Variance Swaps

MS&E 345 Advanced Topics in Financial Engineering
Winter ‘09

Gerry Tsoukalas [gts@stanford.edu]
Xianyi Zeng [rhodusz@stanford.edu]
Outline of Presentation

Part I: Background
- Introduction to Variance Swaps
- Pricing Intuition
- The Variance Swap Market

Part II: Replication and Pricing

Part III: Variance Swap Strategies
Outline of Presentation

Part I: Background

- Introduction to Variance Swaps
 - Pricing Intuition
 - The Variance Swap Market

Part II: Replication and Pricing

Part III: Variance Swap Strategies
Introduction to Variance Swaps

• The Product
 – Offers direct and “simple” exposure to the volatility of an underlying asset
 – Liquid across major equity indices and some large-cap stocks
 – Used for various purposes:
 • Take a volatility view (Long or Short)
 • Diversify returns
 • Trade forward volatility, correlation, dispersion
 – Replication:
 • Exact replication by an infinite continuous portfolio of vanilla options
 • In practice, hedged with a “small” number of options
 • Pricing reflects volatilities across the entire skew surface
 • In practice, VSwaps trade at a slight premium to ATM implied volatilities
Introduction to Variance Swaps

- **The VSwap contract**
 - OTC product: Two parties agree to enter into a swap with maturity T
 - The buyer of the swap receives realized variance, \(\sigma^2 \), over the life of the contract at date T
 - The seller of the swap receives a fixed pre-determined strike \(K^2 \) at date T. The strike reflects market estimates of future volatility (implied volatility) at time t.

\[
\text{payoff}_{\text{long}}(T) = h(T) = N_{\text{Var}}(\sigma^2 - K^2) = \frac{N_{\text{Vega}}}{2K}(\sigma^2 - K^2)
\]

\(N_{\text{Vega}} \) represents the average profit/loss for a 1% (1 vega) change in volatility

- **Measuring realized variance and volatility**
 - Issues
 - Actual method used: “RMS” (Root-Mean-Squared) = ignore mean
 - Simplifies calculation (a little), error made not too big, mean is typically around zero

\[
\sigma^2 = \frac{252}{N} \sum_{i=1}^{N} \left[\ln\left(\frac{S_i}{S_{i-1}} \right) \right]^2
\]

where \(S_i \) is the price of the underlying at closing and \(N \) is the number of trading days during the length of the contract.
VSwap Mark-to-Market

- Variance is additive, which simplifies the MTM, we need:
 - Realized variance since the start of the swap
 - Implied variance (new Strike) from t until expiry T
 - Additivity equation:

\[
(T - t_0) \text{var}_{\lambda \rightarrow T}(S) = (t - t_0) \text{var}_{\lambda \rightarrow t}(S) + (T - t) \text{var}_{t \rightarrow T}(S) \Rightarrow \begin{cases}
 t_0 = 0 \\
 \text{var}_{\lambda \rightarrow T}(S) = \sigma_{0,T}^2 \\
 \text{var}_{\lambda \rightarrow t}(S) = \sigma_{0,t}^2 \\
 \text{var}_{t \rightarrow T}(S) = \sigma_{t,T}^2
 \end{cases}
\]

\[
(0, T) \Rightarrow \text{Payoff } (0, T) = N[\sigma_{0,T}^2 - K_0^2] \Rightarrow \text{PV}(t, T) = Ne^{-r(T-t)} \{[\sigma_t^2 - K_0^2] \lambda + [K_t^2 - K_0^2](1 - \lambda)\}
\]

- t_0 set by the market at time t to make Swap Value $= 0$
Outline of Presentation

Part I: Background
• Introduction to Variance Swaps
• Pricing Intuition
• The Variance Swap Market

Part II: Replication and Pricing

Part III: Variance Swap Strategies
Pricing Intuition

- The strike K, reflects the market’s best guess of future volatility **but** with a premium (actually 2 premiums)
 - Convexity premium:
 - Variance swaps are convex in volatility: The gain from an increase in volatility is greater in absolute terms than the loss from the corresponding decrease
 - To take this into account, traders charge a premium to the ATM implied volatilities

- Volatility risk premium (replication premium):
 - Theoretical price calculated from prices of replicating options, so the strike K can be thought of a weighted average of vanilla option implied vols. In the presence of skew and skew convexity, avg. vols will usually be above ATM vol, making the VSwap more expensive.

