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W H E N  Y O U  H E A R  T H E  W O R D S  “data center” and “games,” you 
probably think of massive multiplayer online games like 
World of Warcraft. But there’s another kind of game going on 
in data centers, one meant to hog resources from the shared 
mass of computers and storage systems. • Even employees 
of Google, the company with perhaps the most massive data 
footprint, once played these games. When asked to submit 
a job’s computing requirements, some employees inflated their requests for resources in order to 
reduce the amount of sharing they’d have to do with others. Interestingly, some other employees 
deflated their resource requests to pretend that their tasks could easily fit within any computer. 
Once their tasks were slipped into a machine, those operations would then use up all the resources 
available on it and squeeze out their colleagues’ tasks. • Such trickery might seem a little comical, 
but it actually points to a real problem—inefficiency. • Globally, data centers consumed 205 billion 
kilowatt-hours of electricity in 2018. That’s not much less than all of Australia used, and about 
1 percent of the world total. A lot of that energy is wasted because servers are not used to their full 
capacity. An idle server dissipates as much as 50 percent of the power it consumes when running at 
its peak; as the server takes on work, its fixed power costs are amortized over that work. Because a 
user running a single task typically takes up only 20 to 30 percent of the server’s
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resources, multiple users must share the server to boost its 
utilization and consequently its energy efficiency. Sharing also 
reduces capital, operating, and infrastructure costs. Not every-
body is rich enough to build their own data centers, after all. 

To allocate shared resources, data centers deploy resource-
management systems, which divide up available processor 
cores, memory capacity, and network resources according to 
users’ needs and the system’s own objectives. At first glance, 
this task should be straightforward because users often have 
complementary demands. But in truth, it’s 
not. Sharing creates competition among 
users, as we saw with those crafty Googlers, 
and that can distort the use of resources. 

So we have pursued a series of proj-
ects using game theory, the mathematical 
models that describe strategic interac-
tions among rational decision makers, to 
manage the allocation of resources among 
self-interested users while maximizing 
data-center efficiency. In this situation, 
playing the game makes all the difference. 

H E L P I N G  A  G R O U P  O F  R A T I O N A L  and self- 
interested users share resources efficiently 
is not just a product of the big-data age. 
Economists have been doing it for decades. 
In economics, market mechanisms set 
prices for resources based on supply and 
demand. Indeed, many of these mecha-
nisms are currently deployed in public data 
centers, such as Amazon EC2 and Microsoft 
Azure. There, the transfer of real money acts 
as a tool to align users’ incentives (perfor-
mance) with the provider’s objectives (effi-
ciency). However, there are many situations 
where the exchange of money is not useful.

Let’s consider a simple example. Suppose 
that you are given a ticket to an opera on the 
day of your best friend’s wedding, and you 
decide to give the ticket to someone who 
will best appreciate the event. So you run 
what’s called a second-price auction: You 
ask your friends to bid for the ticket, stipu-
lating that the winner pay you the amount 
of the second-highest bid. It has been math-
ematically proven that your friends have no 
incentives to misrepresent how much they 
value the opera ticket in this kind of auction. 

If you do not want money or cannot make your friends pay 
you any, your options become very limited. If you ask your 
friends how much they would love to go the opera, nothing 
stops them from exaggerating their desire for the ticket. The 
opera ticket is just a simple example, but there are plenty of 
places—such as Google’s private data centers or an academic 
computer cluster—where money either can’t or shouldn’t 
change hands to decide who gets what.

Game theory provides practical solutions for just such a 
problem, and indeed it has been adapted for use in both com-
puter networks and computer systems. We drew inspiration 
from those two fields, but we also had to address their limita-
tions. In computer networks, there has been much work in 
designing mechanisms to manage self-interested and uncoor-
dinated routers to avoid congestion. But these models consider 
contention over only a single resource—network bandwidth. 
In data-center computer clusters and servers, there is a wide 

range of resources to fight over.
In computer systems, there’s been a surge 

of interest in resource-allocation mecha-
nisms that consider multiple resources, 
notably one called dominant resource 
fairness. However, this and similar work 
is restricted to performance models and to 
ratios of processors and memory that don’t 
always reflect what goes on in a data center. 

To come up with game theory models that 
would work in the data center, we delved 
into the details of hardware architecture, 
starting at the smallest level: the transistor.

