in generated mesh as compared to one generated using unsimplified watershed features (Fig. 6b). Next, polylines are split into lines by separating them at the vertices through the Split Line tool. The Vector Merge tool combines all feature objects into a single vector layer. Fig. 7 shows simplified and consolidated output from Vector Processing for the Mahantango Creek watershed. Here, only the external catchment boundary and stream network were considered as constraints. Streams and watershed boundary were preferentially simplified using a tolerance length of 50 m and 100 m respectively.
Simplification reduced the number of nodes used in the representation of stream and watershed boundaries from 2945 to 492 nodes (~83% reduction) and 2937 to 177 nodes (~93% reduction) respectively.

4.3. Domain decomposition

Model simulation time is generally proportional to the number of triangular mesh elements used in representing a watershed. Therefore, quality spatial decomposition of the model domain, which sufficiently captures important hydrologic features and hydrogeologic data while also ensuring a minimum number of quality mesh elements (Kumar et al., 2009b), is important for attaining an efficient simulation. In the case of irregular triangular mesh, quality is determined by generation of well-rounded (or not skinny) triangular elements that also conform to hydrologic features. These features include internal boundaries such as lakes or wetlands, external boundaries such as watershed boundary,
constraining points such as weirs or monitoring stations and constraining lines such as rivers, man made drainage systems, and faults.

PIHMgis provides a set of three tools under Domain Decomposition to divide the watershed into triangular mesh elements. The Read Shape Topology tool transforms the consolidated vector file created by Vector Processing toolset into Planar Straight Line Graphs (PSLGs). The PSLG file contains the coordinate of nodes and topological information of the lines connecting two nodes. The Run TRIANGLE tool uses the PSLGs and selected quality options to generate triangular mesh using TRIANGLE (Shewchuk, 1996). TRIANGLE provides options to decompose the domain into quality constrained or conformed Delaunay triangulations (Ruppert, 1995). The Run TRIANGLE tool provides options for quality controls, such as minimum angle and maximum area of the triangular elements, to strike a balance between accuracy in representation of geospatial data and computation demand. Statistics regarding quality of the triangular elements are also generated to facilitate fine-tuning of the spatial decomposition. Geometric and topology information of the mesh is stored in four separate output files (poly, element, node, and neighbor files). TIN Generation tool uses these four files to create a vector (shapefile) of the mesh. The shapefile can be loaded in the data frame and visually inspected for quality. Fig. 8 shows a quality mesh of Mahantango Creek watershed generated by Domain Decomposition toolset. The mesh contains 2606 triangular elements and 509 linear river elements. A 20-degree minimum angle and 400,000 sq. meters as maximum area quality constraints were used. PIHMgis is also capable of generating fairly complex spatial decompositions of a watershed such as nested meshes (Kumar et al., 2009a,b), where the spatial resolution of mesh elements is purposely varied in different regions of the watershed.

4.4. Data model loader

Data Model Loader toolset performs automated assignment of spatial and temporal watershed properties such as climate forcing, soil hydrologic parameters, land cover, geology, boundary conditions, surface and subsurface topography to mesh elements and its nodes based on their geographic location. Fig. 9a shows conceptualization of how raster data layers and associated properties are mapped to individual triangular mesh elements. Generate Att tool assigns spatial classification information associated with various hydrogeologic layers to individual triangular elements (Fig. 9b). Hydrogeologic parameters describing the properties of classes are estimated using pedo-function subroutines. Generate Soil and Generate Geol tools use pedo-transfer functions (Wosten et al., 1999) to estimate hydrologic parameters such as saturated