- **VSwaps usually trade 1-2 vegas above ATM volatility**
Outline of Presentation

Part I: Background

• Introduction to Variance Swaps
• Pricing Intuition

• The Variance Swap Market

Part II: Replication and Pricing

Part III: Variance Swap Strategies
The Variance Swap Market

• First mentioned in the 1990’s – took off early 2000’s
 – Mostly on index underlyings, EURO STOXX 50, S&P 500
 – Also on large-cap constituents allowing for dispersion trades

• Steady growth over past few years
 – Marketed as an alternative to options without path dependence issues and transaction costs resulting from delta-hedging

• Significant increases in liquidity
 – Variance swaps moved from exotics desks into flow-trading
 – Bid/offer spreads on indices at around 0.4 vegas, 1-2 on single-names
 – Liquid maturities ranging from 3 months to 2 years
 – VIX represents theoretical prices of VSwaps on S&P
 – Around 30% of the vega traded in the market is done so via Vswaps

• Less liquidity in other assets (bonds, fx, commodities)
 – In theory, this should change
Outline of Presentation

Part I: Background

Part II: Replicating and Pricing
- Delta Hedging in Black-Scholes
- Replicating a Variance Swap
- The Fair Strike
- Numerical Application

Part III: Variance Swap Strategies
Outline of Presentation

Part I: Background

Part II: Replicating and Pricing

• Delta Hedging in Black-Scholes
• Replicating a Variance Swap
• The Fair Strike
• Numerical Application

Part III: Variance Swap Strategies
Delta Hedging in Black-Scholes

- P/L over small price movement, in terms of gamma

\[
[C(S + dS) − C_S(S)(S + dS)] − [C(S) − C_S(S)S] = C_S dS + \frac{1}{2} C_{SS} dS^2 − C_S dS + O(dS^3)
\]

\[\approx \frac{1}{2} C_{SS} dS^2 = \frac{1}{2} \Gamma dS^2\]

- Dollar gamma
 - Dollar gamma measure P/L in terms of return
 \[\$\Gamma = \Gamma S^2 / 100\]
 - P/L in terms of dollar gamma: connection to return
 \[\frac{P}{L} = \frac{1}{2} \Gamma dS^2 = \Gamma S^2 \left(\frac{dS}{S}\right)^2 = 50\$\Gamma R^2\]
Delta Hedging in Black-Scholes

- **There ain’t no such thing as a free lunch**
 - At the first glance, delta hedge always give positive P/L
 - We have only considered asset price’s movement, omitting the theta
 \[\theta = C_t = -\frac{1}{2} \Gamma S^2 \sigma^2 \] (We assume zero risk free rate)
 - P/L with theta
 \[\frac{P}{L} = \frac{1}{2} \Gamma dS^2 + \theta dt = \frac{1}{2} \Gamma S^2 [R^2 - \sigma^2 dt] = 50\Gamma [R^2 - \sigma^2 dt] \]

- **Realised volatility**
 - What is return: \(1+R=(S+dS)/S=S_{dt}/S_0 \)
 - What is realised volatility: (assume \(dt \) is 1 day)
 \[\sigma_{real}^2 = 252[\ln(S_{dt}/S_0)]^2 = 252[\ln(1+R)]^2 \approx 252R^2 \]
 \(R^2 = \sigma_{real}^2 dt \implies \frac{P}{L} = 50\Gamma dt(\sigma_{real}^2 - \sigma^2) \)
Delta Hedging v.s. Variance Swap

• Delta hedging and variance swap are similar
 – If realised volatility is higher than implied volatility, delta hedging gains.
 Otherwise, delta hedging loses money.
 – If realised volatility is higher than the strike, variance swap gains.
 Otherwise, variance swap loses money.

