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We study the behavior of strategic customers in an open-routing service network with multiple stations.

When a customer enters the network, she is free to choose the sequence of stations that she visits, with the

objective of minimizing her expected total system time. We propose a two-station game with all customers

present at the start of service and deterministic service times, and we find that strategic customers “herd,”

i.e., in equilibrium all customers choose the same route. For unobservable systems, we prove that the game

is supermodular, and we then identify a broad class of learning rules—which includes both fictitious play

and Cournot best-response—that converges to herding in finite time. By combining different theoretical and

numerical analyses, we find that the herding behavior is prevalent in many other congested open-routing

service networks, including those with arrivals over time, those with stochastic service times, and those with

more than two stations. We also find that the system under herding performs very close to the first-best

outcome in terms of cumulative system time.
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1. Introduction

In many large entertainment or commercial service environments, various services are provided

at different stations, and individuals are often free to strategically choose their route through the

system. For example, consider a catered reception with a buffet line in the main dining room and a

beverage cart in the adjacent hall. A guest wants to visit both stations, but she may choose to do

so in either order. The guest wishes to select the sequence that minimizes the time that she spends

waiting in queues, but given that other guests are probably also attempting to do the same, which

sequence should she choose?

This example highlights the strategic behavior of rational customers in service networks with

open routing, i.e., those in which customers can visit the stations in any order. The dynamics of

service networks with open routing are more complex than those of systems in which customers
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merely choose a server, such as a grocery store where customers choose a checkout lane. In that

example, once a customer has chosen her preferred lane, she is not impacted by the service process

of any lane but her own. However, in a network with open routing, customers who choose different

routes can still end up at the same station at the same time, directly impacting each other’s waiting

times. For instance, a customer who finishes service at station A and joins the queue at station B

may encounter another customer there who chose to visit station B first and will visit station A

later.

Open routing characterizes a variety of other service environments in addition to the aforemen-

tioned catering example. For instance, Baron et al. (2016) study an outpatient medical clinic in

which patients receive a battery of tests over several hours. Tests may be administered in any

order, and they numerically study the problem of a central planner who seeks to maximize patient

satisfaction. Open-routing service systems also include amusement parks (where customers choose

the order in which they visit the attractions), shopping centers (where customers choose the order

in which they visit the stores), and college orientations (where students must accomplish multiple

tasks, such as a campus tour and a residence hall visit, in any order).

Motivated by these applications, we study how strategic customers choose their routes in a

stylized open-routing service environment. In order to achieve a broad understanding of the role

of open routing, we characterize analytically the behavior of strategic customers in a two-station

network under some restrictive assumptions, and employ numerical simulation to relax some of

these assumptions and show that the same insights also hold in more realistic settings.

In the base model, we study a two-station network in which customers require services from

both stations. Each station serves its customers on a first-come, first-serve (FCFS) basis. To model

strategic open routing, we assume that each customer chooses her own route to acquire service

from both stations in the network, with the objective of minimizing her expected total time in the

system, and that all customers are present prior to the start of service. Intuitively, one might expect

that a rational customer would attempt to avoid the popular route in order to receive service as

quickly as possible. However, closer inspection reveals that a rational customer’s decision is driven

instead by the need to get into a favorable position at the more congested station. This leads to a

surprising herding behavior: in any pure-strategy Nash equilibrium, all customers choose exactly

the same route. This behavior is related to the notion of “follow the crowd” as discussed in Hassin

and Haviv (2003) and Hassin (2016). After proving that any pure-strategy Nash equilibrium must

involve herding, we then demonstrate that any mixed-strategy Nash equilibrium must be unstable.

Moreover, we show that a large and intuitive class of adaptive learning dynamics—which includes
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both fictitious play and Cournot best-response—converges to herding at one of the two stations.

The herding equilibria therefore emerge as the focal equilibria of the routing game.

While our base model does not directly solve any of the motivating problems discussed above, it

uncovers the herding phenomenon in an open-routing service network, which bears further inves-

tigation. To verify the robustness of the herding behavior, we analyze strategic open routing in

several different settings and its impact on social welfare. Our base two-station model in which

all customers are strategic and present prior to the start of service is relaxed in several directions.

Specifically, we relax our modeling assumptions by studying games with non-strategic customers,

customers who visit only one of the two stations, and service networks with more than two sta-

tions. In all of these settings, we find that strategic customers herd. The sequential version of the

original game also displays herding, with the minor twist that the last-moving player alone avoids

the crowd. Additionally, we run a simulation study to test the robustness of herding. We find that,

in the presence of congestion, herding continues to prevail in systems with stochastic service times

and arrivals over time, with herding becoming less prominent as the arrival rate decreases and the

systems become less congested. We also find that the social welfare under herding—as measured

by the sum of the system times experienced by all customers in the network—is within a constant

of the first-best outcome, and such constant is independent of the number of players. For systems

with many customers, this result implies that the welfare under herding differs only by a small

fraction from the optimal social welfare.

The outline for the rest of the paper is as follows. We review the related literature in Section 2,

and we introduce our base model in Section 3. Section 4 discusses the open routing game, in which

all customers are present in the system when service becomes available and make routing decisions

about which station to visit first before learning their relative priority or the decisions of others. In

Section 5, we derive the unique subgame perfect equilibrium of the sequential variant of the open

routing game; in that setting, customers are aware of their priority and of the routing decisions of

those with higher priorities. Section 6 studies the system from the perspective of a central planner

attempting to optimize the routing assignments of customers. Section 7 relaxes some assumptions

of the open routing game to allow for customers who wish to visit only one of the two stations and

systems with more than two stations. Section 8 studies systems which do not experience congestion.

Section 9 analyzes the output from a simulation study designed to test the robustness of herding in

networks with stochastic service times and arrivals over time. Finally, Section 10 makes concluding

remarks. In addition, all proofs for results presented in the paper are provided in Appendices A-D.
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2. Literature Review

Our work is related to the literature on queues with strategic customers as well as the literature

on congestion games. The first stream was started by Naor (1969), who studied the use of tolls to

induce desired behavior among customers in a queue. The second was begun by Braess (1968), in

his pioneering work demonstrating the now-famous Braess’ Paradox.

Hassin and Haviv (2003) provide a comprehensive survey of the existing strategic queueing

literature, and Hassin (2016) provides an extremely thorough coverage of the more recent work in

the area. Our model is perhaps most closely related to the work of Parlaktürk and Kumar (2004).

