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“I have seen the future and it is very much like the present only longer.”  –K. Albran, The Profit 
 
Introduction 
 
Forecasting can take many forms—staring into crystal balls or bowls of tea leaves, combining 
the opinions of experts, brainstorming, scenario generation, what-if analysis, Monte Carlo 
simulation, solving equations that are dictated by physical laws or economic theories—but 
statistical forecasting, which is the main topic to be discussed here, is the art and science of 
forecasting from data, with or without knowing in advance what equation you should use.   The 
idea is simple:  look for statistical patterns in currently available data that you believe will 
continue into the future.   In other words, figure out the way in which the future will look very 
much like the present, only longer.   
 
This may sound simple, but in practice it can be quite difficult, requiring analytical skill, 
experience in working with data, and a good deal of background research.  When you have 
obtained a promising data set and begun to analyze it, you may at first see complex relationships 
whose pattern is not obvious, or (what is often worse), you may see patterns that aren’t really 
there.   Some important patterns may not be visible because you have not looked at the data in 
the right way or identified all the relevant explanatory variables or thought about all their 
possible connections.   These obstacles can be overcome by using the statistical tools and 
modeling principles discussed on this web site1:  viewing the data from many angles before 
getting started, identifying candidate models that are suggested by the patterns you discover and 
by what you have learned from your background research, using mathematical transformations to 
straighten out curves or stabilize time patterns if needed, fitting models to the data and evaluating 
their goodness-of-fit in both absolute and relative terms, looking for evidence that the models’ 
assumptions may be incorrect, and drawing on everything else you know about the situation in 
order to apply reality checks.  By the end of the day you hope to come up with a model that 
yields useful predictions and whose margins of error are known and which tells you some things 
you didn’t already know. 
 
Signal vs. noise 
 
The variable you want to forecast can be viewed as a combination of signal and noise.  The 
signal is the predictable component, and the noise is what is left over.   The term “noise” is 
intended to conjure up an analogy with the sort of noise or static that you hear on a busy street or 
when listening to a radio station with a weak signal.  In fact, audible noise and noise in your data 
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are statistically the same thing.  If you digitize a noisy audio signal and analyze it on the 
computer, it looks just like noisy data, and if you play noisy data back through a speaker, it 
sounds just like audio noise.  
 
The technical term for a data series that is pure noise is that it is a sequence of “independent and 
identically-distributed (i.i.d.) random variables.”    The RAND( ) function in Excel generates i.i.d. 
random values uniformly distributed between 0 and 1 whenever it is recalculated or copied.  This 
in turn can be used to generate other standard random variables using their inverse (INV) 
functions.  For example, the formula =NORM.S.INV(RAND( )) generates a standard normal 
random variable. Crystal Ball, a leading software package for simulation, allows random 
functions like this to be embedded in spreadsheet models and then recalculated thousands of 
times to simulate uncertainty in model parameters or uncertainty about future values of random 
variables.  However, we won’t be creating our own random variables; we will be analyzing ones 
that arise naturally. 
 
It is up to you to find a forecasting model (in the form of a mathematical equation) that captures 
the signal buried in the noise and extrapolates it in an appropriate fashion.   This is not always 
easy, because sometimes it is hard to separate the two.   On one hand, very complex patterns in 
data may look quite random until you know what you are looking for, and on the other hand, data 
that are completely random may appear to the naked eye to have some kind of interesting pattern.   
Sensitive statistical tests are needed to get a better idea of whether the pattern you see in the data 
is really random or whether there is some signal yet to be extracted.   If you fail to detect a signal 
that is really there, or falsely detect a signal that isn’t really there, your forecasts will be at best 
suboptimal and at worst dangerously misleading. 
 
