
CMP Design Space Exploration Subject to Physical Constraints

Yingmin Li†, Benjamin Lee‡, David Brooks‡, Zhigang Hu††, Kevin Skadron†

† Dept. of Computer Science, University of Virginia †† IBM T.J. Watson Research Center
‡ Division of Engineering and Applied Sciences, Harvard University

{yingmin,skadron}@cs.virginia.edu, zhigangh@us.ibm.com, {dbrooks,bclee}@eecs.harvard.edu

Abstract

This paper explores the multi-dimensional design space
for chip multiprocessors, exploring the inter-related vari-
ables of core count, pipeline depth, superscalar width, L2
cache size, and operating voltage and frequency, under
various area and thermal constraints. The results show
the importance of joint optimization. Thermal constraints
dominate other physical constraints such as pin-bandwidth
and power delivery, demonstrating the importance of con-
sidering thermal constraints while optimizing these other
parameters. For aggressive cooling solutions, reducing
power density is at least as important as reducing total
power, while for low-cost cooling solutions, reducing to-
tal power is more important. Finally, the paper shows
the challenges of accommodating both CPU-bound and
memory-bound workloads on the same design. Their re-
spective preferences for more cores and larger caches lead
to increasingly irreconcilable configurations as area and
other constraints are relaxed; rather than accommodat-
ing a happy medium, the extra resources simply encourage
more extreme optimization points.

1 Introduction

Recent product announcements show a trend toward ag-
gressive integration of multiple cores on a single chip to
maximize throughput. However, this trend presents an ex-
pansive design space for chip architects, encompassing the
number of cores per die, core size and complexity (pipeline
depth and superscalar width), memory hierarchy design,
operating voltage and frequency, and so forth. Identify-
ing optimal designs is especially difficult because the vari-
ables of interest are inter-related and must be considered
simultaneously. Furthermore, trade-offs among these de-
sign choices vary depending both on workloads and physi-
cal (e.g., area and thermal) constraints.

We explore this multi-dimensional design space across
a range of possible chip sizes and thermal constraints,
for both CPU-bound and memory-bound workloads. Few
prior works have considered so many cores, and to our
knowledge, this is the first work to optimize across so many
design variables simultaneously. We show the inter-related
nature of these parameters and how the optimum choice of
design parameters can shift dramatically depending on sys-
tem constraints. Specifically, this paper demonstrates that:

• A simple, fast approach to simulate a large number of
cores by observing that cores only interact through the
L2 cache and shared interconnect. Our methodology
uses single-core traces and only requires fast cache
simulation for multi-core results.

• CPU- and memory-bound applications desire dramat-
ically different configurations. Adaptivity helps, but
any compromise incurs throughput penalties.

• Thermal constraints dominate, trumping even pin-
bandwidth and power-delivery constraints. Once ther-
mal constraints have been met, throughput is throttled
back sufficiently to meet current pin-bandwidth and
ITRS power-delivery constraints.

• A design must be optimized with thermal constraints.
Scaling from the thermal-blind optimum leads to a
configuration that is inferior, sometimes radically so,
to a thermally optimized configuration.

• Simpler, smaller cores are preferred under some con-
straints. In thermally constrained designs, the main
determinant is not simply maximizing the number of
cores, but maximizing their power efficiency. Ther-
mal constraints generally favor shallower pipelines
and lower clock frequencies.

• Additional cores increase throughput, despite the re-
sulting voltage and frequency scaling required to meet
thermal constraints, until performance gains from an
additional core is negated by the impact of voltage and
frequency scaling across all cores.

• For aggressive cooling solutions, reducing power den-
sity is at least as important as reducing total power.
For low-cost cooling solutions, however, reducing to-
tal power is more important.

This paper is organized as follows. Section 2 is the re-
lated work. We introduce our model infrastructure and val-
idation in section 3. We present design space exploration
results and explanations in section 4. We end with conclu-
sions and proposals for future work in section 5.

2 Related Work

There has been a burst of work in recent years to under-
stand the performance, energy, and thermal efficiency of
different CMP organizations. Few have looked at a large
numbers of cores and none, of which we are aware, have

jointly optimized across the large number of design param-
eters we consider while addressing the associated method-
ology challenges. Li and Martı́nez [17] present the most
aggressive study of which we are aware, exploring up to
16-way CMPs for SPLASH benchmarks and considering
power constraints. Their results show that parallel execu-
tion on a CMP can improve energy efficiency compared
to the same performance achieved via single-threaded ex-
ecution, and that even within the power budget of a sin-
gle core, a CMP allows substantial speedups compared to
single-threaded execution.

Kongetira et al. [12] describe the Sun Niagara processor,
an eight-way CMP supporting four threads per core and tar-
geting workloads with high degrees of thread-level paral-
lelism. Chaudhry et al. [4] describe the benefits of multiple
cores and multiple threads, sharing eight cores with a sin-
gle L2 cache. They also describe the Sun Rock processor’s
“scouting” mechanism that uses a helper thread to prefetch
instructions and data.

El-Moursy et al. [6] show the advantages of clustered
architectures and evaluate a CMP of multi-threaded, multi-
cluster cores with support for up to eight contexts. Huh
et al. [10] categorized the SPEC benchmarks into CPU-
bound, cache-sensitive, or bandwidth-limited groups and
explored core complexity, area efficiency, and pin band-
width limitations, concluding due to pin-bandwidth limi-
tations that a smaller number of high-performance cores
maximizes throughput. Ekman and Stenstrom [5] use
SPLASH benchmarks to explore a similar design space for
energy-efficiency with the same conclusions.

Kumar et al. [14] consider the performance, power, and
area impact of the interconnection network in CMP archi-
tecture. They advocate low degrees of sharing, but use
transaction oriented workloads with high degrees of inter-
thread sharing. Since we are modeling throughput-oriented
workloads consisting of independent threads, we follow the
example of Niagara [12] and employ more aggressive L2
sharing. In our experiments, each L2 cache bank is shared
by half the total number of cores. Interconnection design
parameters are not variable in our design space at this time,
and in fact constitute a sufficiently expansive design space
of their own that we consider this to be beyond the scope
of the current paper.

The research presented in this paper differs from prior
work in the large number of design parameters and metrics
we consider. We evaluate CMP designs for performance,
power efficiency, and thermal efficiency while varying the
number of cores per chip, pipeline depth and width, chip
thermal packaging effectiveness, chip area, and L2 cache
size. This evaluation is performed with a fast decou-
pled simulation infrastructure that separates core simula-
tion from interconnection/cache simulation. By consider-
ing many more parameters in the design space, we demon-
strate the effectiveness of this infrastructure and show the
inter-relatedness of these parameters.

The methodologies for analyzing pipeline depth and
width build on prior work by Lee and Brooks [16] by
developing first-order models for capturing changes in
core area as pipeline dimensions change, thereby enabling

power density and temperature analysis. We identify op-
timal pipeline dimensions in the context of CMP archi-
tectures, whereas most prior pipeline analysis considers
single-core microprocessors [8, 9, 22], Furthermore, most
prior work in optimizing pipelines focused exclusively on
performance, although Zyuban et al. found 18FO4 delays
to be power-performance optimal for a single-threaded mi-
croprocessor [26].

Other researchers have proposed simplified processor
models, with the goal of accelerating simulation. Within
the microprocessor core, Karkhanis and Smith [11] de-
scribe a trace-driven, first-order modeling approach to
estimate IPC by adjusting an ideal IPC to account for
branch misprediction. In contrast, our methodology adjusts
power, performance, and temperature estimates from de-
tailed single-core simulations to account for fabric events,
such as cache misses and bus contention. In order to model
large scale multiprocessor systems running commercial
workloads, Kunkel et al. [15] utilize an approach that com-
bines functional simulation, hardware trace collection, and
probabilistic queuing models. However, our decoupled and
iterative approach allows us to account for effects such as
latency overlap due to out-of-order execution, effects not
easily captured by queuing models. Although decoupled
simulation frameworks have been proposed in the context
of single-core simulation (e.g., Kumar and Davidson [13])
with arguments similar to our own, our methodology is ap-
plied in the context of simulating multi-core processors.

