
TESLA’S BIG
BATTERY BETS
A new cathode—
plus supercapacitors
P. 08

ENGINEERING A
QUANTUM COMPUTER
Here are the big
remaining challenges
P. 24

TRIMMING WASTE
IN DATA CENTERS
How game theory
cuts power usage
P. 40

“SUPERPOWER GLASS”
TAKES ON AUTISM
Letting children see
the world in a new way
P. 46

FOR THE TECHNOLOGY INSIDER | 04.20

The 2020 Chevrolet
Corvette Stingray C8:

Mod, muscular, and
mid-engined P. 32

W H E N Y O U H E A R T H E W O R D S “data center” and “games,” you
probably think of massive multiplayer online games like
World of Warcraft. But there’s another kind of game going on
in data centers, one meant to hog resources from the shared
mass of computers and storage systems. • Even employees
of Google, the company with perhaps the most massive data
footprint, once played these games. When asked to submit
a job’s computing requirements, some employees inflated their requests for resources in order to
reduce the amount of sharing they’d have to do with others. Interestingly, some other employees
deflated their resource requests to pretend that their tasks could easily fit within any computer.
Once their tasks were slipped into a machine, those operations would then use up all the resources
available on it and squeeze out their colleagues’ tasks. • Such trickery might seem a little comical,
but it actually points to a real problem—inefficiency. • Globally, data centers consumed 205 billion
kilowatt-hours of electricity in 2018. That’s not much less than all of Australia used, and about
1 percent of the world total. A lot of that energy is wasted because servers are not used to their full
capacity. An idle server dissipates as much as 50 percent of the power it consumes when running at
its peak; as the server takes on work, its fixed power costs are amortized over that work. Because a
user running a single task typically takes up only 20 to 30 percent of the server’s

A WIN FOR
GAME
THEORY
IN THE
DATA CENTER

With the right strategy,
colossal computing centers
will waste less power
By Seyed Majid Zahedi &
Benjamin C. Lee

40 | APR 2020 | SPECTRUM.IEEE.ORG ILLUSTRATION BY Eric Frommelt

https://spectrum.ieee.org/tag/data+center
https://spectrum.ieee.org/computing/hardware/reducing-world-of-warcrafts-power-consumption
https://youtu.be/0W49z8hVn0k
https://dx.doi.org/10.1126/science.aba3758
https://dx.doi.org/10.1126/science.aba3758
SPECTRUM.IEEE.ORG

resources, multiple users must share the server to boost its
utilization and consequently its energy efficiency. Sharing also
reduces capital, operating, and infrastructure costs. Not every-
body is rich enough to build their own data centers, after all.

To allocate shared resources, data centers deploy resource-
management systems, which divide up available processor
cores, memory capacity, and network resources according to
users’ needs and the system’s own objectives. At first glance,
this task should be straightforward because users often have
complementary demands. But in truth, it’s
not. Sharing creates competition among
users, as we saw with those crafty Googlers,
and that can distort the use of resources.

So we have pursued a series of proj-
ects using game theory, the mathematical
models that describe strategic interac-
tions among rational decision makers, to
manage the allocation of resources among
self-interested users while maximizing
data-center efficiency. In this situation,
playing the game makes all the difference.

H E L P I N G A G R O U P O F R A T I O N A L and self-
interested users share resources efficiently
is not just a product of the big-data age.
Economists have been doing it for decades.
In economics, market mechanisms set
prices for resources based on supply and
demand. Indeed, many of these mecha-
nisms are currently deployed in public data
centers, such as Amazon EC2 and Microsoft
Azure. There, the transfer of real money acts
as a tool to align users’ incentives (perfor-
mance) with the provider’s objectives (effi-
ciency). However, there are many situations
where the exchange of money is not useful.

Let’s consider a simple example. Suppose
that you are given a ticket to an opera on the
day of your best friend’s wedding, and you
decide to give the ticket to someone who
will best appreciate the event. So you run
what’s called a second-price auction: You
ask your friends to bid for the ticket, stipu-
lating that the winner pay you the amount
of the second-highest bid. It has been math-
ematically proven that your friends have no
incentives to misrepresent how much they
value the opera ticket in this kind of auction.

If you do not want money or cannot make your friends pay
you any, your options become very limited. If you ask your
friends how much they would love to go the opera, nothing
stops them from exaggerating their desire for the ticket. The
opera ticket is just a simple example, but there are plenty of
places—such as Google’s private data centers or an academic
computer cluster—where money either can’t or shouldn’t
change hands to decide who gets what.

Game theory provides practical solutions for just such a
problem, and indeed it has been adapted for use in both com-
puter networks and computer systems. We drew inspiration
from those two fields, but we also had to address their limita-
tions. In computer networks, there has been much work in
designing mechanisms to manage self-interested and uncoor-
dinated routers to avoid congestion. But these models consider
contention over only a single resource—network bandwidth.
In data-center computer clusters and servers, there is a wide

range of resources to fight over.
In computer systems, there’s been a surge

of interest in resource-allocation mecha-
nisms that consider multiple resources,
notably one called dominant resource
fairness. However, this and similar work
is restricted to performance models and to
ratios of processors and memory that don’t
always reflect what goes on in a data center.