Theirs is one of only a few papers incorporating a stochastic network with stations in sequence in

which customers choose the order of stations that they visit. The authors demonstrate the existence

of unstable Nash equilibria for a two-station network in which every self-interested “job” must have

two tasks performed on it, where each station can perform either task on a given job, and the first

task takes on average a shorter time. Each station has a queue for Task 1 and another queue for

Task 2, and the system planner may choose which queue to serve next at each station. By contrast,

in our model each station can perform only one task and each station has only one queue; hence

stations cannot dynamically distinguish between different classes of customers.

Other work in the vicinity includes that of Adiri and Yechiali (1974), who relay a model of

multiple queues for a single server, arranged and priced by priority. Their results mirror ours in that

arriving customers choosing a queue must take into account the possibility of being preempted (cut

in front of) by an arriving customer who chooses a higher priority queue. Naturally, an important

distinction is that in our model there are two queues for two servers, as opposed to two or more

queues for one server in their work. Most recently, Honnappa and Jain (2015) study what they

call the “network concert queueing game.” For feedforward networks of several structures, they

use fluid limits to determine symmetric equilibria and the price of anarchy when nonatomic users

are allowed to choose both their arrival times and their routes through the network. Cohen and

Kelly (1990) present an interesting analog of Braess’ Paradox in a stochastic queueing network.

They illustrate that when FCFS nodes are placed in sequence with infinite-server nodes, the mean

sojourn time in equilibrium can actually increase if customers are given the ability to switch from

one track to the other. The analysis is done in steady state and queue lengths are assumed to be

unobservable, simplifying both the queueing and game theoretic portions of the analysis. Other

important work in this stream includes Enders et al. (2008) and Glazer and Hassin (1983).

On the empirical side, Pinilla and Prinz (2003) conduct a helpful, mainly simulation-based study

of flexible routing schemes for shape deposition manufacturing. They study the standard sequential
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model and employ simulation to gain insights on a system which allows flexibility. They propose two

examples—shape deposition manufacturing and routing in a coffee shop—which can be cast within

the open routing framework, and they find from simulation that performance can be significantly

improved by dynamically assigning the sequence of tasks to be performed on each item, instead of

following a fixed sequence of tasks.

Su and Zenios (2004) model the U.S. kidney allocation system as an M/M/1 queueing system

in which potential recipients monitor both their position in the queue and the quality of the

organ offered to them. They find that the current benchmark of FCFS service results in socially

suboptimal allocation of organs because strategic recipients tend to refuse lower quality organs,

knowing that they will likely be offered a better organ later. Modifying the queueing discipline to

last-come, first-serve leads to the socially optimal outcome, although the authors note that such

a discipline will likely be considered too unfair to implement in practice. Schummer (2016) and

Leshno (2017) also study allocation of objects to strategic customers on queue-like waiting lists.

Finally, Veeraraghavan and Debo (2009, 2011) investigate competition between two service

providers where queues build up and customers have private information regarding the quality of

each provider, and they find herding behavior similar to what we discover here. However, the driv-

ing force behind their result is quite different from what we observe. In Veeraraghavan and Debo

(2009, 2011), customers are motivated by service quality, while in our model the herding behavior

occurs because customers require services at both stations and attempt to minimize their expected

total time in the system. In our setting, although by starting with the less-crowded station a cus-

tomer may glean a shorter wait time before beginning her first service, she will afterwards face a

severe penalty upon arriving to the congested station and being near the end of the queue there.

Additional related work includes Afèche and Mendelson (2004), Debo and Veeraraghavan (2014),

and Cui and Veeraraghavan (2016).

Several papers in the congestion literature also warrant discussion. Feldman and Tamir (2012)

also consider “jobs” (customers) to be strategic. Their paper focuses mainly on “conflicting con-

gestion effects,” both positive and negative, associated with the level of participation or traffic on a

network. In their work, customers are allowed to choose from a set of machines working in parallel.

They show that best-response dynamics do not always converge to a Nash equilibrium, but that

the schedule generated by the longest processing time heuristic is indeed a Nash equilibrium if

the number of machines is “right.” An important difference from our analysis is that they do not

incorporate the ordering of customers on a machine, instead modeling each player’s cost function

as merely the overall load of the machine chosen by that player. In the standard congestion model
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Figure 1 AB customers visit station A first, while BA customers visit station B first.

of which Braess’ Paradox comprises a special case, Roughgarden and Tardos (2002) show that the

price of anarchy is at most 4/3 when the performance measure is the total latency of the system

and the latency functions are linear.

3. A Two-Station Service Network

Our setting is that of a service network with two stations, station A and station B, each with a

single server, and with service rates µA and µB, respectively. The network serves N customers (or

“players”) who are all present in the system when service becomes available. We focus on the case

in which the service rates are nonidentical, and thus without loss of generality we assume that the

expected service time at station A is greater than that at station B (i.e., we have the service rate

relation µA <µB). Similar to many service environments, each station operates on a FCFS basis.

Figure 1 gives a visual depiction of the network.

Every customer must visit each station exactly once, but the order in which to visit the stations

is unrestricted. Customers seek to minimize their expected total time in the system; their action

space is the set {AB,BA}, where the first letter denotes the station visited first. We will at times

refer to AB customers to identify those who visit station A first. Similarly, BA customers are those

who visit station B first.

We note that the centralized (non-strategic) version of the problem can be viewed as an open-

shop scheduling problem with jobs that need to be processed by two servers, where either sequence

is permissible for each job. A concise summary of the available results on open-shop scheduling

can be found in Pinedo (2012, Chapter 8 and Section 13.4). For deterministic systems, there are

polynomial-time algorithms available for makespan, but the problem of minimizing total completion

time is NP-hard. For stochastic systems, the optimal policy for makespan is the longest expected
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remaining processing time first rule, and when the metric is expected total completion time, the

preemptive shortest expected remaining processing time first policy is optimal among preemptive

dynamic policies.

4. The Open Routing Game

In this section, we study the open routing game, in which all customers are present in the system

when service becomes available and positions in the priority order are drawn uniformly at random.

Players are aware that this randomization takes place, but they must make their routing decisions

before learning their realized priorities or the routing decisions made by others. The open routing

game is therefore equivalent to a symmetric one-shot game in which all players make routing

decisions simultaneously. Players seek to minimize their expected total time spent in the system.

Service times at stations A and B are first assumed to be deterministic with rates µA and µB,

respectively, such that µA < µB. In Section 4.5, we relax the deterministic service assumption to

incorporate stochastic service times. These dynamics resemble service environments in which a

large number of customers are present before the service starts.