3 Experimental Methodology

To facilitate the exploration of large CMP design
spaces, we propose decoupling core and intercon-
nect/cache simulation to reduce simulation time. Detailed,
cycle-accurate simulations of multi-core organizations are
expensive, and the multi-dimensional search of the design
space, even with just homogeneous cores, is prohibitive.
Decoupling core and interconnect/cache simulation dra-
matically reduces simulation cost with minimal loss in
accuracy. Our simulation approach uses IBM’s Turan-
dot/PowerTimer, a cycle-accurate, execution-driven simu-
lator, to generate single-core L2 cache-access traces that
are annotated with timestamps and power values. We then
feed these traces to Zauber, a cache simulator we developed
that models the interaction of multiple threads on one or
more shared interconnects and one or more L2 caches. Za-
uber uses hits and misses to shift the time and power values
in the original traces. Generating the traces is therefore a
one-time cost, while what would otherwise be a costly mul-
tiprocessor simulation is reduced to a much faster cache
simulation. Using Zauber, it is cost-effective to search the
entire multi-core design space.

3.1 Simulator Infrastructure

Our framework decouples core and interconnect/cache
simulation to reduce simulation time. Detailed core sim-
ulation provides performance and power data for various

Fetch Decode
NFA Predictor 1 Multiple Decode 2
L2 I-Cache 11 Millicode Decode 2
L3 I-Load 8 Expand String 2
I-TLB Miss 10 Mispredict Cycles 3
L2 I-TLB Miss 50 Register Read 1

Execution Memory
Fix Execute 1 L1 D-Load 3
Float Execute 4 L2 D-Load 9
Branch Execute 1 L3 D-Load 77
Float Divide 12 Float Load 2
Integer Multiply 7 D-TLB Miss 7
Integer Divide 35 L2 D-TLB Miss 50
Retire Delay 2 StoreQ Forward 4

Table 1. 19FO4 Latencies (cycles).

core designs, while interconnect/cache simulation projects
the impact of core interaction on these metrics.

3.1.1 Core Simulation

Our detailed core simulation infrastructure consists of Tu-
randot, PowerTimer, and HotSpot 2.0. Turandot is a val-
idated model of an IBM POWER4-like architecture [19].
PowerTimer implements circuit-extracted, validated power
models, which we have extended with analytical scaling
formulas based on Wattch [1, 2]. HotSpot 2.0 is a vali-
dated, architectural model of localized, on-chip tempera-
tures [21]. Each of these components in our detailed sim-
ulation infrastructure is modular so that any particular sim-
ulator can be replaced with an alternative. We extended
Turandot and PowerTimer to model the performance and
power as pipeline depth and width vary using techniques
from prior work [16].

Depth Performance Scaling: Pipeline depth is quanti-
fied in terms of FO4 delays per pipeline stage.1 The perfor-
mance model for architectures with varying pipeline depths
are derived from the reference 19FO4 design by treating
the total number of logic levels as constant and indepen-
dent of the number of pipeline stages. This is an abstrac-
tion for the purpose of our analysis; increasing the pipeline
depth could require logic design changes. The baseline la-
tencies (Table 1) are scaled to account for pipeline depth
changes according to Eq. (1). These scaled latencies ac-
count for latch delays (FO4latch = 3) and all latencies
have a minimum of one cycle. This is consistent with prior
work in pipeline depth simulation and analysis for a single-
threaded core [26].

Lattarget =

⌊

Latbase ×

FO4base − FO4latch

FO4target − FO4latch
+ 0.5

⌋

(1)

Depth Power Scaling: Each factor in the standard
equation for dynamic power dissipation, Eq. (2), scales
with pipeline depth. The clock frequency f increases lin-
early with depth as the delay for each pipeline stage de-
creases. The clock gating factor CGF decreases by a
workload dependent factor as pipeline depth increases due

1Fan-out-of-four (FO4) delay is defined as the delay of one inverter
driving four copies of an equally sized inverter. When logic and overhead
per pipeline stage is measured in terms of FO4 delay, deeper pipelines
have smaller FO4 delays.

8D 4D 2D 1D
Functional Units

FXU 4 2 1 1
MEM 4 2 1 1
FXU 4 2 1 1
BR 4 2 1 1
CR 2 1 1 1

Pipeline Stage Widths
FETCH 16 8 4 2
DECODE 8 4 2 1
RENAME 8 4 2 1
DISPATCH 8 4 2 1
RETIRE 8 4 2 1

Table 2. Width Resource Scaling.

Structure Energy
Growth
Factor

Register Rename 1.1
Instruction Issue 1.9
Memory Unit 1.5
Multi-ported Register File 1.8
Data Bypass 1.6
Functional Units 1.0

Table 3. Energy Scaling.

to the increased number of cycles in which the shorter
pipeline stages are stalled. As the true switching factor α is
independent of the pipeline depth and the glitching factor β
decreases with pipeline depth due to shorter distances be-
tween latches, switching power dissipation decreases with
pipeline depth. The latch count, and consequently hold
power dissipation, increases linearly with pipeline depth.
We refer the reader to prior work for a detailed treatment
of these scaling models [26].

Pdyn = CV
2
f(α + β)×CGF (2)

Width Performance Scaling: We quantify the pipeline
width in terms of the maximum number of instructions de-
coded per cycle. Performance data for architectures with
varying pipeline widths are obtained from the reference
4-decode design (4D) by a linear scaling of the number
of functional units and the number of non-branch instruc-
tions fetched, decoded, renamed, dispatched, and retired
per cycle (Table 2). All pipelines have at least one instance
of each functional unit. As pipeline width decreases, the
number of instances of each functional unit is quickly min-
imized to one. Thus, the decode width becomes the con-
straining parameter for instruction throughput for the nar-
rower pipelines we consider (e.g., 2D).

Width Power Scaling: We employ a hybrid approach
to model the power impact of scaling the width of the
pipeline. Our baseline microarchitecture, based on the
POWER4, includes a clustered backend microarchitecture
for structures like the functional units, issue queues, and
register files. This approach is effective at managing com-
plexity, cycle time, and power dissipation in wide-issue
superscalar cores [3, 20, 25]. An analogous technique is
used to construct the dual-ported data cache. When scal-
ing the width of these structures, we assume that uncon-
strained hold and switching power increases linearly with
the number of functional units, access ports, and any other
parameter that must change as width varies.

In certain non-clustered structures, however, linear
power scaling may be inaccurate and, for example, does
not capture non-linear relationships between power and the
number of SRAM access ports since it does not account for
the additional circuitry required in a multi-ported SRAM
cell. For this reason, we apply superlinear power scaling
with exponents (Table 3) drawn from Zyuban’s work in es-
timating energy growth parameters [25]. Since these pa-
rameters were experimentally derived through analysis of
non-clustered architecture, we only apply this power scal-
ing to the non-clustered components of our architecture.

3.1.2 Interconnection/Cache Simulation

The core simulators are supplemented by Zauber, a much
faster simulator that performs interpolation on L2 cache
traces provided by the core simulators. Zauber decouples
detailed core simulation and the simulation of core interac-
tion. The cores in a CMP architecture usually share one or
more L2 caches through an interconnection fabric. There-
fore, resource contention between cores occurs primarily
in these two resources. We find it possible to simulate
cache and fabric contention independent of core simula-
tions without losing too much accuracy. The impact of
contention on the performance and power of each core may
then be evaluated quickly using interpolation.