To come up with game theory models that
would work in the data center, we delved
into the details of hardware architecture,
starting at the smallest level: the transistor.

Transistors were long made to dissipate
ever less power as they scaled down in size,
in part by lowering the operating voltage. By
the mid-2000s, however, that trend, known
as Denard Scaling, had broken down. As
a result, for a fixed power budget, proces-
sors stopped getting faster at the rate to
which we had become accustomed. A tem-
porary solution was to put multiple pro-
cessor cores on the same chip, so that the
enormous number of transistors could still
be cooled economically. However, it soon
became apparent that you cannot turn on
all the cores and run them at full speed for
very long without melting the chip.

In 2012, computer architects proposed a
workaround called computational sprint-
ing. The concept was that processor cores
could safely push past their power bud-
get for short intervals called sprints. After
a sprint, the processor has to cool down
before the next sprint; otherwise the chip
is destroyed. If done correctly, sprinting
could make a system more responsive to
changes in its workload. Computational
sprinting was originally proposed for pro-

cessors in mobile devices like smartphones, which must limit
power usage both to conserve charge and to avoid burning the
user. But sprinting soon found its way into data centers, which
use the trick to cope with bursts of computational demand.

H E R E ’ S W H E R E T H E P R O B L E M A R I S E S . Suppose that self-interested
users own sprinting-enabled servers, and those servers all
share a power supply in a data center. Users could sprint to

SPRINTING’S
UPS AND

DOWNS
Computational sprinting
allocates more processor

cores and boosts their
frequencies to speed

algorithms such as
Google’s PageRank.

However, it consumes
more power and

raises the processor
temperature.

7×NORMALIZED SPEEDUP

150%
NORMALIZED POWER

14 °C
AVERAGE

TEMPERATURE INCREASE

42 | APR 2020 | SPECTRUM.IEEE.ORG

https://plato.stanford.edu/entries/game-theory/
https://aws.amazon.com/ec2/
https://azure.microsoft.com/en-us/free/search/?&ef_id=Cj0KCQiAkKnyBRDwARIsALtxe7j6gjEhnbBLM0Ij0iLSEKaz0042GZeQy-5ceJn62sbrH9MnBLzPxT8aAkLrEALw_wcB:G:s&OCID=AID2000128_SEM_nMefqETA&MarinID=nMefqETA_306007242193_microsoft%20azure_e_c__54364263813_kwd-296628012691&lnkd=Google_Azure_Brand&gclid=Cj0KCQiAkKnyBRDwARIsALtxe7j6gjEhnbBLM0Ij0iLSEKaz0042GZeQy-5ceJn62sbrH9MnBLzPxT8aAkLrEALw_wcB
https://azure.microsoft.com/en-us/free/search/?&ef_id=Cj0KCQiAkKnyBRDwARIsALtxe7j6gjEhnbBLM0Ij0iLSEKaz0042GZeQy-5ceJn62sbrH9MnBLzPxT8aAkLrEALw_wcB:G:s&OCID=AID2000128_SEM_nMefqETA&MarinID=nMefqETA_306007242193_microsoft%20azure_e_c__54364263813_kwd-296628012691&lnkd=Google_Azure_Brand&gclid=Cj0KCQiAkKnyBRDwARIsALtxe7j6gjEhnbBLM0Ij0iLSEKaz0042GZeQy-5ceJn62sbrH9MnBLzPxT8aAkLrEALw_wcB
https://cs.stanford.edu/~matei/papers/2011/nsdi_drf.pdf
https://cs.stanford.edu/~matei/papers/2011/nsdi_drf.pdf
https://spectrum.ieee.org/semiconductors/processors/multicore-cpu-processor-proliferation
https://spectrum.ieee.org/semiconductors/processors/multicore-cpu-processor-proliferation
http://acg.cis.upenn.edu/sprinting/
http://acg.cis.upenn.edu/sprinting/
SPECTRUM.IEEE.ORG

Players are users of a shared data center. If a player
chooses to sprint during epoch 5 they achieve a certain
gain, but they must wait several epochs while the processor
cools before they can sprint again. Had they waited to sprint
for a later round they would have accrued more units of gain.

increase the computational power of their processors, but if
a large fraction of them sprint simultaneously, the power load
will spike. The circuit breaker is then tripped. This forces the
batteries in the uninterruptible power supply (UPS) to pro-
vide power while the system recovers. After such a power
emergency, all the servers on that power supply are forced
to operate on a nomi nal power budget—no sprinting allowed—
while the batteries recharge.

This scenario is a version of the classic “tragedy of the com-
mons,” first identified by British economist William Forster
Lloyd in an 1833 essay. He described the following situation:
Suppose that cattle herders share a common parcel of land to
graze their cows. If an individual herder puts more than the
allotted number of cattle on the common, that herder could
achieve marginal benefits. But if many herders do that, the
overgrazing will damage the land, hurting everyone.