We first make two observations that help us understand the system time experienced by cus-

tomers choosing each of the two routes through the network.

Property 1. If station B ever becomes idle, then it will never build up a queue again.

To understand Property 1, we note that, because µA <µB, the service time at station B is shorter

than that at station A. Hence, after the first service begins, the arrivals to station B occur deter-

ministically with an arrival rate that is smaller than station B’s service rate. Therefore, once

station B becomes idle, arrivals will never occur close enough together to form a queue. So, the

system time for a customer who chooses route AB, and who has priority j at station A, depends

on whether or not station B becomes idle before the customer departs station A. If station B idles,

then the customer’s system time is the sum of j service times at station A plus her own service

time at station B. If station B does not idle, then the customer’s system time is the sum of all

of the service times at station B that must be completed up to and including herself. This will

include all of the BA players, plus the j− 1 players in front of her at station A, as well as herself.

Property 2. Station A never idles from the time it begins its first service until it finishes

serving all N customers.

Similarly to Property 1, Property 2 follows from the fact that, because µA <µB, the service time

at station B is shorter than that at station A. As soon as station A begins service, it will complete

a service every 1/µA units of time, but it will receive an arrival every 1/µB < 1/µA units of time
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until the last BA player departs station B. Station A will then never become idle until it finishes

its workload. The one way in which station A can idle is at the beginning, if all N players choose

route BA: in that case, station A will idle during the first service time at station B, after which it

will work continually until it finishes with all N customers.

One might expect that players minimizing their system times would attempt to avoid each other

and seek a less congested route. Instead, when the number of players N is large enough, we find

that in equilibrium players “herd”—that is, all players take the same route through the network.

Proposition 1 (Herding Equilibria in the Open Routing Game). For N ≥ 2µA/µB +

1, the open routing game has a Nash equilibrium in which all players “herd” at station A, that is,

take route AB. Furthermore, if µB < 2µA and N ≥max{µB/µA + 1, (2µA +µB)/(2µA−µB)}, then

the game also has a Nash equilibrium in which all players “herd” at station B.

We next give an intuitive explanation of Proposition 1. In the first candidate profile, all players

visit station A first, so a player will have on average half of the other customers behind her if

she visits station A first. However, if she visits station B first while everyone else visits station A

first, then she will be the last customer to receive service at station A. Therefore, if N is large

enough—in fact, N ≥ 3 is sufficient here—then it is in her best interest not to deviate from the

candidate profile. The herding equilibrium at station B can be similarly explained; intuitively, if N

is large and the rest of the customers are slated to visit station B first, then a customer is better

off being in front of an average of half of the other customers at station B. Otherwise, after visiting

station A first she will certainly have to wait behind all of the other players at station B.

Proposition 1 establishes the existence of Nash equilibria which exhibit herding behavior. How-

ever, we must answer several questions to verify that these herding equilibria are indeed plausible:

(i) can the herding equilibria be implemented via simple, decentralized learning dynamics? (ii) are

there other, non-herding Nash equilibria? and (iii) what happens when some of the players are not

strategic? To address these questions, we establish a key submodularity property for the players’

expected system times in the open routing game. This property then allows us to pinpoint the

herding profiles as the focal equilibria of the game.

4.1. Submodularity of Expected System Time

Before deriving the submodularity property of the expected system time, we require some additional

notation. Let i be an arbitrary player (or customer) index, si the strategy of player i, and s−i the

vector of strategies for all of the other players. We say that si = 1 if player i chooses route AB,
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and si = 0 if she chooses route BA. Similarly, a value of 1 for a given entry in s−i means that the

corresponding player has chosen route AB, while a value of 0 for a given entry in s−i means that

the corresponding player has chosen route BA. Denote by T (si, s−i) the expected system time for

a player who employs strategy si when her opponents play the profile s−i. Note that the uniform

priority randomization means that the game is symmetric, and thus we require no player index on

T . Following the definition of Topkis (1998) and letting ≤ denote the usual partial order, we will

show that the function T (si, s−i) is submodular, i.e., that it has decreasing differences. Specifically,

we will find that

T (si, s−i)−T (s̃i, s−i)≤ T (si, s̃−i)−T (s̃i, s̃−i) for all s̃i ≤ si and s̃−i ≤ s−i. (1)

The decreasing differences condition (1) trivially holds if s̃i = si, so we can focus on the case

in which s̃i = 0 and si = 1. Moreover, because all customers are present when service starts and

priorities are drawn uniformly at random, we can replace s−i with the sum of its entries, m, and

T (si, s−i) with T (si,m). The variable m then simply represents the number of players—excluding

player i—who have chosen route AB. With a slight abuse of notation, we can replace the decreasing

differences condition (1) with the equivalent condition

T (1,m)−T (0,m)≤ T (1, m̃)−T (0, m̃) for all 0≤ m̃≤m≤N − 1. (2)

We now introduce the shorthand

dm := T (1,m)−T (0,m)

and rewrite condition (2) as

dm ≤ dm̃ for all 0≤ m̃≤m≤N − 1. (3)

The difference dm represents the relative preference of player i between route AB and route BA,

given that m other players chose route AB; a negative value indicates that route AB will result

in a shorter expected system time, and a positive value means that route BA will yield a shorter

expected system time. Similarly, a relatively smaller value of dm indicates a relatively greater

preference for route AB. Therefore, if equation (3) holds—and we will show that it does—then the

greater the number of other customers who have chosen route AB, the greater relative preference

each customer will have for route AB.

Proposition 2 (Submodularity of Expected System Time). If

N >Nsub :=
2µB
µA

+ 1,

then each player’s expected system time in the open routing game is submodular. Moreover, we have

dm <dm−1 for all 1≤m<N − µB
µA

. (4)
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Observe that dm̃ < 0 implies that, if a player were aware that exactly m̃ others were choosing

route AB, then her expected system time for route AB would be less than that for route BA, and

thus she would prefer route AB. Furthermore, the decreasing differences property gives us that if

dm̃ < 0, then dm < 0 also for m̃≤m, and therefore for any m̃≤m, a player who knew that m others

had chosen route AB would also want to choose route AB. Intuitively, a critical mass of players

choosing a given route tends to attract the remaining players to the same route; if many players

go to station A first, then the others should join them, and similarly for station B. We will revisit

this idea in the next subsection when we discuss convergence of adaptive dynamics to the herding

equilibria. The strict inequality in equation (4) of Proposition 2 plays a key role in establishing

this convergence.