Table 3

<table>
<thead>
<tr>
<th>PIHMgis toolsets</th>
<th>Data processing function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) PIHMgis project</td>
<td>Native PIHMgis project management handles input/output options in response to selections made in the preceding step.</td>
</tr>
<tr>
<td>(b) Raster (DEM) processing</td>
<td>A set of seven tools that is used for watershed delineation and stream definition from gridded topographic data.</td>
</tr>
<tr>
<td>(c) Vector Processing</td>
<td>A set of five tools that provides flexibility to consolidate multiple geospatial layers (e.g., streams, watershed boundary) in form of line or point feature type. These tools aid in generation of constraints for domain decomposition.</td>
</tr>
<tr>
<td>(d) Domain decomposition</td>
<td>A set of three tools to produce quality triangular mesh network.</td>
</tr>
<tr>
<td>(e) Data model loader</td>
<td>A set of ten tools for automated assignment of topology information and for mapping spatio-temporal watershed and climatological properties to mesh elements and river reaches.</td>
</tr>
<tr>
<td>(f) Run PIHM</td>
<td>This tool provides ability to perform concurrent execution of multiple instances of PIHM simulations.</td>
</tr>
<tr>
<td>(g) Data analysis</td>
<td>Data analysis toolset provides the ability to visualize simulated outputs for a user-selected group of triangular or linear mesh element over the simulation period.</td>
</tr>
<tr>
<td>(h) Help</td>
<td>Provides information regarding the objective of each PIHMgis tool, input and output datasets, and data processing algorithms.</td>
</tr>
</tbody>
</table>

Fig. 5. The 30-m USGS DEM encompassing Mahantango Creek watershed. Subwatershed boundaries and stream network were delineated using the Raster Processing toolset. A stream definition threshold of 4000 grid cells (equivalent to a drainage area of 3.6 sq. km) was used.
hydraulic conductivity, porosity, residual porosity and van Genuchten parameters based on available texture properties (sand, silt, clay, organic matter, bulk density, and organic content) obtained from SSURGO database (websoilsurvey.nrcs.usda.gov). The Generate LC tool estimates monthly vegetation parameters such as leaf area index, roughness length, stomata resistance, albedo, and vegetation fraction for the NLCD classes using functions that map NLDAS major land cover parameters (NLDAS Vegetation Parameters, 2013) based on percent land cover description. The Generate Mesh tool maps the digital terrain and regolith elevations to the surface and subsurface nodes of the prismatic control volumes (vertical projection of the triangular mesh elements). Topology information of individual triangular mesh elements is generated as well by identifying shared nodes, edges, and neighboring elements. The Generate Riv tool establishes the topologic information of individual stream segments and their association with the triangular mesh elements as shown in Fig. 9c. Topology definition includes identification of To-Node, From-Node, Downstream Segment, Left-Triangle, and Right-Triangle for each river element. The Generate Para tool assigns model operation and solver parameters.

4.5. PIHM simulation

PIHMgis provides the ability to run multiple instances of PIHM simulations using the user interface. The RunPIHM tool interacts directly with the shared geodatabase, to retrieve data required by PIHM simulations. PIHMgis also provides the ability to calibrate the model against observed data. This is achieved by uniformly adjusting the key hydrologic parameters globally over the entire
watershed through the Generate Calib tool. The calibration strategy for PIHM is presented in detail in Bhatt (2012) and Yu et al. (2013). The methodology preserves a-priori spatial variability of parameters. Simulated hydrologic states and fluxes from model simulations are archived in the shared geodatabase. PIHM also supports Network Common Data Form (NetCDF) data format for storing simulation outputs, which provides machine-independent easy access and sharing, and also saves storage space as compared to traditional text files. Model operation parameters control the output variables and their temporal resolution at which they are archived.

4.6. Analysis and visualization

PIHMgis provides visualization and analysis of model outputs with the help of several basic GIS display functionalities provided by QGIS. The Data Analysis toolset provides ability to analyze model outputs, by building query to aggregate or average hydrologic states or fluxes, at a particular triangular or linear mesh element or group of elements. The Time Series tool allows visualization of temporal variability of a predicted states/fluxes in any mesh element. Aggregation and averaging can also be performed on the time series data for a specific region of interest. Fig. 10 shows a representative time series plots of some of the simulated fluxes over a one year period. The graphic demonstrates the ability of the tool in providing estimates (as spatial aggregates) over a specific region for either streams or watershed mesh elements. The Spatial Plot tool on other hand provides ability to visualize spatial variability of fluxes/states within the watershed. The tool generates spatial plots of states and fluxes as shapefiles that can be visualized in any GIS including QGIS. Data representing simulated hydrologic states/fluxes (e.g., groundwater storage across the watershed or baseflow in the stream network) are stored as attributes in the shapefiles. The Spatial Plot tool also provides ability to aggregate data over a specified time interval. Fig. 11 shows representative spatial maps of groundwater recharge during the selected year. The groundwater recharge rates simulated by the model were averaged at each triangular mesh element over four separate seasonal intervals as shown in the figure to examine seasonal variations in response of the watershed.