Some simple cases 
 
Some of the simplest signal-noise patterns that you find in data are i.i.d. variations around a line 
or curve, or i.i.d. changes relative to an earlier period in time.  The very simplest case is that of 
i.i.d. variations around a horizontal line, like this: 
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The appropriate forecasting model for this is data series is the mean model,   in which you simply 
predict that series will equal its mean value in every period.  This is a special case of a regression 
model in which there is an intercept term but no independent variables, i.e., an “intercept-only” 
model.  A variable that measures a response to a survey question or a property of objects coming 
off an assembly line might look like this.  Variables that have more complicated patterns might 
look like this after some mathematical transformation.  For example, if you transform a time 
series of stock prices into daily or monthly percentage changes, it might look like the picture 
above 
.   
The mean model is not as trivial as it might first appear:  you need to estimate the mean as well 
as the standard deviation of the variations around the mean, and the standard deviation needs to 
be used appropriately to calculate confidence intervals for the predictions.   The accuracy of the 
parameter estimates and forecasts also depends on the sample size in a systematic way.  These 
issues, which arise in all forecasting models, are discussed in more detail later in a separate 
handout. 
 
A slightly more interesting pattern is that of i.i.d. variations around a sloping line on a plot of 
your variable-of-interest versus some other variable, which indicates some degree of correlation 
between the two variables.  The coefficient of correlation between two variables measures the 
strength of the linear relationship between them, on a scale of -1 to +1.  We’ll discuss that in 
more detail when we get to the topic of linear regression analysis. 

 
 
The appropriate forecasting model in this case would be a simple regression model.  If the X axis 
is the time index, it is called a trend line model.  If you transform the variable by “de-trending,” 
i.e., subtracting out the trend line, it becomes a time series that looks like it was generated by the 
mean model.2 
                                                 
2 In terms of its statistical properties, a series that has been de-trended by subtracting out an estimated trend line is 
not exactly like a series that is a sampled from a random process with zero trend.  The de-trended series has an 
estimated trend of exactly zero within the data sample (because by definition it has been adjusted to zero out the 
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Another more interesting pattern is that of a time series that undergoes i.i.d. changes from one 
period to the next, which might look like this: 

 
The appropriate forecasting model for this series is the random walk model, so-called because 
the variable takes random steps up and down as it goes forward.  This model is of profound 
importance in financial data analysis.  If you transform the variable by computing its period-to-
period changes (the “first difference” of the time series), it becomes a time series that is 
described by the mean model.  What is particularly interesting about the random walk model is 
the precise way in which the confidence limits for the forecasts get wider at longer forecast 
horizons, which is central to the theory of option pricing in finance.   
 
Notice that there appear to be some interesting patterns in this graph, e.g., a series of regular 
peaks and valleys from period 60 onward.  This is just a “statistical illusion”:  the time series was 
artificially generated using i.i.d. random steps.  This is typical of random walk patterns—they 
don’t look as random as they are! You need to analyze the statistical properties of the steps (in 
particular, the correlation between the size of the step in one period and the sizes of steps in 
preceding periods) to determine if they are truly random or if they have non-random properties 
such as “momentum” or “mean-reversion” or “seasonality.” 
 

                                                                                                                                                             
estimated trend), whereas a series that is sampled from a random process with no trend will generally have a non-
zero but not statistically significant estimated trend due to sampling error. 
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Another commonly seen pattern in time series data is that of i.i.d. variations around a seasonal 
pattern, which might look like this: 
 

 
 
This sort of pattern is seen in retail sales, air travel, tourism, housing construction, power and 
water consumption, and many other measures of economic activity and environmental conditions.  
The noise is often not immediately apparent on such a graph, because the random variations are 
usually small in comparison to the seasonal variations, but the random variations are very 
important in seasonally-adjusted terms.  This particular time series consists of monthly US total 
housing starts for single-unit structures from January 1991 to December 2005, in 
thousands.  If you look closely, you will see that the seasonal variations are not identical and 
there are also changes in short-term trends due to business-cycle effects, but over the long run 
the trend and seasonal pattern appear to be reasonably consistent.   
 