Proposition 2 implies that if, as we henceforth assume, players’ utility functions decrease linearly

with their expected system times, then their utility functions are supermodular, and the open

routing game is a supermodular game in the sense of Topkis (1998, Section 4.1). Supermodular

games have received much attention in the literature. For example, it is well documented that

if a supermodular game has a unique Nash equilibrium, then a wide range of learning rules will

converge to it (see Milgrom and Roberts 1990). However, because the game that we study has

multiple equilibria, we cannot directly apply the classical convergence result. Nevertheless, in the

subsequent subsection, we apply supermodularity and the strict inequalities in equation (4) to

prove that in our game, a large class of learning rules converges to one of the herding equilibria.

Next, we state a corollary that follows directly from the proof of Proposition 2, which will also be

used in the derivation of the subsequent convergence result.

Corollary 1. If N >Nsub, then for any m= 1, . . . ,N − 1, either dm < 0 or dm <dm−1.

4.2. Adaptive Dynamics Converge to Herding

As we have seen, when the service rates are close together and N is large, the herding strategy

profiles are Nash equilibria. We next show that in addition, a general class of decentralized learning

processes will converge to one of these herding equilibria.

We propose a model of learning which allows customers to update their beliefs in each period

based on the play observed and also incorporates a “memory” of past actions. First, we assume

that in each period players choose their routes to minimize their expected system times based

on their current beliefs about other customers’ strategies. When a player faces a tie, we assume

that the player always chooses route AB. Let β
(t)
i = (β

(t)
i,0 , . . . , β

(t)
i,N−1) be the vector of player i’s

beliefs, i.e., β
(t)
i,j is player i’s probability assessment, at the beginning of period t, that exactly j
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players (not including herself) will take route AB in period t, for j = 0,1, . . . ,N − 1. We allow the

initial beliefs, β
(1)
i , to be an arbitrary vector of probabilities summing to one. Next, let x(t) be the

realized total number of players who take route AB in period t, and let x
(t)
i be the decision of

player i (with x
(t)
i = 1 for choosing route AB and 0 otherwise). We also let x

(t)
−i denote the realized

number of players who take route AB in period t, excluding player i; that is, x
(t)
−i = x(t) − x(t)

i .

Player i is making a decision in period t based on β
(t)
i , her belief at the beginning of period t,

which incorporates her experience up to and including period t− 1.

For m ∈ {0,1, . . . ,N − 1}, let e(m) ∈ RN be the vector with a one in the (m+ 1)-st entry, and

zeros in all of the remaining entries. Given a sequence of real numbers {αt} with 0≤ αt ≤ 1 for all

t= 1,2, . . ., the beliefs in our model satisfy the recursion

β
(t+1)
i = (1−αt)β(t)

i +αte(x
(t)
−i) t= 1,2, . . . . (5)

We give the name {αt}-learning to the process in which beliefs evolve according to equation (5).

Intuitively, a larger αt implies that the players are giving more weight to their experience in

period t, and less weight to earlier periods. We also note that choosing αt = 1/t results in the

familiar learning rule known as fictitious play introduced in Brown (1951). Within fictitious play

learning, players best-respond to the empirical frequency of past moves. Similarly, by letting αt = 1

we recover the Cournot best-response model, in which players best-respond to the path of play

realized in the prior period. The interested reader is referred to Fudenberg and Levine (1998)

for detailed discussion of the Cournot model (Chapter 1), fictitious play (Chapter 2), and other

learning models.

Next we show that under a mild regularity condition on the sequence {αt} and on the initial

beliefs β
(1)
i , if all players update their beliefs according to the learning model (5), then play will

converge to one of the herding equilibria.

Proposition 3 (Convergence of {αt}-Learning to Herding Equilibria). Define m∗ by

m∗ = min{m∈ {1, . . . ,N} : dm ≤ 0},

and consider the {αt}-learning process in equation (5). If (i) N >Nsub, (ii) the sequence {αt} is

such that

lim
t̄→∞

t̄∏
t=t′

(1−αt) = 0 for all t′ ≥ 1, (6)

and (iii) there exists some `≥ 1 such that x(`) 6=m∗, then players will converge to one of the herding

equilibria in finitely many periods. That is, there exists t0 <∞ such that either

x(t̄+1) =N or x(t̄+1) = 0 for all t̄≥ t0.
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In Proposition 3, condition (6) essentially enforces that players’ earlier beliefs and actions must

eventually fade so that play does not get stuck on strategy profiles that are anchored to initial

beliefs. For example, natural learning rules such as fictitious play and Cournot best-response satisfy

this condition. This result reinforces the intuition that many players choosing a given route exerts

a pull on others to do the same. The only circumstance which can possibly avoid herding is that in

which x(t) =m∗ for all t= 1,2, . . .. For this stagnation to occur, we must have x(1) =m∗, an unlikely

event if N is large and, say, initial beliefs are drawn as independent random vectors uniformly

distributed on the N -dimensional probability simplex. Even if this first-period event is realized,

route switching in later periods is inevitable because the beliefs of AB customers will be moving

to favor route BA, and those of BA customers will be moving to favor route AB. When this

route switching occurs, it must always be perfectly symmetric to maintain x(t) =m∗, which is also

unlikely.

The proof of Proposition 3 leverages the submodularity of the expected system time established

by Proposition 2. Intuitively, if the number of players taking route AB is strictly greater than m∗,

then the players currently taking route AB have no incentive to switch, in this period or in any

later period, because the beliefs which led them to select route AB in the current period will be

further reinforced. Then, given that there will always be more than m∗ players on route AB in the

future periods, the players who chose route BA will eventually switch to route AB, provided that

they sufficiently update their beliefs, as in condition (6). Similarly, if the number of players taking

route AB is strictly less than m∗ in some period, one can deduce that eventually all players will

converge to route BA. This result reiterates the herding phenomenon: many players on a single

route attract the others to join them.

Next, we state a corollary which shows that for Cournot best-response, the requirement of x(`) 6=

m∗ is not required when N is large enough.

Corollary 2 (Convergence of Cournot best-response). Under Cournot best-response, if

N > max{Nsub,2µA/(µB − µA)}, then players will converge to one of the herding equilibria in

finitely many periods.

4.3. Equilibrium Refinement

We have established that in the open routing game, players following intuitive learning rules such

as Cournot best-response will converge to one of the herding equilibria. We now again invoke

the submodularity of the expected system time to show that the herding profiles are the only

pure-strategy Nash equilibria for this game.
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Corollary 3 (Equilibrium Refinement). If N > Nsub, then the only pure-strategy Nash

equilibria of the open routing game are the symmetric herding equilibria of Proposition 1.