First, we collect L2 access traces based on L1 cache
misses through one pass of single-core simulations with
a specific L2 cache size (0.5MB in our experiment). We
found these L2 traces to be independent of the L2 cache
size. In these traces we record the L2 cache address and
access time (denoted by the cycle) information for ev-
ery access. We also need to sweep through a range of
L2 cache sizes for each benchmark and record the per-
formance and microarchitectural resource utilization every
10k instructions as this information will be used in the in-
terpolation. These L2 traces are fed into an cache simulator
and interconnection-contention model that reads the L2 ac-
cesses of each core from the traces, sorts them according
to time of access, and uses them to drive the interconnec-
tion and L2 cache simulation. This interconnection/cache
simulator outputs the L2 miss ratio and the delay due to
contention for every 10k instruction segment of the thread
running on each core.

With this L2 miss ratio and interconnection contention
information we calculate the new performance and power
number for each 10k instruction segment of all the threads.
Since we know the performance and microarchitectural re-
source utilization for several L2 miss ratio values, we are
able to obtain new performance and utilization data for any
other L2 miss ratio produced by the cache simulator via in-
terpolation. Power numbers can be derived from the struc-
ture utilization data with post-processing.

When we interleave the L2 accesses from each thread,
we are using the cycle information attached with each ac-
cess to sort them by time of access. However, each thread
may suffer different degrees of performance degradation
due to interconnection and L2 cache contention. Therefore,
sorting by time of access may not reflect the real ordering.

In our model, we iterate to improve accuracy. In particu-
lar, given the performance impact from cache contention
for each thread, we can use this information to adjust the
time of each L2 access in each L2 trace and redo L2 cache
emulation based on this new L2 access timing information.
Iterating to convergence, we find three iterations are typi-
cally enough to reach good accuracy.

We validate Zauber against our detailed cycle-accurate
simulator, Turandot. Figure 1 shows the average per-
formance and power data from Turandot simulation and
Zauber simulation for 2-way and 4-way CMPs. From
these figures, the average performance and power differ-
ence between Turandot and Zauber is within 1%. For a
2-way CMP, Zauber achieves a simulation time speedup of
40-60x, with detailed Turandot simulations requiring 1-2
hours and the decoupled simulator requiring 1-3 minutes.

Since we are modeling throughput-oriented workloads
consisting of independent threads, we consider a relatively
high degree of cache sharing Niagara [12]. Each L2 cache
bank is shared by half the total number of cores. The inter-
connection power overheads are extrapolated from [14].

We assume the L2 cache latency does not change when
we vary the L2 cache size. We also omit the effects of
clock propagation on chip throughput and power when core
number increases.

3.2 Analytical Infrastructure

We use formulas to vary and calculate parameters of in-
terest in the CMP design space exploration. The design
parameters we consider include core count, core pipeline
dimensions, thermal resistance of chip packaging, and L2
cache size. As we vary these parameters, we consider the
impact on both power and performance metrics.

3.2.1 Performance and Power Modeling

The analytical model uses performance and dynamic
power data generated by Zauber simulation. Leakage
power density for a given technology is calculated by Eq.
(3), where A and B are coefficients determined by a linear
regression of ITRS data and T is the absolute temperature.
A = 207.94 and B = 1446 for 65nm technology.

Pleakage density = A · T
2
· e
−B/T (3)

3.2.2 Temperature Modeling

We use steady-state temperature at the granularity of each
core to estimate the chip thermal effects. This neglects lo-
calized hotspots within a core as well as lateral thermal
coupling among cores. Addressing these is important fu-
ture work, but employing a simple analytical temperature
formula instead of the more complex models in HotSpot re-
duces simulation time and allows us to focus on how heat-
removal limitations constrain core count and core type.

We observe that the heat spreader is almost isothermal
for the range of the chip areas and power values we in-
vestigate, so we can separate the global temperature rise
across the thermal package due to total chip power dissi-
pation from localized temperature rise above the package

0

0.5

1

1 .5

2

2 .5

3

3 .5

4

4 .5

3 2 K B 1 2 8 K B 5 1 2 K B 2 M B 8 M B 3 2 M B
L2 C a c h e S iz e

IP
C

T u r a n d o t (2 - w a y) Z a u b e r (2 - w a y) T u r a n d o t (4 - w a y) Z a u b e r (4 - w a y)

(a) Performance

20

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

3 2K B 1 28 K B 5 1 2K B 2M B 8 M B 3 2M B
L2 C a c h e S iz e

P
ow

er
 (

w
)

T u r a n d o t (2- w a y) Z a u b e r (2- w a y) T u r a n d o t (4 - w a y) Z a u b e r (4 - w a y)

(b) Power

Figure 1. The validation of Zauber model.

due to per-core power dissipation. This is described by
Equations 4, 5, and 6. Suppose we want to calculate the
temperature of a specific core on the chip, where Pglo and
Pcore are the global chip and single core dynamic power,
respectively. Similarly, Lglo and Lcore are the global chip
and single core leakage power, respectively. The chip’s
total dynamic power is the sum of the dynamic power dis-
sipated by all the cores on chip, the L2 cache and the in-
terconnect. The chip leakage power is summed in a sim-
ilar manner. The sum of Rspread and Rhsink denotes the
thermal resistance from the heat spreader to the air and the
sum of Rsilicon and RTIM denotes the thermal resistance
from the core. Collectively, these parameters specify the
chip’s thermal characteristics from the device level to the
heat spreader, ignoring the lateral thermal coupling above
the heat spreader level.

We categorize the CMP heatup into local and global ef-
fects. The former is determined by the local power dissi-
pation of any given core and the effect on its temperature.
The latter is determined by the global chip power.

Hglo + Hloc = Tcore − Tamb (4)

Hglo = (Pglo + Lglo) · (Rspread + Rhsink) (5)

Hloc = (Pcore + Lcore) · (Rsilicon + RTIM)(6)

This distinction between local and global heatup mech-
anisms is first qualitatively introduced by Li et al. in [18].
They observed that adding cores to a chip of fixed area in-
creases chip temperature. This observation may not be evi-
dent strictly from the perspective of per-core power density.
Although power density is often used as a proxy for steady-
state temperature with each core exhibiting the same power
density, core or unit power density is only an accurate pre-
dictor of the temperature increases in the silicon relative to
the package. Per-unit or per-core power density is analo-
gous to one of the many thermal resistances comprising the
entire network that represents the chip.

Adding cores does indeed increase temperature, be-
cause it increases the total amount of power that must be
removed. The current primary heat removal path is con-
vection from a heat sink. Although accurate expressions
for convective heat transfer are complex, a first-order ap-
proximation is:

q = hA(Tsink − Tair) (7)

where q is the rate of convective heat transfer, h is the con-
vective heat transfer coefficient that incorporates air speed
and various airflow properties, A is the surface area for
convection, and to first order we can assume Tair is fixed.
At steady-state, the total rate of heat P generated in the
chip must equal the total rate of heat removed from the
chip. If we hold h and A constant, then as we add cores
and P exceeds q, Tsink must rise to balance the rates so
that P = q. This increases on-chip temperatures because
the sink temperature is like an offset for the other layers
from the sink-spreader interface through the chip.

Alternative heat removal mechanisms also warrant con-
sideration. For example, fan speed may be increased, but
this approach is often limited by acoustical limits and var-
ious board-layout and airflow factors that lead to dimin-
ishing returns (e.g. increased pressure drop across a larger
heat sink). We can lower the inlet air temperature, but this
is not an option in many operating environments (e.g. a
home office), or may be extremely costly (e.g. in a large
data center). We could also increase heat sink area, but this
is where Eq. (7) breaks down. That expression assumes
that the heat source is similar in size to the conductive sur-
face. In reality, increasing the heat sink surface area does
not improve convective heat transfer in a simple way. In-
creasing fin height and surface area is limited by airflow
constraints that dictate an optimal fin configuration. In-
creasing the total size of the heat sink (i.e. increasing the
area of its base), leads to diminishing returns as the ratio of
sink to chip area increases due to limitations on how well
the heat can be spread. In the limit, the heat source looks
like a point source and further increases in the sink area
will have no benefit, as heat will not be able to spread at all
to the outermost regions of the heat sink.