Together with Songchun Fan, then a Duke University doc-
toral candidate, we studied sprinting strategies as a tragedy of
the commons. We built a model of the system that focused on
the two main physical constraints. First, for a server processor,
a sprint restricts future action by requiring the processor to
wait while the chip dissipates heat. Second, for a server clus-
ter, if the circuit breaker trips, then all the server processors
must wait while the UPS batteries recharge.

We formulated a sprinting game in which users, in each round,
could be in one of three states: active, cooling after a sprint, or
recovering after a power emergency. In each epoch, or round
of the game, a user’s only decision is whether or not to sprint
when their processor is active. Users want to optimize their
sprinting to gain benefits, such as improved throughput or
reduction in execution time. You should note that these ben-
efits vary according to when the sprint happens. For instance,
sprinting is more beneficial when demand is high.

Consider a simple example. You are at round 5, and you
know that if you sprint, you will gain 10 units of benefit. How-
ever, you’d have to let your processor cool down for a couple
of rounds before you can sprint again. But now, say you sprint,
and then it turns out that if you had instead waited for round 6
to sprint, you could have gained 20 units. Alternatively, suppose
that you save your sprint for a future round instead of using it
in round 5. But it turns out that all the other users decided to
sprint at round 5, causing a power emergency that prevents
you from sprinting for several rounds. Worse, by then your
gains won’t be nearly as high.

All users must make these kinds of decisions based on how
much utility they gain and on other users’ sprinting strate-
gies. While it might be fun to play against a few users, making
these decisions becomes intractable as the number of com-
petitors grows to data-center scale. Fortunately, we found a
way to optimize each user’s strategy in large systems by using
what’s called mean field game analysis. This method avoids the
complexity of scrutinizing individual competitors’ strategies
by instead describing their behavior as a population. Key to
this statistical approach is the assumption that any individual
user’s actions do not change the average system behavior sig-
nificantly. Because of that assumption, we can approximate

THE SPRINTING GAME

If too many players choose to sprint at once, the increase
in current can cause a power emergency. No one, not even
player 4, who did not sprint, is allowed to sprint again until
the computer cluster’s uninterruptible power supply bat-
tery has recharged.

SPRINT

COOLING

POTENTIAL GAIN

PLAYER 2

PLAYER 3

PLAYER 4

PLAYER 1

SPRINT

POWER
EMERGENCY

BATTERY
RECHARGING

POTENTIAL GAIN

GAME EPOCHS1 20

GAME EPOCHS1 20

SPECTRUM.IEEE.ORG | APR 2020 | 43

https://www.investopedia.com/terms/t/tragedy-of-the-commons.asp
https://www.investopedia.com/terms/t/tragedy-of-the-commons.asp
https://en.wikipedia.org/wiki/William_Forster_Lloyd
https://en.wikipedia.org/wiki/William_Forster_Lloyd
https://schfan.github.io/
SPECTRUM.IEEE.ORG

	CS1.Spectrum.20.INT
	CS2.Spectrum.20.INT
	001.Spectrum.20.INT
	002.Spectrum.20.INT
	003.Spectrum.20.INT
	004.Spectrum.20.INT
	005.Spectrum.20.INT
	006.Spectrum.20.INT
	007.Spectrum.20.INT
	008.Spectrum.20.INT
	009.Spectrum.20.INT
	010.Spectrum.20.INT
	011.Spectrum.20.INT
	012.Spectrum.20.INT
	013.Spectrum.20.INT
	014.Spectrum.20.INT
	015.Spectrum.20.INT
	016.Spectrum.20.INT
	017.Spectrum.20.INT
	018.Spectrum.20.INT
	019.Spectrum.20.INT
	020.Spectrum.20.INT
	021.Spectrum.20.INT
	022.Spectrum.20.INT
	023.Spectrum.20.INT_1
	023.Spectrum.20.INT
	024.Spectrum.20.INT
	025.Spectrum.20.INT
	026.Spectrum.20.INT
	027.Spectrum.20.INT
	028.Spectrum.20.INT
	029.Spectrum.20.INT
	030.Spectrum.20.INT
	031.Spectrum.20.INT
	032.Spectrum.20.INT
	033.Spectrum.20.INT
	034.Spectrum.20.INT
	035.Spectrum.20.INT
	036.Spectrum.20.INT
	037.Spectrum.20.INT
	038.Spectrum.20.INT
	039.Spectrum.20.INT
	040.Spectrum.20.INT
	041.Spectrum.20.INT
	042.Spectrum.20.INT
	043.Spectrum.20.INT
	044.Spectrum.20.INT
	045.Spectrum.20.INT
	046.Spectrum.20.INT
	047.Spectrum.20.INT
	048.Spectrum.20.INT
	049.Spectrum.20.INT
	050.Spectrum.20.INT
	051.Spectrum.20.INT
	052.Spectrum.20.INT
	053.Spectrum.20.INT
	054.Spectrum.20.INT
	055.Spectrum.20.INT
	056.Spectrum.20.INT
	CS3.Spectrum.20.INT
	CS4.Spectrum.20.INT