Transistors were long made to dissipate 
ever less power as they scaled down in size, 
in part by lowering the operating voltage. By 
the mid-2000s, however, that trend, known 
as Denard Scaling, had broken down. As 
a result, for a fixed power budget, proces-
sors stopped getting faster at the rate to 
which we had become accustomed. A tem-
porary solution was to put multiple pro-
cessor cores on the same chip, so that the 
enormous number of transistors could still 
be cooled economically. However, it soon 
became apparent that you cannot turn on 
all the cores and run them at full speed for 
very long without melting the chip.

In 2012, computer architects proposed a 
workaround called computational sprint-
ing. The concept was that processor cores 
could safely push past their power bud-
get for short intervals called sprints. After 
a sprint, the processor has to cool down 
before the next sprint; otherwise the chip 
is destroyed. If done correctly, sprinting 
could make a system more responsive to 
changes in its workload. Computational 
sprinting was originally proposed for pro-

cessors in mobile devices like smartphones, which must limit 
power usage both to conserve charge and to avoid burning the 
user. But sprinting soon found its way into data centers, which 
use the trick to cope with bursts of computational demand.

H E R E ’ S  W H E R E  T H E  P R O B L E M  A R I S E S .  Suppose that self-interested 
users own sprinting-enabled servers, and those servers all 
share a power supply in a data center. Users could sprint to 
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Players are users of a shared data center. If a player 
chooses to sprint during epoch 5 they achieve a certain 
gain, but they must wait several epochs while the processor 
cools before they can sprint again. Had they waited to sprint 
for a later round they would have accrued more units of gain.

increase the computational power of their processors, but if 
a large fraction of them sprint simultaneously, the power load 
will spike. The circuit breaker is then tripped. This forces the 
batteries in the uninterruptible power supply (UPS) to pro-
vide power while the system recovers. After such a power 
emergency, all the servers on that power supply are forced 
to operate on a nomi nal power budget—no sprinting allowed—
while the batteries recharge. 

This scenario is a version of the classic “tragedy of the com-
mons,” first identified by British economist William Forster 
Lloyd in an 1833 essay. He described the following situation: 
Suppose that cattle herders share a common parcel of land to 
graze their cows. If an individual herder puts more than the 
allotted number of cattle on the common, that herder could 
achieve marginal benefits. But if many herders do that, the 
overgrazing will damage the land, hurting everyone. 

Together with Songchun Fan, then a Duke University doc-
toral candidate, we studied sprinting strategies as a tragedy of 
the commons. We built a model of the system that focused on 
the two main physical constraints. First, for a server processor, 
a sprint restricts future action by requiring the processor to 
wait while the chip dissipates heat. Second, for a server clus-
ter, if the circuit breaker trips, then all the server processors 
must wait while the UPS batteries recharge. 

We formulated a sprinting game in which users, in each round, 
could be in one of three states: active, cooling after a sprint, or 
recovering after a power emergency. In each epoch, or round 
of the game, a user’s only decision is whether or not to sprint 
when their processor is active. Users want to optimize their 
sprinting to gain benefits, such as improved throughput or 
reduction in execution time. You should note that these ben-
efits vary according to when the sprint happens. For instance, 
sprinting is more beneficial when demand is high.

Consider a simple example. You are at round 5, and you 
know that if you sprint, you will gain 10 units of benefit. How-
ever, you’d have to let your processor cool down for a couple 
of rounds before you can sprint again. But now, say you sprint, 
and then it turns out that if you had instead waited for round 6 
to sprint, you could have gained 20 units. Alternatively, suppose 
that you save your sprint for a future round instead of using it 
in round 5. But it turns out that all the other users decided to 
sprint at round 5, causing a power emergency that prevents 
you from sprinting for several rounds. Worse, by then your 
gains won’t be nearly as high.

All users must make these kinds of decisions based on how 
much utility they gain and on other users’ sprinting strate-
gies. While it might be fun to play against a few users, making 
these decisions becomes intractable as the number of com-
petitors grows to data-center scale. Fortunately, we found a 
way to optimize each user’s strategy in large systems by using 
what’s called mean field game analysis. This method avoids the 
complexity of scrutinizing individual competitors’ strategies 
by instead describing their behavior as a population. Key to 
this statistical approach is the assumption that any individual 
user’s actions do not change the average system behavior sig-
nificantly. Because of that assumption, we can approximate 

THE SPRINTING GAME

If too many players choose to sprint at once, the increase 
in current can cause a power emergency. No one, not even 
player 4, who did not sprint, is allowed to sprint again until 
the computer cluster’s uninterruptible power supply bat-
tery has recharged.
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