For the purposes of this chart, four years of monthly forecasts and 95% confidence limits were 
generated for the years 2006-2009 based on data up to December 2005 using one of the industry-
standard seasonal forecasting models that we will meet later in the course:  a so-called “ARIMA” 
model.   The forecasts and confidence limits look quite reasonable based on the historical pattern 
in the data—that is, they seem to pass the “eyeball test”.  Alas, history did not turn out this way! 
 
Another important type of pattern is that of correlations among many different variables.  You 
are probably familiar with X-Y scatterplots in which one variable is plotted against another.  
When working with many variables, we often want to look at an array of scatterplots between all 
pairs of variables, which is a so-called scatterplot matrix.  A scatterplot matrix is the visual 
companion of a correlation matrix that shows all pairwise coefficients of correlation between 
variables.  Most statistical analysis software (including RegressIt, our Excel add-in), will draw 
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scatterplot matrices for you.)   For example, consider a data set that consists of facts about 
houses sold in a community in a given year, and suppose the objective is to study how the selling 
price is correlated with features of the house such as its age, its square footage, its tax value, and 
the number of features it includes out of some set of desirable features.   The scatterplot matrix 
for this data set looks like this: 

 
By examining the individual scatterplots you can see at a glance whether there are strong linear 
or nonlinear relationships among any pairs of variables and you can also quickly identify 
qualitative properties of their individual distributions, such as whether they are randomly 
scattered or have only a few possible values or have any extreme values (“outliers”).  Here the 
selling price is seen to be strongly linearly related to square footage and tax valuation—which is 
not surprising—and less strongly related to age and features of the house.  These relationships 
are highlighted by the red lines drawn on the plots in the row for which price is the Y-axis 
variable.3 You can also see that the “features” variable has only 8 possible values, which are 
evidently integers from 0 to 7 since this is a counting variable  Complex patterns like this are 
usually fitted by multiple regression models. (The red lines here are not regression lines, just 
hand-drawn lines that have been added for visual emphasis.  The software we will use in this 
course can add regression lines to scatterplot matrices if desired.) 
 
The examples shown above illustrate some of the most basic patterns we will look for in our 
data—means and standard deviations that may or may not be stable, trends that may or may not 
be linear, walking that may or may not be random, seasonality, cyclical patterns, correlations 
among many variables—and the corresponding forecasting models that might be used to explain 
and predict them.  These basic models will serve as building-blocks for more sophisticated 
models that we will study later on. 
 
  

                                                 
3 In a scatterplot matrix, a given variable is the Y-axis variable in all of the plots in its corresponding row, and it is 
the X-axis variable in all of the plots in its corresponding column. 
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Risks of forecasting 
 
Forecasting is a risky business:  “if you live by the crystal ball you end up eating broken glass.”  
There are three distinct sources of forecasting risk and corresponding ways to measure and try to 
reduce them.  I’ll state them here in general terms, and we will discuss them in more detail later 
in the context of the mean model and other general models such as regression and ARIMA. 
 

(i) Intrinsic risk is random variation that is beyond explanation with the data and tools 
you have available.  It’s the “noise” in the system.  The intrinsic risk is usually 
measured by the “standard error of the model,” which is the estimated standard 
deviation of the noise in the variable you are trying to predict.4  Although there is 
always some intrinsic risk (the future is always to some extent unpredictable), your 
estimate of its magnitude can sometimes be reduced by refining a model so that it 
finds additional patterns in what was previously thought to be noise, e.g., by using 
more or better explanatory variables.  This doesn’t necessarily mean the original 
model was “wrong,” but merely that it was too simplistic or under-informed. 