4.7. Timing a representative simulation using PIHMgis tools

Table 4 shows the processing time required by PIHMgis tools in prototyping a PIHM application for the Mahantango Creek watershed. Before the development of PIHMgis tools, a manual setup, simulation, and analysis of PIHM required operation of multiple software tools to accomplish data processing tasks. Because of the broken data flow between the processing steps, this used to make the process cumbersome, error prone and time consuming. As a result, manual setup typically required number of hours to days in prototyping a PIHM simulation. Platform dependence of many of the softwares used in this process posed additional challenges. In contrast, significantly small amount of time required by the PIHMgis framework in prototyping a distributed model simulation in a new watershed demonstrates the efficiency of PIHMgis framework as compared to the offline manual setup. It is noted that the efficiency is primarily gained through existence of simulation and data management, analyses, visualization and processing tools, within a same framework. Native project management also plays a critical role by reducing the delay in transition from one tool to the next, by auto-filling of input/output file names and directory paths in response to selections made in preceding steps. It took only 3.7 min to setup a new model simulation in Mahantango Creek watershed (Table 4), while execution and analysis took 147 min and 15.4 min respectively. PIHMgis reduces the model setup time to minutes, thus allowing users to focus on core hydrologic modeling goals of answering science and management challenges.

5. Discussions and conclusions

In this paper, we present a tightly coupled GIS and distributed hydrologic model framework called PIHMgis. The framework is an open-source, platform independent, extensible (due to pluggable
Fig. 8. Domain decomposition (conforming Delaunay triangulation) of Mohantango Creek watershed into 2606 triangular mesh elements and 509 linear stream elements using Domain Decomposition toolset. Quality constraint of 20° for minimum angle of a triangle, and 400,000 square meters for maximum area were used.

Fig. 9. (a) The schematic illustrates the process of assigning hydrogeologic parameters to individual triangular mesh elements using Data Model Loader toolset. (b) Classifications corresponding to geospatial data layers are either assigned to the nodes or the centroid of the mesh elements. (c) Topology of the stream segments is defined by establishing relations between a stream reach and its neighbors.
architecture), and tightly coupled GIS interface to the PIHM. PIHMgis incorporates multiple vector and raster geospatial data layers to decompose the model domain at appropriate spatial resolution, while ensuring a desirable balance between accuracy of data representation and number of triangular mesh elements. The framework allows sophisticated distributed hydrologic modeling capabilities within an open-source GIS. The core of the framework is an object oriented shared data model, which provides flexibility to describe both GIS and hydrologic model objects and can incorporate new data descriptors (Kumar et al., 2010). The shared geodatabase based architecture (Fig. 3) used in the development facilitates minimum data redundancy, reduced storage requirements, and improves hydrogeologic data retrievability from within different components of the PIHMgis framework.

The framework also establishes a formal strategy for integration of distributed hydrologic modeling, analysis, and visualization system, supported by national data products. Organization of tools in a procedural framework streamlines distributed hydrologic modeling operations, while also allowing use of PIHMgis components such as Raster Processing (as in TauDEM and ArcHydro) as standalone softwares. The framework can be used to set up a new model simulation in any watershed in U.S., using national geodatabases, in matter of minutes. Since the framework is open source, it can be modified and new scientific tools may be