However, Corollary 3 does not completely rule out the existence of Nash equilibria in which

players adopt mixed strategies. Our next result rules out any Nash equilibria in which some but

not all players use properly mixed strategies, and shows that any mixed-strategy Nash equilibrium

is not stable enough to survive even the slightest perturbation in another player’s strategy.

Proposition 4 (Elimination and Instability of Mixed Equilibria). If N > Nsub, then

the open routing game has no Nash equilibria in which some players mix and others use pure strate-

gies. Moreover, any Nash equilibrium in which all N players use mixed strategies is unstable; that

is, a small perturbation in the strategy of any player will cause other players to strictly prefer a

pure strategy.

Therefore, the herding equilibria are the only pure-strategy Nash equilibria of the open routing

game, and in any mixed-strategy Nash equilibrium it must be that all players employ properly

mixed strategies (i.e, no one plays a pure strategy). Such mixed-strategy equilibria, however, are

quite unstable and unlikely to be implemented.

Exploiting the decreasing differences property of the expected system time, we also find that if

there is significant service rate disparity—specifically, if service at station B is more than twice as

fast as service at station A—then route AB is a strictly dominant strategy for all players.

Corollary 4 (Dominant Strategy). If 2µA ≤ µB and N >Nsub, then route AB is a strictly

dominant strategy for all players.

The dominant strategy result can be understood via the following rough argument. Consider a

customer contemplating her move, and suppose that the other N − 1 customers are playing route

BA. If she follows the crowd on route BA, then, on average, she will be behind half of the other

customers, first at station B and then again at station A. Since station A is the bottleneck, her

expected system time will be on the order of N/(2µA). If instead she chooses route AB, then

her system time will be a deterministic N/µB. Because 2µA ≤ µB, it is better for her to choose

route AB over route BA. Then, because N >Nsub, if any customer shifts to route AB, then the

decreasing differences property implies that her preference for route AB will only increase, and

therefore route AB is her optimal strategy regardless of the moves of the other customers. So, if

the service rates are close together, then both herding profiles are Nash equilibria, while if they

are far apart, then it is a dominant strategy to visit the slower station A first.
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With these results in favor of the herding equilibria and the fact that an intuitive class of learning

rules converges to them, we see that the herding effect exerts a strong influence on the behavior

of rational customers in the open routing game. We note that this herding effect coincides with

several examples of open routing. At catered events, anecdotal evidence suggests that guests often

flock to the buffet line (the slower station) even when others are doing the same, presumably to

avoid waiting in an even longer queue there if they instead got their drink first; also in theme

parks, although customers do not all start at the same station, many customers rush to the most

popular rides first to experience them before the queue grows long.

4.4. The Open Routing Game with Non-Strategic Customers

In practice some (perhaps many) customers may not attempt to minimize their overall expected

system times. For example, at a catered reception a guest may have a preference which dictates a

certain route irrespective of its effect on her total system time. Accordingly, we now examine the

effect on the system of customers who are not strategic, that is, customers who must visit both

stations but who have a pre-determined route which they will follow without contemplating any

alternative.

To this end, consider a system as described in Section 3 with N customers, and again assume

that priorities are drawn uniformly at random. Suppose now that N = NAB +NBA +NS, where

NAB is the number of non-strategic customers who will take route AB no matter what, NBA

is the number of non-strategic customers who will take route BA no matter what, and NS is

the number of strategic customers. In this system, a strategic customer could feasibly encounter

NAB, . . . ,NAB +NS − 1 other customers choosing route AB. Therefore, we can focus on

dm = T (1,m)−T (0,m), for m=NAB, . . . ,NAB +NS − 1.

Recall that dm represents the relative preference between route AB and route BA for a strategic

customer, when there are m other customers choosing route AB.

By Proposition 2, we immediately have that dm is decreasing in m in the range of NAB, . . . ,NAB+

NS − 1 as long as N > Nsub. Therefore, as in Section 4.1, the expected system times for the

customers that are strategic are submodular. The submodularity in turn implies that the herding

equilibria (among the strategic customers) prevail as the only pure-strategy Nash equilibria. This

is summarized in the next corollary.

Corollary 5 (Equilibria with Non-Strategic Customers). If N >Nsub, then exactly one

of the following holds:
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(i) route AB is a dominant strategy for all strategic customers;

(ii) route BA is a dominant strategy for all strategic customers;

(iii) both herding profiles are Nash equilibria, and there are no other pure-strategy Nash equilibria.

We note that Proposition 3 also holds in this setting with non-strategic customers, in the sense

that strategic customers will converge to one of the herding equilibria under a general class of

learning dynamics. These results suggest that customers who are aware that some others are not

rational can still implement an equilibrium profile which involves herding. Moreover, depending on

the system parameters, herding at one station can be a dominant strategy.

4.5. The Stochastic Open Routing Game

We now discuss how the herding behavior that we observe in the open routing game continues to

emerge when the service times are stochastic. We refer to this new setting as the stochastic open

routing game. Specifically, for µA < µB we now suppose that the service times at stations A and

B are independent and identically distributed random variables with means 1/µA and 1/µB and

variances σ2
A and σ2

B, respectively.

Properties 1 and 2 do not extend to this environment because the uncertainty in service times

may induce idle and busy periods that did not arise in the deterministic setting. As a result, we can

no longer express customers’ expected system times in closed form. Nevertheless, we can bound

the expected system times when all customers herd by applying existing results from queueing

theory. More specifically, when all customers choose route AB, the waiting times at station B

behave as in an underloaded GI/GI/1 queue (single-server queue with general independent arrival

and service time distributions) that started empty, with arrival rate µA and service rate µB. Then,

a stochastic dominance argument from Müller and Stoyan (2002, Theorem 6.2.1) tells us that we

can bound the expected waiting time at station B for any customer in this GI/GI/1 queue by

the expected steady-state waiting time. Combining this argument with the classical steady-state

result of Kingman (1962), we then bound the expected system time for all of the customers who

take route AB, and this bound holds for any value of N . Under suitable conditions, we have that

our upper bound for the expected system time on route AB is smaller than the expected system

time on route BA, and therefore it is a Nash equilibrium for all customers to choose route AB.