With regard to the single thermal resistance in the
HotSpot model, adding cores is equivalent to adding cur-
rent sources connected in parallel to a single resistor, the
sink-to-air resistance. The increased current leads to a
larger IR drop across this resistor and a proportionally
larger heat-sink temperature.

Equations 4, 5, and 6, quantify the contributions from
global and local heatup. Figure 2 presents results from val-
idating this simple model against HotSpot, varying the heat
sink resistance and fixing the power distribution to test dif-
ferent temperature ranges. The temperature difference be-

tween these two models is normally within 3◦.

30 0

31 0

32 0

330

34 0

35 0

36 0

37 0

38 0

39 0

4 0 0

4 1 0

4 2 0

0 .0 5 0 .1 0 .1 5 0 .2 0 .2 5 0 .3 0 .35 0 .4 0 .4 5

He a k S in k R e s is t a n c e (K /W)

T
em

pe
ra

tu
re

 (
K

)

S im p lif ie d th e r m a l m o d e l - C o r e T e m p e r a tu r e
H o tS p o t - C o r e T e m p e r a tu r e
S im p lif ie d th e r m a l m o d e l - L 2 C a c h e T e m p e r a tu r e
H o tS p o t - L 2 C a c h e T e m p e r a tu r e

Figure 2. Simplified temperature model validation.

3.2.3 Area Modeling

We assume a 65nm technology. Based on a Power5 die
photo, we estimate the baseline core area to be 11.52mm2,
equivalent to the area of 1MB of L2 cache. We assume
each n/2 cores share one L2 cache through a crossbar rout-
ing over the L2 and estimate the total crossbar area to be
6.25n · mm2 [14], where n is the number of cores. As
pipeline dimensions vary, we scale the core area to account
for additional structures and overhead.

Depth Area Scaling: Given our assumption of fixed
logic area independent of pipeline depth, latch area con-
stitutes the primary change in core area as depth varies.
Let wlatch be the total channel width of all pipeline latch
transistors, including local clock distribution circuitry. Let
wtotal be the total channel width for all transistors in the
baseline microprocessor, excluding all low-leakage tran-
sistors in on-chip memories. Let the latch growth fac-
tor (LGF) capture the latch count growth due to logic
shape functions. In our analysis, we take the latch ratio
(wlatch/wtotal) to be 0.3 and the LGF to be 1.1, assuming
superlinear latch growth as pipeline depth increases [26].
Assuming changes in core area are proportional to the total
channel width of latch transistors in the pipeline, we scale
the portion of core area attributed to latches superlinearly
with pipeline depth using Eq. (8).

Atarget = Abase

(

1 +
wlatch

wtotal

(

(

FO4target

FO4base

)LGF

− 1

))

(8)

Width Area Scaling: Table 4 presents area scaling fac-
tors for varying pipeline width. We consider each unit
and its underlying macros. To first-order, the core area at-
tributed to the fixed point, floating point, and load store
units scale linearly due to clustering. We also assume the
area of multi-ported SRAM array structures is wire domi-
nated and scales linearly with the number of ports [23, 24].
This assumption applies to SRAM memories (e.g. register
files), but may be extended to queues (e.g. issue queues),
tables (e.g. rename mappers), and other structures poten-
tially implemented as an SRAM array.

Note the area of the instruction fetch and decode units
(IFU, IDU) are independent of width. Within the fetch unit,

Unit/Macro 2D 4D 8D
FXU 0.5 1.0 2.0
FPU 0.5 1.0 2.0
ISU 0.6 1.0 1.8
IFU 1.0 1.0 1.0
LSU 0.5 1.0 2.0
IDU 1.0 1.0 1.0
Total 0.7 1.0 1.7

Table 4. Pipeline Width Area Scaling.

the instruction cache, instruction TLB, program counter,
and branch handling hardware dominate the fetch unit’s to-
tal power dissipation and, to first-order, these structures are
independent of the fetch width. Within the decode unit, the
instruction decoder ROM used to crack complex instruc-
tions dominates decode power and, to first-order, this ROM
is independent of decode width. Also note that only a sub-
set of the macros for the instruction sequencing unit (ISU)
scale as width increases, resulting in a sublinear area de-
pendence on width for this unit. For the sequencing unit,
only area associated with issue queues and tables for reg-
ister renaming scale with pipeline width. The total scaling
factors, a weighted average of the unit scaling factors, sug-
gest a sublinear relationship between area and width.

3.2.4 DVFS Scaling and Reward Functions

Using a large number of cores may lead to thermal run-
away due to high chip power and the positive feedback of
leakage power and temperature. We must employ a thermal
control mechanism to prevent this behavior and to account
for the resulting performance impact. We take this con-
trol into consideration by emulating voltage and frequency
scaling for steady-state temperature control. Our dynamic
simulations do not model the dynamic control aspect of
DVFS. Instead, we only simulate workloads in which all
cores are occupied — “worst typical-case” workloads that
are likely to dictate thermal design. Then, for a given
workload, we calculate its steady-state temperature and in-
fer the voltage and frequency settings necessary to prevent
the steady-state temperature from pushing the chip above
100◦. These settings could represent the maximum steady-
state or nominal settings that are safe for “worst typical-
case” workloads, or could represent steady-state V/f val-
ues with DVFS when these workloads are running. In re-
ality, the DVFS settings would fluctuate around these val-
ues with such workloads, permitting higher settings when
fewer cores are occupied.

Tthr − Tamb = (PglobalRbelow + PcoreRabove)V
2

scFsc

+(LglobalRbelow + LcoreRabove)Vsc (9)

For a given core number n, L2 cache size l, pipeline
depth d, and pipeline width w, we obtain the dynamic
power consumption and performance from Zauber and the
leakage power with Equation 3. For a given temperature
threshold, we calculate the voltage and frequency scaling
factors from Equation 9, which is deduced from Equation
4, assuming that the leakage power is mainly subthreshold
leakage power and is linearly dependent on voltage. Us-
ing 0.9V and 2.0 GHz as the nominal voltage and clock

frequency and their scaling factors as Vsc and Fsc, we use
a nonlinear voltage/frequency relationship obtained from
HSPICE circuit simulation. After determining the volt-
age and frequency scaling required for thermal control, we
calculate our reward functions, BIPS and BIPS3/W, with
Equations 10 and 11.

BIPS(n, l, d, w) = BIPSbase · Fsc (10)

BIPS3

W
(n, l, d, w) =

(

BIPSbase
3

Pdyn + Pleak

VscFsc

)

(

Fsc

Vsc

)2

(11)

3.3 Workloads

We characterize all SPEC2000 benchmarks into eight
major categories: high IPC(> 0.9) or low IPC(< 0.9), high
temperature(peak temperature > 355K) or low tempera-
ture(peak temperature < 355K), floating-point or integer
benchmark. We employ eight of the SPEC2000 bench-
marks (art, mcf, applu, crafty, gcc, eon, mgrid, swim) as
our single thread benchmarks, spanning these categories.
We further categorize benchmarks according to their L2
miss ratios, referring to those with high and low miss ra-
tios as memory- and CPU- bound, respectively.

To generate static traces, we compile with the xlc com-
piler and -O3 option. We use Simpoint [7] to identify rep-
resentative simulation points and generate traces by captur-
ing 100 million instructions beginning at the Simpoint.

For both CPU-bound and memory-bound benchmarks,
we use pairs of single-thread benchmarks to form dual-
thread benchmarks and replicate these pairs to form mul-
tiple benchmark groups of each benchmark category for
CMP simulation with more than two cores. We only simu-
late workloads consisting of a large pool of waiting threads
to keep all cores active, representing the “worst typical-
case” operation likely to determine physical limits.