Fig. 10. An example of ‘Time Series’ analysis plot showing fluxes from a yearlong PIHM simulation in Mahantango Creek watershed. (a) Net groundwater contribution to the stream segments from the left half of the watershed (left of vertical line). (b) Net groundwater contribution to the stream segments from the right half of the watershed (right of vertical line). Negative sign in the baseflow rates imply flow to the river. (c) Rate of ground evaporation from a downstream region (encircled) near the outlet of the watershed. (d) Rate of transpiration from the upland headwater region (encircled) of the watershed.
Fig. 11. An example of ‘Spatial’ analysis plot from a yearlong PIHM simulation in Mahantango Creek watershed. The plots show spatial and seasonal variability in simulated groundwater recharge across the watershed.
Table 4
Efficacy in prototyping a model simulation at Mahantango Creek watershed. The simulation was performed on a 2.53 GHz Intel Core 2 Duo, 4 GB DDR3 Memory, running Mac OS X Version 10.6.6 using PIHMgvis Version 2.3. Computation wall times are reported in mins.

<table>
<thead>
<tr>
<th>a. Raster processing</th>
<th>d. Data model loader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules</td>
<td>Time (m:s)</td>
</tr>
<tr>
<td>Fill pits</td>
<td>01:56 Mesh file</td>
</tr>
<tr>
<td>Flow direction</td>
<td>00:15 Attribute file</td>
</tr>
<tr>
<td>Stream grid</td>
<td>00:03 River file</td>
</tr>
<tr>
<td>Link grid</td>
<td>00:04 Parameters file</td>
</tr>
<tr>
<td>Stream polyline</td>
<td>00:02 Soil file</td>
</tr>
<tr>
<td>Catchment grid</td>
<td>00:04 Geology file</td>
</tr>
<tr>
<td>Catchment polygon</td>
<td>00:53 Land cover file</td>
</tr>
<tr>
<td>b. Vector processing</td>
<td>e. Run PIHM</td>
</tr>
<tr>
<td>Modules</td>
<td>Time (m:ss)</td>
</tr>
<tr>
<td>Shape topology</td>
<td>00:02 Modules</td>
</tr>
<tr>
<td>Split line</td>
<td>00:01</td>
</tr>
<tr>
<td>Vector merge</td>
<td>00:01 PIHM</td>
</tr>
<tr>
<td>c. Domain decomposition</td>
<td></td>
</tr>
<tr>
<td>Modules</td>
<td>Time (m:s)</td>
</tr>
<tr>
<td>Run triangle</td>
<td>00:01 Time series plot</td>
</tr>
<tr>
<td>Generate Mesh</td>
<td>00:01 Spatial plot</td>
</tr>
</tbody>
</table>

* A prototype simulation of one-year time period.

integrated. As the framework is also supported on the Unix/OSX or Linux platforms, it can be used under high performance computing environment to support parallel hydrologic model simulation or for running parallel instances of the serial model.

In future, the level of coupling between QGIS and PIHM in PIHMgvis can be extended to embedded coupling, thus providing opportunity to modify parameters and states during the simulation. The salient characteristics needed to facilitate such coupling are already in place in terms of: (a) a shared data model support for GIS and hydrologic model; (b) use of the same programming language for the development of GIS tools and hydrologic model; (c) a data structure design that makes it easier to query the data model and model control parameters; (d) an option of stopping the model simulation at any time and restarting after reinitializing the state variables and parameters; and (e) the ability to launch different applications using library loaders and linkers. The algorithms implemented in PIHMgvis can also be ported to a web-based cloud environment to make these tools available as web-services. These cloud-based modeling tools may query consolidated national geo-spatial databases (such as one on the HydroTerre server, www.hydroterre.psu.edu) to further cement cloud-based model-data integration.

The strategy would provide educators, scientists, engineers and managers cross-platform access of integrated web-based modeling, analysis, and visualization tools in rapidly evolving post desktop (PC) environment.

Acknowledgments

This study was supported by grant from the National Science Foundation (EAR 0725019 Slate Hills-Susquehanna Critical Zone Observatory), the Duke University start-up grant, and the Environmental Protection Agency (Chesapeake Bay Program Office, CB96305901). We would like to thank Massimiliano Zappa and two other anonymous reviewers for their constructive comments that greatly improved this manuscript.

References

Kirchner, J.W., 2006. Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology. Water Resour. Res. 42 (3).