 
(ii) Parameter risk is the risk due to errors in estimating the parameters of the 

forecasting model you are using, under the assumption that you are fitting the correct 
model to the data in the first place.  This is usually a much smaller source of forecast 
error than intrinsic risk, if the model is really correct.  Parameter risk is measured in 
terms of the “standard errors of the coefficient estimates” in a forecasting model—for 
example, the standard error of the estimated slope of a trend line.  Parameter risk can 
be reduced in principle by obtaining a larger sample of data.  However, when you are 
predicting time series, more sample data is not always better.  Using a larger sample 
might mean including older data that is not as representative of current conditions.  
No pattern really stays the same forever, which is known as the “blur of history” 
problem.   

 
The standard error of the forecast that a model ultimately produces is computed from 
a formula that involves the standard error of the model and the standard errors of the 
coefficients, thus taking into account both the intrinsic risk and the parameter risk.  
The standard error of the forecast is always greater than the standard error of the 
model, i.e., the standard error of the model is a lower bound on forecast accuracy.  
How much greater it is depends on the standard errors of the various coefficients and 
also on how far the values of the independent variables are from their own mean 
values.  The errors in coefficient estimates become relatively more important when 
making forecasts under extreme conditions or for very distant points in time.  

 
To the extent that you can’t reduce or eliminate intrinsic risk and parameter risk, you 
can and should try to quantify them in realistic terms, so as to be honest in your 
reporting and so that appropriate risk-return tradeoffs can be made when decisions are 
based on the forecast.   

 
                                                 
4 In general the term “standard error” refers to the estimated standard deviation of the error that is being made in 
estimating a coefficient or predicting a value of some variable. 
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(iii) Model risk is the risk of choosing the wrong model, i.e., making the wrong 
assumptions about whether or how the future will resemble the past.  This is usually 
the most serious form of forecast error, and there is no “standard error” for 
measuring it, because every model assumes itself to be correct.  Model risk can be 
reduced by following good statistical practices, which I will emphasize throughout 
this course.   In fact, you might say that this course is mostly about how to choose the 
right forecasting model rather than the wrong one.  If you follow good practices for 
exploring the data, understanding the assumptions that are behind the models, and 
testing the assumptions as a routine part of your analysis, you are much less likely to 
make serious errors in choosing a model.  The risk of choosing the wrong model is 
very high if you try to rely on simplistic rules (“biggest R-squared”) or on automatic 
forecasting software, without understanding your own data, systematically exploring 
it, using your own judgment and experience, and carefully testing the model 
assumptions.  There is no magic formula—that’s why you should study these notes.   

 
How do you know when your model is good, or at least not obviously bad?   One very basic test 
of your model is whether its errors really look like pure noise, i.e., independent and identically 
distributed random variables.  If the errors are not pure noise, then by definition there is some 
pattern in them, and you could make them smaller by adjusting the model to explain that pattern.  
We will study a number of statistical tests that are used to determine whether the errors of a 
forecasting model are truly random.  However, random-looking errors that are obtained in fitting 
the past data do not necessarily translate into realistic forecasts and confidence limits for what 
will happen in the future if the model’s assumptions about the future are wrong. 
 
As an example of model risk, consider what actually happened to US housing starts after 2005.  
Here is a chart showing the actual history together with the long-term point forecasts from the 
earlier chart.  The forecasts tracked the first 5 months of 2006 pretty well, and then… boom! 
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Actually, if you look at a longer historical sample—say, going back to 1959—you can see that 
the fairly consistent upward trend that was observed over the 15-year period from 1991 to 2005 
was not likely to continue indefinitely, so a statistical extrapolation of that pattern should not 
necessarily have been expected to provide a realistic long-term forecast of what would happen in 
the coming years.  And if you look closely at the years 2003-2004-2005, you can see the sort of 
sudden upward acceleration that was followed by cyclical downturns at several times in the more 
distant past, i.e., the telltale growth sign of a “bubble”.   A more careful analysis of the 
“fundamentals” of the housing market would also have raised red flags.  The earlier downturns 
weren’t quite as bad as what started in mid- 2006, though! 
 

 
 
 