4 Results

We present the results from the exploration of a large
CMP design space that encompasses core count, pipeline
dimensions, and cache size. We consider optimizing
for performance (BIPS) and power-performance efficiency
(BIPS3/W) under various area and thermal constraints. In
addition to demonstrating the effectiveness of our experi-
mental methodology for exploring large design spaces, our
results also quantify significant CMP design trends and
demonstrate the need to make balanced design choices.

4.1 Optimal Configurations

Table 5 presents optimal configurations that maximize
BIPS and BIPS3/W for a fixed pipeline depth while Ta-
ble 6 presents optima for a fixed superscalar width. Con-
figurations are presented for various combinations of area
and thermal constraints. The area constraint can take on
one of four values: no constraint (“nolimit”), 100mm2,

200mm2, or 400mm2. Similarly, packaging assumptions
and hence thermal constraints can take on one of three
values: no constraint (NT), low constraint (LR=0.1, low
thermal resistance, i.e. aggressive, high-cost thermal so-
lution), and high constraint (HR=0.5, high thermal resis-
tance, i.e. constrained thermal solution, such as found
in a laptop). The tables differentiate between CPU- and
memory-bound benchmarks and specify the required volt-
age and frequency ratios needed to satisfy thermal con-
straints.

Figures 3–5 present performance trade-offs between
core count, L2 cache size, and pipeline dimensions for a
400mm2 chip subject to various thermal constraints.

4.1.1 No Constraints

In the absence of area and thermal constraints (no-
limit+NT+CPU, nolimit+NT+MEMORY), the throughput
maximizing configuration for both CPU- and memory-
bound benchmarks employs the largest L2 cache and num-
ber of cores. Although the optimal pipeline width for all
benchmarks is eight (8W), CPU-bound benchmarks favor
deeper pipelines (12FO4) to take advantage of fewer mem-
ory stalls and higher instruction level parallelism. Con-
versely, memory-bound benchmarks favor relatively shal-
low pipelines (18FO4).

For BIPS3/W, the optimal depth shifts to shallower
pipelines; 18FO4 and 30FO4 delays per stage are op-
timal for CPU and memory-bound benchmarks, respec-
tively. The optimal width shifts to shallower, narrower
pipelines for memory-bound benchmarks due to the rela-
tively high rate of memory stalls and low instruction level
parallelism.

4.1.2 Area Constraints

Considering area constraints ({100,200,400}+NT+*), we
find core number and L2 cache size tend to decrease
as area constraints are imposed. Although both tech-
niques are applied in certain cases (100+NT+CPU,
100+NT+MEMORY), decreasing the cache size is natu-
rally the most effective approach to meet area constraints
for CPU-bound benchmarks, while decreasing the number
of cores is most effective for memory-bound benchmarks.

With regard to pipeline dimensions, we find the op-
timal width decreases to 2W for all area constraints on
memory-bound benchmarks (*+NT+MEMORY) except
100+NT+MEMORY. According to the area models in Sec-
tion 3.2.3, changes in depth scale the latch area (only 30%
of total area) whereas changes in width scale the area as-
sociated with functional units, queues, and other width-
sensitive structures. Thus, shifting to shallower widths
provides greater area impact (Table 5). Although pipeline
depths may shift from 12 to 18/24FO4 delays per stage,
they are never reduced to 30FO4 delays per stage to meet
area constraints (Table 6).

As in the case without constraints, the bar plots in
Figure 3, which vary pipeline depth, shows CPU-bound

BIPS BIPS3/W
L2 Core Pipeline Voltage Frequency L2 Core Pipeline Voltage Frequency
(MB) Number Width Scaling Scaling (MB) Number Width Scaling Scaling

nolimit+NT+CPU 32 20 8 1.00 1.00 16 20 8 1.00 1.00
nolimit+LR+CPU 8 20 4 0.75 0.63 8 20 4 0.75 0.63
nolimit+HR+CPU 2 18 2 0.59 0.39 2 16 2 0.61 0.43
400+NT+CPU 4 20 4 1.00 1.00 4 20 4 1.00 1.00
400+LR+CPU 4 20 4 0.75 0.64 2 20 4 0.76 0.65
400+HR+CPU 2 18 2 0.59 0.39 2 16 2 0.61 0.43
200+NT+CPU 2 10 4 1.00 1.00 2 10 4 1.00 1.00
200+LR+CPU 2 10 4 0.87 0.80 2 12 2 0.90 0.85
200+HR+CPU 2 12 2 0.67 0.51 2 12 2 0.67 0.51
100+NT+CPU 2 4 4 1.00 1.00 2 4 4 1.00 1.00
100+LR+CPU 2 4 4 0.97 0.96 2 4 4 0.97 0.96
100+HR+CPU 2 4 4 0.79 0.70 2 4 4 0.79 0.70
nolimit+NT+MEMORY 32 20 8 1.00 1.00 32 20 4 1.00 1.00
nolimit+LR+MEMORY 16 20 4 0.73 0.61 16 20 4 0.73 0.61
nolimit+HR+MEMORY 8 10 2 0.62 0.45 8 10 2 0.62 0.45
400+NT+MEMORY 16 16 2 1.00 1.00 16 16 2 1.00 1.00
400+LR+MEMORY 16 12 4 0.81 0.73 16 16 2 0.81 0.72
400+HR+MEMORY 8 10 2 0.62 0.45 8 10 2 0.62 0.45
200+NT+MEMORY 8 8 2 1.00 1.00 8 8 2 1.00 1.00
200+LR+MEMORY 8 6 4 0.93 0.90 8 8 2 0.92 0.88
200+HR+MEMORY 8 8 2 0.66 0.51 8 8 2 0.66 0.51
100+NT+MEMORY 2 4 4 1.00 1.00 4 4 2 1.00 1.00
100+LR+MEMORY 2 4 4 1.00 1.00 4 4 2 0.98 0.98
100+HR+MEMORY 2 4 4 0.81 0.73 4 4 2 0.81 0.73

Table 5. Optimal Configurations with Varying Pipeline Width, Fixed Depth (18FO4)

BIPS BIPS3/W
L2 Core Pipeline Voltage Frequency L2 Core Pipeline Voltage Frequency
(MB) Number Depth Scaling Scaling (MB) Number Depth Scaling Scaling

nolimit+NT+CPU 32 20 12 1.00 1.00 16 20 18 1.00 1.00
nolimit+LR+CPU 8 20 18 0.75 0.63 8 20 18 0.75 0.63
nolimit+HR+CPU 2 14 24 0.62 0.44 2 14 24 0.62 0.44
400+NT+CPU 4 18 12 1.00 1.00 4 20 18 1.00 1.00
400+LR+CPU 4 20 18 0.75 0.64 2 20 24 0.85 0.78
400+HR+CPU 2 14 24 0.62 0.44 2 14 24 0.62 0.44
200+NT+CPU 2 10 18 1.00 1.00 2 10 18 1.00 1.00
200+LR+CPU 2 10 18 0.87 0.80 2 10 24 0.97 0.95
200+HR+CPU 2 10 18 0.63 0.45 2 10 24 0.69 0.55
100+NT+CPU 2 4 18 1.00 1.00 2 4 18 1.00 1.00
100+LR+CPU 2 4 18 0.97 0.96 2 4 18 0.97 0.96
100+HR+CPU 2 4 18 0.79 0.70 2 4 18 0.79 0.70
nolimit+NT+MEMORY 32 20 18 1.00 1.00 32 20 30 1.00 1.00
nolimit+LR+MEMORY 16 20 30 0.85 0.78 16 20 30 0.85 0.78
nolimit+HR+MEMORY 8 10 30 0.65 0.48 8 10 30 0.65 0.48
400+NT+MEMORY 16 12 18 1.00 1.00 16 12 30 1.00 1.00
400+LR+MEMORY 16 12 30 0.94 0.91 8 12 30 1.00 1.00
400+HR+MEMORY 8 10 30 0.65 0.48 8 10 30 0.65 0.48
200+NT+MEMORY 8 6 24 1.00 1.00 8 6 30 1.00 1.00
200+LR+MEMORY 8 6 24 1.00 1.00 8 6 30 1.00 1.00
200+HR+MEMORY 4 6 30 0.83 0.75 4 6 30 0.83 0.75
100+NT+MEMORY 2 4 24 1.00 1.00 2 4 30 1.00 1.00
100+LR+MEMORY 2 4 24 1.00 1.00 2 4 30 1.00 1.00
100+HR+MEMORY 2 4 30 0.96 0.95 2 4 30 0.96 0.95

Table 6. Optimal Configurations with Varying Pipeline Depth, Fixed Width (4D)

benchmarks favor deeper pipelines (4MB/12FO4/4 is op-
timal) and memory-bound benchmarks favor shallower
pipelines (16MB/18FO4/4 or 16MB/24FO4/4 are optimal).
The line plots in Figures 3–4 also present performance
for varying widths for modest thermal constraints. In this
case, the optimal pipeline width is 4W for a fixed depth of
18FO4 delays per stage.