• Delta hedging and variance swap are different
 – Delta hedging
 • For high dollar gamma (asset price close to strike), the option has high exposure to spread
 between implied and realised volatilities.
 • For low dollar gamma (asset price far away from the strike), the option has little exposure
 to volatilities.
 • Such exposure to volatility is path dependent.
 – Variance swap
 • Whatever the price the underlying asset has, variance swap has constant exposure to the
 spread between realised and strike volatilities.
 • Such exposure to volatility is path independent
Outline of Presentation

Part I: Background

Part II: Replicating and Pricing
- Delta Hedging in Black-Scholes
- Replicating a Variance Swap
- The Fair Strike
- Numerical Application

Part III: Variance Swap Strategies
Replicating a Variance Swap

- General idea of replicating variance swap
 - P/L of variance swap: const \times (\sigma_{real}^2 - \sigma_{Strike}^2)
 - P/L of delta hedging: variable \times (\sigma_{real}^2 - \sigma_{impl}^2)
 - Replicating: choose proper weights of options, to achieve constant gamma.

- A mathematical point of view
 - What price function has constant dollar gamma
 - Suppose the price is C(S):
 - Gamma is: \Gamma = C_{SS}
 - Dollar gamma is: $\Gamma = \Gamma S^2/100 = C_{SS} S^2/100 = \text{constant}$

- Payoff of the constant dollar gamma portfolio at T:
 - Dollar gamma is: $\Gamma = \Gamma S^2/100 = C_{SS} S^2/100 = a: a > 0$
Replicating a Variance Swap

- Constant weighted case v.s. $1/K$-weighted case

- $1/K^2$-weighted case & Aggregate dollar gamma
Replicating a Variance Swap

• Use payoffs of vanilla options to construct such payoff:

\[
\int_0^{S_0} \frac{(K - S_T)^+}{K^2} dK + \int_{S_0}^{\infty} \frac{(S_T - K)^+}{K^2} dK = \int_{S_0}^{S_T} \frac{S_T - K}{K^2} dK \\
= -\ln(S_T) - \frac{1}{S_0} S_T + \ln(S_0) - 1
\]

• Conclusion:
 – We can construct a portfolio of calls and puts initially, weighted as 1/strike-squared, and such portfolio has constant dollar gamma
 – This is a static portfolio, no dynamic trading of options is required.

• It is not commonly used in practice. Why?
Replicating a Variance Swap

• Other possibilities to construct constant dollar gamma portfolio
 – Use a single vanilla option, buy or sell over time, to keep constant dollar gamma.
 • Dynamic trading is needed
 • The position could end up with enormous amounts of the option.
 – Start with an ATM option, and on each re-hedging step, either sell or hold the previous option, and buy an amount of new ATM to achieve constant dollar gamma
 • Still, dynamic trading of options is needed
 – However, such portfolios are actually used in practice

• Drawbacks of theoretical portfolio
 – Traded strikes are not continuous
 – Lack of liquidity in OTM strikes, especially for puts

• We just use the theoretical model for a fair price
Outline of Presentation

Part I: Background

Part II: Replicating and Pricing
- Delta Hedging in Black-Scholes
- Replicating a Variance Swap
- The Fair Strike
- Numerical Application

Part III: Variance Swap Strategies
Derive the Strike

- **Ito’s formula**

 For arbitrary smooth $f(S)$

 $$f(S_T) - f(S_0) = \int_0^T f'(S_t) dS_t + \int_0^T \frac{1}{2} S_t^2 f''(S_t) \sigma_t^2 dt$$