Proposition 5 (Nash Equilibrium with Route AB—Stochastic Service). If

N > 1 +
2µA
µB

+
µ2
A(σ2

A +σ2
B)

1−µA/µB
, (7)

then it is a symmetric Nash equilibrium for all customers to choose route AB.
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Next, we consider the case in which all customers are choosing route BA. In this case, the waiting

times at station A behave as in an overloaded GI/GI/1 queue with arrival rate µB and service

rate µA, which does not have a steady-state distribution. To bound the expected waiting time in

an overloaded GI/GI/1 queue, we apply Lindley’s equation to show that the total idling time

is represented by the “dual” process of the overloaded system, and that this “dual” process has

the same distribution as the waiting time in an underloaded GI/GI/1 queue (see Grimmett and

Stirzaker 2001, Section 11.5). This allows us to bound the total expected idling time and to show

that under suitable conditions it is a Nash equilibrium for all customers to choose route BA. The

result is summarized in the next proposition.

Proposition 6 (Nash Equilibrium with Route BA—Stochastic Service). If we have

µA <µB < 2µA and

N ≥ µB + 2µA
2µA−µB

+
µ2
Aµ

2
B(σ2

A +σ2
B)

(2µA−µB)(µB −µA)
, (8)

then it is a symmetric Nash equilibrium for all customers to choose route BA.

5. The Sequential Open Routing Game

We have thus far assumed that customers had no visibility into the state of the network when

making routing decisions, i.e., that they were not aware of their relative priorities or of the decisions

made by others. In many applications, however, customers may have some knowledge about their

position in the queue and about the routes that others have chosen. For example, in service systems

such as amusement parks, at times customers may pre-queue, allowing them at the preset opening

time to choose their route conditioned on the actions of those preceding them. To investigate

a system where customers have knowledge about their position, we consider the sequential open

routing game, in which customers make decisions according to their relative position among the

N customers and can observe the routes chosen by those who move before them. This setting

facilitates a natural representation as an extensive-form game, and we will find its unique subgame

perfect equilibrium using backward induction.

We remark that the open routing game of Section 4 represents one extreme, in which customers

have no information apart from the system parameters (µA, µB, and N), while the sequential

open routing game that we study here corresponds to the other extreme, in which customers have

perfect information regarding their position and the state of the network prior to their decision.

Interestingly, in this sequential environment we also observe a phenomenon that is similar to the

herding behavior observed in the open routing game: in equilibrium all customers but one visit the

slower station A first.
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Here we again consider a two-station service network with deterministic service times and N

customers present at the beginning of service availability. We note, however, that unlike the open

routing game of Section 4, the sequential open routing game is not symmetric, and accordingly the

customer index i will no longer be arbitrary. We index customers i= 1,2, . . . ,N , by the order in

which they make routing decisions, so customer 1 is the first to move, customer 2 is the second, etc.

We also assume that a customer’s position in the order corresponds to her priority, so customer

1 will be served first at whichever station she chooses, and customer i ≥ 2 will wait behind any

customers in the set {1, . . . , i−1} who have chosen the same route as her. Next, for i= 1,2, . . . ,N,

we define yAi ∈ {0,1, . . . , i} to be the number of players that have chosen route AB, up to and

including customer i. To derive the subgame perfect equilibrium via backward induction, we need

to analyze the total time that player N , the last customer to make her routing decision, spends

in the system under different strategy profiles. The state observed by player N depends only on

yAN−1, the number of the first N − 1 customers that chose route AB.

System Time for Customer N . Given a value of yAN−1, we use SAN to denote the system time

that customer N , the last customer to move, experiences if she takes route AB, and SBN to denote

the system time that she experiences if she takes route BA.

Because µA <µB and the service times are deterministic, we see that if customer N first visits the

faster station B, followed by the slower station A (i.e., she chooses route BA), then she experiences

exactly the same system time as if she merely joined a queue of N − 1 customers all waiting at

station A, as long as at least one customer before her chose route AB (i.e., as long as yAN−1 ≥ 1).

If no one else chose route AB, that is, if yAN−1 = 0, then the above is still true except that station

A sits idle until the first departure from station B, so customer N ’s system time is increased by

1/µB. Therefore, we can express SBN , the system time for the case in which customer N chooses

route BA, as

SBN =


N

µA
+

1

µB
if yAN−1 = 0,

N

µA
if yAN−1 ≥ 1.

(9)

Now, suppose that customer N chooses route AB, visiting the slower station A first, followed

by the faster station B. If player N arrives at station B and finds it idle, then SAN , the system

time that she experiences if she visits station A first, is simply equal to (yAN−1 + 1)/µA, the time

that she spends at station A, plus the time it takes for her to be served at station B, which is

equal to 1/µB. If player N arrives at station B and finds it busy, then by Property 1, station B

must never have been idle since it started service. As player N will be the last customer served at
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station B, we have then that SAN is equal to N/µB. To summarize, the system time that customer

N experiences from visiting station A first, SAN , is given by

SAN =


yAN−1 + 1

µA
+

1

µB
if
yAN−1 + 1

µA
≥ N − 1

µB
,

N

µB
if
yAN−1 + 1

µA
<
N − 1

µB
,

(10)

where (yAN−1 + 1)/µA ≥ (N − 1)/µB is the condition that ensures that station B is idle upon

customer N ’s departure from station A.

Equilibrium Strategy Profile. With the evaluation of customer N ’s system times we deduce

her strategy in the set of subgame perfect equilibria. Because µA < µB, whenever the second

condition in equation (10) is met we have that SAN <S
B
N , so customer N ’s system time from choosing

route AB is the shorter.

If instead the first condition in equation (10) holds, then we have two cases. First, if the number

of preceding customers choosing route AB satisfies the inequality yAN−1 ≤N−2, then SAN is bounded

above by (N − 1)/µA + 1/µB, so we again have that SAN <S
B
N .

Second, if yAN−1 = N − 1 and customer N chooses route AB, then she will be served last at

station A and finish there after N/µA units of time, but she will still require a service time of 1/µB

at station B. On the other hand, if she takes route BA, then she will immediately be served at

station B and leave the system exactly when station A completes its workload, after N/µA time

units. The extra 1/µB from route AB causes SAN to be greater than SBN for yAN−1 =N − 1.

Summarizing, we have that SBN < SAN if and only if yAN−1 = N − 1, and otherwise SAN < SBN .

Therefore, customer N ’s optimal strategy is to choose route BA if and only if yAN−1 =N − 1, and

route AB otherwise.

With the optimal strategy profile for customer N , we now inductively determine the subgame

perfect equilibrium strategy profile for customers N −n , for every n in the set {1, ...,N − 1}.