4.1.3 Thermal Constraints

We find thermal constraints (nolimit+{NT,LR,HR}+*),
also shift optimal configurations to fewer and simpler
cores. The optimal core number and L2 size tends to de-
crease with heat sink effectiveness. For example, the op-

timum for nolimit+HR+MEMORY is 8MB L2 cache and
10 cores. Again, CPU-bound benchmarks favor decreas-
ing cache size to meet thermal constraints while memory-
bound benchmarks favor decreasing the number of cores.

Figure 5 also illustrates the impact of global heating
on optimal pipeline configurations. As the number of
cores increase for CPU-bound benchmarks, the optimal de-
lay per stage increases by 6FO4 (i.e., from 18 to 24FO4)
when twelve cores reside on a single chip. The increas-
ing core count increases chip temperature, leading to shal-
lower pipelines that lower power dissipation, lower global
temperature, and meet thermal constraints.

Simpler cores, characterized by smaller pipeline dimen-
sions, tend to consume less power and, therefore, miti-

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

Co r e N u m b e r

B
IP

S
4 M B /1 2 F O 4 /4 4 M B /1 8 F O 4 /4
4 M B /2 4 F O 4 /4 4 M B /3 0F O 4 /4
2 M B /1 8 F O 4 /2 2 M B /1 8 F O 4 /4
8 M B /1 8 F O 4 /2 8 M B /1 8 F O 4 /4

(a) cpu

0

2

4

6

8

1 0

1 2

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

Co r e N u m b e r

B
IP

S

1 6 M B /1 2 F O 4 /4 1 6 M B /1 8 F O 4 /4
1 6 M B /2 4 F O 4 /4 1 6 M B /3 0F O 4 /4
8 M B /1 8 F O 4 /2 8 M B /1 8 F O 4 /4
1 6 M B /1 8 F O 4 /2 1 6 M B /1 8 F O 4 /4

(b) memory

Figure 3. Performance of various configurations with chip area constraint at 400mmˆ2 (without thermal control).

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

Co r e N u m b e r

B
IP

S

2 M B /1 2 F O 4 /4 2 M B /1 8 F O 4 /4
2 M B /2 4 F O 4 /4 2 M B /3 0F O 4 /4
2 M B /1 8 F O 4 /2 2 M B /1 8 F O 4 /4
8 M B /1 8 F O 4 /2 8 M B /1 8 F O 4 /4

(a) cpu

0

2

4

6

8

1 0

1 2

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

Co r e N u m b e r

B
IP

S

1 6 M B /1 2 F O 4 /4 1 6 M B /1 8 F O 4 /4
1 6 M B /2 4 F O 4 /4 1 6 M B /3 0F O 4 /4
8 M B /1 8 F O 4 /2 8 M B /1 8 F O 4 /4
1 6 M B /1 8 F O 4 /2 1 6 M B /1 8 F O 4 /4

(b) memory

Figure 4. Performance of various configurations with chip area constraint at 400mmˆ2 (R = 0.1 heat sink).

0

2

4

6

8

1 0

1 2

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

Co re N u m b e r

B
IP

S

2 M B /1 2 F O 4 /4 2 M B /1 8 F O 4 /4
2 M B /2 4 F O 4 /4 2 M B /3 0F O 4 /4
2 M B /1 8 F O 4 /2 2 M B /1 8 F O 4 /4
8 M B /1 8 F O 4 /2 8 M B /1 8 F O 4 /4

(a) cpu

0

0.5

1

1 .5

2

2 .5

3

3 .5

4

4 .5

5

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

Co r e N u m b e r

B
IP

S

8 M B /1 2 F O 4 /4 8 M B /1 8 F O 4 /4
8 M B /2 4 F O 4 /4 8 M B /3 0F O 4 /4
8 M B /1 8 F O 4 /2 8 M B /1 8 F O 4 /4
1 6 M B /1 8 F O 4 /2 1 6 M B /1 8 F O 4 /4

(b) memory

Figure 5. Performance of various configurations with chip area constraint at 400mmˆ2 (R = 0.5 heat sink).

gate the core’s thermal impact. In particular, the optimal
pipeline depth shifts to 24 and 30FO4 delays per stage for
CPU and memory-bound benchmarks, respectively, when
comparing nolimit+NT+* to nolimit+HR+* in Table 6.
Similarly, the optimal width shifts to 2W for all bench-
marks when comparing the same entries in Table 5.

Figures 4–5 show imposing thermal constraints shifts
the optimal depth to shallower design points. The perfor-
mance for CPU and memory-bound benchmarks are max-
imized for 18-24 and 24-30FO4 delays per stage, respec-
tively. Pipeline power dissipation increases superlinearly

with depth while pipeline area increases sublinearly ac-
cording to Section 3.2.3. Thus, growth in power dissipa-
tion exceeds area growth and the overall power density in-
creases with depth. Thus, optimal designs must shift to
shallower pipelines to meet thermal constraints. Similarly,
more aggressive thermal constraints, shown in Figure 5
shifts the optimal width to the narrower 2W, especially as
the number of cores increases. These results also suggest
thermal constraints will have a greater impact on pipeline
configurations than area constraints.

4.1.4 Area and Thermal Comparison

Comparing the impact of thermal constraints (no-
limit+NT+* versus nolimit+HR+*) to the impact of area
constraints (nolimit+NT+* versus 100+NT+*) demon-
strates larger shifts towards smaller pipeline dimensions.
In general, thermal constraints exert a greater influence on
the optimal design configurations.

Applying a more stringent area constraint reduces the
trend towards simpler cores. With a smaller chip area, re-
sulting in fewer cores and smaller caches, total power dis-
sipated and the need for thermal control is diminished. As
this occurs, pressure towards simpler cores with smaller
pipeline dimensions also fades.

4.1.5 Depth and Width Comparison

Consider a baseline configuration 2MB/18FO4/4W. As
thermal constraints are imposed, the configuration may
either shift to a shallower core (2MB/24FO4/4W) or
shift to a narrower core (2MB/18FO4/2W). Since changes
in width scale area for both functional units and many
queue structures, whereas changes in depth only scale
area for latches between stages, width reductions have a
greater area impact relative to depth reductions. Thus,
the 2MB/24FO4/4W core is a larger core relative to the
2MB/18FO4/2W and exhibits lower dynamic power den-
sity. However, the smaller 2MB/18FO4/2W core benefits
from less leakage power per core and, consequently, less
global power (since dynamic power dissipation is compa-
rable for both cores).

From our temperature models in Section 3.2.2, total
power output, Pglobal, has greater thermal impact for a
chip with a poor heat sink (i.e., high thermal resistance,
Rheatsink). Similarly, the thermal impact is dominated by
the local power density, Pcore, for a chip with a good heat
sink. In this case, the transfer of heat from the silicon sub-
strate to the spreader dominates thermal effects. Thus, to
minimize chip heatup, it is advantageous to reduce width
and global power in the context of a poor heat sink and ad-
vantageous to reduce depth and local power density in the
context of a more expensive heat sink.