 Assume

 $$f(S_t) = \frac{2}{T} \left[\ln\left(\frac{S_0}{S_t}\right) + \frac{S_t}{S_0} - 1 \right] \Rightarrow f''(S_t) = \frac{2}{T S_t^2}$$

 Average realised variance:

 $$\frac{1}{T} \int_0^T \sigma_t^2 dt = \frac{2}{T} \left[\ln\left(\frac{S_0}{S_T}\right) + \frac{S_T}{S_0} - 1 \right] - \frac{2}{T} \int_0^T \left[\frac{1}{S_0} - \frac{1}{S_t} \right] dS_T$$

 $$= \frac{2}{T} \int_0^S_0 \frac{(K - S_T)^+}{K^2} dK + \frac{2}{T} \int_0^\infty \frac{(S_T - K)^+}{K^2} dK - \frac{2}{T} \int_0^T \left[\frac{1}{S_0} - \frac{1}{S_t} \right] dS_T$$
Derive the Strike

- Fair strike:

\[
K_{VAR}^2 = \frac{2e^{rT}}{T} \left[\int_0^{S_0} \frac{P_0(K)}{K^2} dK + \int_{S_0}^{\infty} \frac{C_0(K)}{K^2} dK \right]
\]

- The last term in realised volatilities
 - It is equivalent as holding \(1/S_t - 1/S_0\) units of underlying asset at time \(t\).
 - Initially, no underlying asset is needed.

- Strike calculation in practice
 - Use discrete strike values

\[
K_{VAR}^2 = \frac{2e^{rT}}{T} \left[\sum_{K_i \leq S_0} \frac{\Delta K_i}{K_i^2} P_0(K_i) + \sum_{K_i > S_0} \frac{\Delta K_i}{K_i^2} C_0(K_i) \right] - \frac{1}{T} \left(\frac{S_0}{K_0} - 1 \right)^2
\]
Outline of Presentation

Part I: Background

Part II: Replicating and Pricing

- Delta Hedging in Black-Scholes
- Replicating a Variance Swap
- The Fair Strike
- Numerical Application

Part III: Variance Swap Strategies
A Real Life Application

- Underlying asset price: $2,935.02
- Chosen strikes: equally apart, every 5% steps
- Calculated strike for variance swap: 16.625%
- Variance notional: 10,000

Floating leg: €2,701,397.53

Fixed leg: €2,701,355.88

Present value: \(\approx 0 \)
Outline of Presentation

Part I: Background

Part II: Replicating and Pricing

Part III: Variance Swap Strategies

• Uses of Variance Swaps
• Rolling Short Variance
Uses of Variance Swaps

• Express local or macro volatility view
 – Buy Swap on Index ahead of recession, sell vol into a spike
 – Better than straddles because not affected by trending underlying, no path dependence, no active management of delta-hedging needed

• Hedging purposes
 – Volatility tends to go up in a slumping market

• Rolling short variance
 – Strategy consists of selling short-dated index variance
 – This is to try and take advantage of the volatility risk premium described earlier

• Diversification
• Index Variance spreads (Vol on S&P 500 vs. EuroStoxx)
• Single-Stock volatility pairs trading
• Correlation and dispersion trading (long index, short basket)
• And many many other….
Outline of Presentation

Part I: Background

Part II: Replicating and Pricing

Part III: Variance Swap Strategies
 • Uses of Variance Swaps
 • Rolling Short Variance
Rolling Short Variance

- Idea: Take advantage of premiums embedded in Vswap
 - Volatility Risk Premium and Convexity Premium
- Short N=$1 Variance Swap at start of each month
- Implied strike taken from VIX in graph below => Actual P&L will be higher
Rolling Short Variance

- Note: this example is a conservative estimate
 - Using VIX bid-side instead of actual VS Strikes
 - Not reinvesting gains / accounting losses for tax purposes
End of Presentation

• Questions?