Proposition 7 (Unique Subgame Perfect Equilibrium). The following strategies form

the unique subgame perfect equilibrium of the sequential open routing game:

1. Customers 1, . . . ,N − 1 visit station A first in every subhistory.

2. Customer N visits station B first if and only if she observes yAN−1 = N − 1; otherwise, she

visits station A first.

Moreover, along the equilibrium path the first N − 1 customers to move visit station A first, and

the final customer visits station B first.
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Intuitively, one might expect that customers should join the queue with the shortest wait time

because that minimizes their waiting time before getting served at one of the two stations. However,

Proposition 7 states that if customers are rational, then all except the last will first visit station

A, which is slower and which each customer except the first one observes to have more customers

in its queue than station B. This behavior is best explained by what we call delayed overtaking. If

customers later in the order will visit the slower station A first, then it is in the best interest of a

customer who moves earlier to immediately join the queue at station A because otherwise, during

her time at the faster station B, others will overtake her at station A.

Interestingly, we observe that the optimal actions of the first N − 1 customers are completely

independent of the state that they observe and are essentially driven by the strategies of those

later in the order. Note also that the equilibrium actions—i.e., the herding profiles—from the open

routing game of Section 4 cannot be supported as equilibria (Nash or subgame perfect) for the

sequential game. Namely, if the last customer to move is aware of her position and the decisions of

the other customers, then her best response to all of the earlier customers visiting the same station

(either A or B) is always to visit the other station, breaking both of the equilibria of Proposition

1. However, in equilibrium only one customer visits station B first here, so the subgame perfect

equilibrium of this section is quite similar to the herding equilibrium at station A discussed in

Section 4. Therefore, in an environment in which decisions are made sequentially, the pull to the

slower station has the strongest impact on behavior, and the delayed overtaking effect dominates.

On the whole, we find that behavior in the sequential open routing game parallels that of the

one-shot version. The most important departures are (i) that the delayed overtaking effect always

dominates in the sequential environment, supporting a form of herding only at the slower station

and (ii) that in equilibrium the last customer, recognizing that she is the last to move, takes the

opposite route of all of the other players.

6. Herding vs. Central Optimum

We consider now a central planner who wishes to optimize social welfare in the open-routing service

network of Sections 4 and 5. We take as our measure of social welfare the sum of the system times of

all customers. The central planner’s problem is to minimize this quantity, which we call cumulative

system time. We compare the cumulative system time under herding with the optimal cumulative

system time, first by deriving bounds on the sub-optimality of herding and then by numerically

solving for the optimal routing. We end by discussing the implications of these results on the price

of anarchy.
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Cumulative System Time Under Herding. If 0 ≤ x ≤N customers are assigned to route

AB, then denote by D(x) the corresponding cumulative system time. The functional form of D(x),

along with discussion of the intuition behind it, can be found in Appendix B. We note that

D(0) =D(N) =
N

µB
+
N 2 +N

2µA
, (11)

i.e., the cumulative system time is the same under either herding profile. We let DH
N denote the

quantity in equation (11). Let D∗N denote the minimal cumulative system time, that is,

D∗N = min
x∈{0,...,N}

D(x).

Next, we show that the gap, D∗N −DH
N , is uniformly bounded by a constant.

Proposition 8 (Optimality Gap of Herding). The optimality gap DH
N −D∗N satisfies the

bounds
1

µA
≤DH

N −D∗N ≤
1

µA
+

17µ2
B − 6µAµB − 7µ2

A

8µAµB(µB −µA)
for all N ≥ 1 +

2µB
µA

. (12)

The bounds (12) are independent of the population size N , and the ratio of this gap to the optimal

cumulative system time rapidly approaches 0 as N grows. As we discuss below, numerical evidence

suggests that in most cases assigning exactly one customer to route AB minimizes the cumulative

system time. In those cases the optimality gap is equal to one service time at station A.

Exact Central Optimal Solution. With Proposition 8 bounding the optimality gap of herd-

ing, we now numerically solve the central planner’s problem for a variety of parameter values. The

main observation worth noting is that, for all of the parameter combinations that we have studied,

the minimal cumulative system time D∗N is attained by setting the number of AB customers to

one. The reason for doing so, instead of assigning all of the customers to herd on route BA (i.e.,

setting x= 0) is to avoid inducing idle time at station A during the first service time at station B.

The opposite extreme of assigning all customers to herd on route AB induces a similar idle time

problem at station B, resulting in equivalent cumulative system time to the case with x= 0. Still,

the difference in cumulative system time when setting x= 0 instead of x= 1 is usually negligible,

as we will observe. We compute and study the cumulative system time for a range of parameter

values. Fixing µB = 1 and taking N = 50, we compute the cumulative system time vector (let-

ting x = 0,1, . . . ,N) for all values of µA ∈ {1× 10−5,2× 10−5, . . . , 99,999× 10−5}. Table 1 shows

the maximum percentage difference between the cumulative system time under herding and the

minimal cumulative system time, over ranges of µA. In all cases the cumulative system time under

herding is less than a tenth of a percent above optimal.
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Table 1 Maximum Percent Above Optimal Cost Under Herding (i.e., x= 0 or x=N ; µB = 1)

µA 10−5 (10−5, .2] (.2,.4] (.4,.6] (.6,.8] (.8,1]
Max % Gap .00004 .078 .078 .077 .077 .078

Price of Anarchy. In Sections 4 and 5, we found that self-interested customers followed the

crowd to the same route. The optimal outcome under a social planner is quite similar. Rather

than balancing the workload across the two queues, a social planner should send almost all of the

customers to the same station first. The intuition has to do with the fact that if the queues are

of similar length at both stations, then the first customer to exit the system will not do so until

she has waited a substantial amount of time for her second service. The performance of such a

load-balancing routing assignment is close to that of the worst possible routing scheme (see also

Figure 3 in Appendix B). Conversely, if all customers are assigned to the same route, then the

early customers have a short (if any) wait at both stations. Whoever the final customers are to

leave the system, they cannot possibly leave until station A processes everyone before them, and

that time serves as a lower bound on their system times. But for the customers early in the order,

their system times are significantly shorter if customers are concentrated on one route.