4.2 Hazards of Neglecting Thermal Constraints

Thermal constraints should be considered early in the
design process. If a chip is designed without thermal con-
straints in mind, designers must later cut voltage and clock
frequency to meet thermal constraints. The resulting volt-
age and frequency, and hence performance, will likely be
cut more severely than if a thermally-aware configuration
were selected from the beginning. Figure 6 demonstrates
the slowdown incurred by choosing a non-thermally op-
timal design with voltage and frequency scaling over the
thermally-optimal design. The y-axis plots the thermal-
aware optimal performance minus the performance of the
configuration without thermal considerations, normalized
to the optimal performance. This figure summarizes the

slowdown for all combinations of die sizes, heat-sink con-
figurations, application classes, and for both pipeline depth
and width optimizations. The average difference for vary-
ing depth is around 12-17% and 7-16% for varying width.

However, we find that for large, 400mm2 chips, omit-
ting thermal consideration may result in huge perfor-
mance degradations. For example, the 400+HR+CPU and
400+HR+MEMORY configurations result in a 40% – 90%
difference in performance for BIPS and BIPS3/W. As area
constraints are relaxed, the optimal point tends to include
more cores and larger L2 caches. However, if the chip has
severe thermal problems, DVFS scaling must scale aggres-
sively to maintain thermal limits, into a region with sig-
nificant non-linear voltage and frequency scaling, produc-
ing large performance losses. For smaller chips with fewer
cores and smaller L2 caches, the difference may be negli-
gible because there are very few configurations to choose
from. As future CMP server-class microprocessors target
400mm2 chips with more than eight cores, it will be es-
sential to perform thermal analysis in the early-stages of
the design process when decisions about the number and
complexity of cores are being performed.

4.3 DVFS Versus Core Sizing

In meeting thermal constraints for large CMP machines
where global heat-up and total chip power is a concern,
designers may be forced to choose among implementing
fewer cores, smaller L2 caches, or employing aggressive
DVFS scaling. We find DVFS superior to removing cores
for CPU-bound applications as long as reductions in fre-
quency are met by at least an equal reduction in dynamic
and leakage power. Additional cores for CPU-bound appli-
cations provide linear increases in performance with near-
linear increases in power dissipation. However, because of
the strongly non-linear relationship between voltage scal-
ing and clock frequency at low voltages, voltage scaling at
some point stops providing super-linear power savings to
make up for the performance (clock-frequency) loss. At
this point, designers must consider removing cores and L2
cache from the design to meet thermal constraints.

For example, a chip with 30% leakage power no
longer achieves super-linear power-performance benefit
from DVFS scaling after roughly 0.55x Vdd scaling; fre-
quency of the chip drops to 0.18x and power dissipation
also to 0.18x (dominated by leakage power, which only
scales linearly with Vdd). Further reductions in Vdd lead
to greater performance loss than power savings. (In future
process technologies, more than 0.55x Vdd scaling may
also approach reliability limits of conventional CMOS cir-
cuits.)

Figure 5 shows an example of this behavior with the
2MB/18FO4/4W design. When this design exceeds 14
cores, further increases in core count lead to perfor-
mance degradation. Vdd scaling has exceeded 0.55x,
and the additional DVFS scaling necessary to meet ther-
mal constraints costs more performance than is gained
by adding these additional cores. On the other hand,
the 2MB/18FO4/2W design only requires Vdd scaling of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4 0

0+
L R + C P U

4 0
0+

H R + C P U
2 0

0+
L R + C P U

2 0
0+

H R + C P U
1 0

0+
L R + C P U

1 0
0+

H R + C P U

4 0
0+

L R + M
E M

O R Y

4 0
0+

H R + M
E M

O R Y

2 0
0+

L R + M
E M

O R Y

2 0
0+

H R + M
E M

O R Y

1 0
0+

L R + M
E M

O R Y

1 0
0+

H R + M
E M

O R Y
A v e

r a g
e

R
el

at
iv

e
di

ff
er

en
ce

 f
ro

m
 o

pt
im

al
D if f e r e n c e f r o m o p tim a l B I P S D if f e r e n c e f r o m o p tim a l B I P S ^ 3 /W

(a) Optimized for pipeline depth

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 0
0+

L R + C P U

4 0
0+

H R + C P U

2 0
0+

L R + C P U

2 0
0+

H R + C P U

1 0
0+

L R + C P U

1 0
0+

H R + C P U

4 0
0+

L R + M
E M

O R Y

4 0
0+

H R + M
E M

O R Y

2 0
0+

L R + M
E M

O R Y

2 0
0+

H R + M
E M

O R Y

1 0
0+

L R + M
E M

O R Y

1 0
0+

H R + M
E M

O R Y

A v e
r a g

e

R
el

at
iv

e
di

ff
er

en
ce

 f
ro

m
 o

pt
im

al

D if f e r e n c e f r o m o p tim a l B I P S D if f e r e n c e f r o m o p tim a l B I P S ^ 3 /W

(b) Optimized for pipeline width

Figure 6. The difference from the optimal when no thermal consideration is made in early design.

0.57x out to 20 cores, which is why this design is attractive
even with the additional cores.

Similar analyses hold for memory-bound applications.
In this case, the tradeoff is more complex, because the per-
formance benefit from adding cores may be non-linear.

4.4 Accommodating Heterogeneous Workloads

Figures 3–5 also highlight the difficulty of accommodat-
ing a range of workload types under area constraints.This is
less of a concern when looking at a small number of cores
like most prior studies. Prior studies have also neglected
the role of pipeline dimensions, which we find to play a
major role. And for large numbers of cores, radically dif-
ferent configurations are possible.

CPU-bound and memory-bound workloads have dif-
ferent, incompatible optima. The performance loss from
using the CPU-bound optimum with the memory-bound
workload and vice-versa is severe, 37–41% and 26–53%
respectively, depending on thermal constraints. Even if we
try to identify compromise configurations, it is surprising
how poorly they perform for one or the other workload. Of
course, the best compromise depends on how heavily each
workload is weighted. We tried to minimize the perfor-
mance loss on both workloads.

With no thermal limits, the best configuration is 16 4-
wide, 18FO4-deep cores with 8MB of cache, incurring an
18% penalty for the CPU-bound workload. If we turn off 8
cores, it incurs 10% penalty for the memory-bound work-
load. Moving to 16MB improves memory-bound perfor-
mance, but hurts CPU-bound performance because it sac-
rifices 8 cores with an area constraint of 400 mm2.

With thermal limits, the optimal configurations begin to
converge, as the maximum possible number of cores and
the L2 cache size is constrained, as the BIPS benefit of
extra cores is reduced for CPU-bound benchmarks, and as
the benefit of additional cache lines is reduced for memory-
bound benchmarks. For low thermal resistance, the best
compromise is 18 4-wide cores and 8 MB. This incurs only
a 4% performance loss for CPU-bound benchmark and a
10% loss for the memory-bound case. With high thermal

resistance, the best compromise is 14 4-wide, 30FO4-deep
cores with 8 MB of cache. Turning off 4 cores we reach
the optimal configuration for memory-bound case, but this
configuration incurs 12% penalty for the CPU-bound case.

Although the discrepancy between the needs of CPU-
and memory-bound workloads narrows with increasing
thermal constraints, some penalty seems inevitable, be-
cause CPU-bound benchmarks prefer more cores while
memory-bound benchmarks prefer larger L2 caches. It is
interesting to note that we do not see a simple heuristic for
identifying good compromise configurations.

5 Conclusions

Our major conclusions include:

• Joint optimization across multiple design variables is
necessary. Even pipeline depth, typically fixed in ar-
chitecture studies, may impact core area and power
enough to change the optimal core count. Optimizing
without thermal constraints and then scaling to a ther-
mal envelope leads to dramatically inferior designs
compared to those obtained from including thermal
constraints in the initial optimization.

• Thermal constraints appear to dominate other physi-
cal constraints like pin-bandwidth and power delivery.
Once thermal constraints are met, at least within the
design space we studied, power and throughput have
been throttled sufficiently to fall safely within current
off-chip I/O bandwidth capabilities and ITRS power-
delivery projections.

• Thermal constraints tend to favor shallower pipelines
and narrower cores, and tend to reduce the opti-
mal number of cores and L2 cache size. Neverthe-
less, even under severe thermal constraints, additional
cores benefit throughput despite aggressive reductions
in operating voltage and frequency. This is true until
performance gains from an additional core is negated
by the impact of the additional voltage and frequency
scaling required of all the cores. This inflection oc-
curs at approximately 55% of the nominal Vdd, well

into the range of non-linear frequency scaling (18%
of nominal!).

• For aggressive cooling solutions, reducing power den-
sity is at least as important as reducing total power.
For low-cost cooling solutions, however, reducing to-
tal power is more important because raising power
dissipation (even if power density is the same) raises
a chip’s temperature.

These results raise a range of questions for future work,
such as the need for adaptive chip architectures that can dy-
namically accommodate the full range of workloads, from
heavily CPU-bound to heavily memory-bound. Examining
how our findings here might change with other workloads
(e.g., scientific parallel applications or communication-
heavy commercial server workloads) and other architec-
tures (e.g., in-order processors) is future work. Further re-
search on L2/L3/Memory interconnect/ hierarchy for CMP
and on the impact of clock propagation on CMP through-
put and power is also necessary.

While CMPs may optimize for throughput-oriented ap-
plication workloads at the expense of single-thread perfor-
mance, single-thread performance will still be an important
consideration for many application domains. Addressing
single-thread performance will likely require additional de-
sign tradeoffs. This does not necessarily require aggressive
superscalar cores running at full voltage and frequency. Fu-
ture research in this direction must consider speculative
multithreading, heterogeneous cores, dynamic core adap-
tation, run-ahead execution/scouting, and so forth.

Acknowledgments

This work was funded in part by the National Science Founda-
tion under grant nos. CAREER CCR-0133634, CAREER CCF-
0448313, CCR-0306404, CCF-0429765, a Faculty Partnership
Award from IBM T.J. Watson, a gift from Intel Corp., and an
Excellence Award from the Univ. Fund for Excellence in Science
and Technology. We would also like to thank Dee A. B. Weikle
and the anonymous reviewers for their helpful feedback.

References

[1] D. Brooks, P. Bose, V. Srinivasan, M. Gschwind, P. Emma, and
M. Rosenfield. Microarchitecture-level power-performance analy-
sis: the powertimer approach. IBM J. Research and Development,
47(5), 2003.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In Proc. of the
27th Int’l Symp. on Computer Architecture, Jun. 2000.

[3] P. Chaparro, J. Gonzalez, and A. Gonzalez. Thermal-aware clus-
tered microarchitectures. In Proc. of the Int’l Conf. on Computer
Design, Oct. 2004.

[4] S. Chaudhry, P. Caprioli, S. Yip, and M. Tremblay. High perfor-
mance throughput computing. IEEE Micro, 25(3):32–45, May/June
2005.

[5] M. Ekman and P. Stenstrom. Performance and power impact of
issue-width in chip-multiprocessor cores. In Proc. of the Int’l Conf.
on Parallel Processing, Oct. 2003.

[6] A. El-Moursy, R. Garg, D. Albonesi, and S. Dwarkadas. Partitioning
multi-threaded processors with a large number of threads. In Proc.
of the 2005 Int’l Symp. on Performance Analysis of Systems and
Software, Mar. 2005.

[7] G. Hamerly, E. Perelman, J. Lau, and B. Calder. Simpoint 3.0:
Faster and more flexible program analysis. In Proc. of the Wkshp on
Modeling, Benchmarking and Simulation, June 2005.

[8] A. Hartstein and T. R. Puzak. The optimum pipeline depth for a
microprocessor. In Proc. of the 29th Int’l Symp. on Computer Ar-
chitecture, pages 7–13, May 2002.

[9] M. S. Hrishikesh et al. The optimal logic depth per pipeline stage
is 6 to 8 FO4 inverter delays. In Proc. of the 29th Int’l Symp. on
Computer Architecture, pages 14–24, May 2002.

[10] J. Huh, D. Burger, and S. W. Keckler. Exploring the design space
of future CMPs. In Proc. of the Int’l Conf. on Parallel Architectures
and Compilation Techniques, Sep. 2001.

[11] T. Karkhanis and J. E. Smith. A first-order superscalar processor
model. In Proc. of the 31st Int’l Symp. on Computer Architecture,
Jun. 2004.

[12] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way
multithreaded sparc processor. IEEE Micro, 25(2):21–29, Mar./Apr.
2005.

[13] B. Kumar and E. S. Davidson. Computer system design using a hi-
erarchical approach to performance evaluation. In Communications
of the ACM, 23(9), Sep. 1980.

[14] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in multi-
core architectures: Understanding mechanisms, overheads and scal-
ing. In The 32nd Int’l Symp. on Computer Architecture, June. 2005.

[15] S. R. Kunkel, R. J. Eickemeyer, M. H. Lipasti, T. J. Mullins,
B. O.Krafka, H. Rosenberg, S. P. Vander-Wiel, P. L. Vitale, and
L. D. Whitley. A performance methodology for commercial servers.
In IBM J. of Research and Development, 44(6), 2000.

[16] B. Lee and D. Brooks. Effects of pipeline complexity on SMT/CMP
power-performance efficiency. In Proc. of the Workshop on Com-
plexity Effective Design, Jun. 2005.

[17] J. Li and J. F. Martinez. Power-performance implications of thread-
level parallelism on chip multiprocessors. In Proc. of the 2005
Int’l Symp. on Performance Analysis of Systems and Software, pages
124–34, Mar. 2005.

[18] Y. Li, D. Brooks, Z. Hu, and K. Skadron. Performance, energy and
thermal considerations for SMT and CMP architectures: Extended
discussion and results. Technical Report CS-2004-32, Univ. of Vir-
ginia Dept. of Computer Science, Oct. 2004.

[19] M. Moudgill, J. Wellman, and J. Moreno. Environment for powerpc
microarchitecture exploration. IEEE Micro, 19(3), May/Jun. 1999.

[20] K. Ramani, N. Muralimanohar, and R. Balasubramonian. Microar-
chitectural techniques to reduce interconnect power in clustered pro-
cessors. In Proc. of the Workshop on Complexity Effective Design,
Jun. 2004.

[21] K. Skadron, K. Sankaranarayanan, S. Velusamy, D. Tarjan, M. R.
Stan, and W. Huang. Temperature-aware microarchitecture: Mod-
eling and implementation. ACM Trans. on Architecture and Code
Optimization, 1(1), Mar. 2004.

[22] E. Sprangle and D. Carmean. Increasing processor performance by
implementing deeper pipelines. In Proc. of the 29th Int’l Symp. on
Computer Architecture, pages 25–34, May 2002.

[23] M. Tremblay, B. Joy, and K. Shin. A three dimensional register file
for superscalar processors. In Proc. of the 28th Hawaii Int’l Conf.
on System Sciences, 1995.

[24] N. Weste and D. Harris. CMOS VLSI design: A circuit and systems
perspective. Addison-Wesley, 2005.

[25] V. Zyuban. Inherently lower-power high-performance superscalar
architectures. PhD thesis, Univ. of Notre Dame, Mar. 2000.

[26] V. Zyuban, D. Brooks, V. Srinivasan, M. Gschwind, P. Bose,
P. Strenski, and P. Emma. Integrated analysis of power and perfor-
mance for pipelined microprocessors. IEEE Transactions on Com-
puters, 53(8), Aug. 2004.