These results lead to an interesting observation regarding the price of anarchy. The price of

anarchy is defined as the ratio between the social welfare in the worst equilibrium outcome and the

best outcome achievable by a social planner (Koutsoupias and Papadimitriou 2009). In the open

routing game of Section 4, the price of anarchy is close to 1 because the equilibrium outcome sends

everyone to the same station, and the difference in social welfare between this and the optimum is

only a single service time at station A. Moreover, as N grows the price of anarchy converges to 1

by Proposition 8. As rational customers will herd in equilibrium, the good overall performance of

herding with respect to the cumulative system time is encouraging for managers. In the event that

customers are not fully rational, there is a strong argument for managers to incentivize herding

among their customers, as it is a simple strategy with near-optimal performance.

7. The Prevalence of Herding

We have seen that the herding behavior predominates in the open routing game. With enough

players, the herding equilibria are always the only pure-strategy Nash equilibria of the game.

Furthermore, when the service rates are far apart, customers have a strictly dominant strategy

which implements the herding equilibrium at station A. The herding equilibria continue to hold

even when some customers are not strategic and have their routes fixed in advance, or when we

allow for stochastic service times. In the sequential variant of the open routing game, we similarly

observe a form of herding, albeit only at the slower station A. In this section, we overview additional
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settings in which the herding behavior continues to prevail. The technical details associated with

this overview are discussed in Appendix C.

Customers Who Visit Only One Station

First, we discuss the impact of “dedicated” customers, who require service only at one of the

two stations. In the context of the open routing game of Section 4, we now relax the assumption

that all customers must visit both stations. Specifically, we decompose N as N =NA +NB +NS,

where NA customers visit only station A, NB customers visit only station B, and the remaining

NS customers are strategic, i.e., they visit both stations but may choose the order. When there

are enough strategic players, both the herding profile at station A and that at station B are Nash

equilibria of this game. The intuition behind the proof is similar to that of the open routing game.

If all of the strategic customers herd at station A, then a customer who deviates will again be the

last customer to be served at station A, and therefore she prefers to follow the crowd. We also

observe in several numerical experiments that the expected system time appears to be submodular

as long as most of the customers are strategic and there is not too much imbalance in the number

of dedicated customers at each station. These numerical experiments are detailed in Appendix C.

The herding behavior is robust to the presence of “dedicated” customers who require service only

at one of the two stations.

S-Station Open Routing Game

We now discuss systems with more than two stations. Consider a generalized version of the open

routing game of Section 4 for a system with S stations and N players. For stations ξ = 1,2, . . . ,S,

let µξ be the service rate at station ξ, and assume that µ1 <µ2 < · · ·<µS .

If players make routing decisions simultaneously and if priorities are drawn uniformly at random,

then players must choose from among the S! possible routing vectors. In this case, we have a Nash

equilibrium which is analogous to that in the open routing game with two stations. Specifically, it

is a Nash equilibrium for players to choose a route that visits stations in order of increasing service

rate, from the slowest to the fastest. Thus once again we have a herding effect, where players follow

the crowd and congregate at a single station.

8. Queueing Networks in Steady State

In all of the systems that we have studied thus far, the open-routing service networks were congested,

i.e., until all customers had arrived, the service rates were lower than the customer arrival rates.
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In all of those systems, the herding phenomenon has prevailed. We now turn to the question of

whether herding behavior continues to emerge in a service network which does not face congestion.

Specifically, we investigate equilibrium behavior when customers arrive according to a Poisson

process with rate λ, rather than all being present in the system when service becomes available.

Again every customer must be processed at both station A and station B. Service times at stations

A and B are independent and exponentially distributed with rates µA and µB, respectively. Here

we take λ< µA <µB, and we assume that arriving customers find the queueing network in steady

state and are served in order of arrival at each station. Note that λ< µA implies that, in contrast to

earlier settings, with positive probability station A will have idle time in between services. The state

of the system is not observable to the customers, i.e., customers may not condition their actions

on the system state which includes the queue lengths and types of customers at both stations.

The distribution of the queue length encountered by a customer at the first station in her route

is the steady-state distribution of the queue length at that station. In addition, classical results

from Kelly (1979) give us that the distribution for the queue length observed by a customer at the

second station in her route also matches the steady-state distribution for the queue length at that

station. Next, we state a lemma which is a version of Corollary 3.5 from Kelly (1979) modified to

our queueing network, which has customer types AB and BA, and queues A and B.

Lemma 1 (Kelly 1979, Corollary 3.5). When a customer of type ψ ∈ {AB,BA} reaches sta-

tion ξ ∈ {A,B}, the probability that she finds κ customers at station ξ is equal to the steady-state

probability that there are κ customers at station ξ.

We use “type” to refer to a realized route through the network (AB or BA) and “group” to refer to

a subset of the population that shares an ex-ante routing probability. Specifically, let p = (p1, p2, . . .)

be a (possibly infinite-dimensional) vector of routing probabilities corresponding to the strategies

chosen by the corresponding groups, e.g., p1 is the probability that a customer in group 1 chooses

route AB. Let z = (z1, z2, . . .) be a vector of strictly positive numbers summing to 1 representing the

percentage of the population in each group. The vectors p and z together specify a strategy profile

for the entire population. Then, we have that external arrivals of each type occur via independent

Poisson streams with rate λpA to route AB and λpB to route BA, where pA and pB are given by

pA = 〈p,z〉 and pB = 1− pA.

The following result implies that the expected system time is the same for both routes under any

strategy profile.
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Corollary 6 (Expected System Time in Steady-State). For any strategy profile, i.e.,

for any pair of p and z, the expected system time is the same for customers taking route AB and

BA.

In this setting, we define our notion of equilibrium to be that customers of every group must be

best-responding to the strategy profile defined by p and z. As the expected system time is the

same for either route, customers of every group are playing a best-response to all other groups,

and there is no incentive for members of any group to change their strategy. Therefore, any p and

z form an equilibrium strategy profile.

Observe that when the system is allowed to reach steady state, the herding profiles in which

all customers choose the same route are indeed equilibria. However, as any other feasible routing

profiles also form an equilibrium, there is no reason to give special preference to the herding profiles

in this setting. Consequently, these results suggest that the herding behavior which prevails in

congested service networks no longer predominates in systems which are not very busy.

9. Simulation Study for Systems with Stochastic Arrivals

We have shown that herding occurs in congested open-routing service networks if all customers are

present at the start of service. Moreover, our results in Section 8 suggest that herding probably

does not occur in a system which is not congested, i.e., with a service rate faster than the arrival

rate. These analyses lead naturally to the following hypothesis.

Hypothesis 1. Herding occurs when a service system is congested, that is, the arrival rate is

higher than the service rates of either station until the arrival of the last customer.

We are interested in Hypothesis 1 because the arrival rate to a service system is often not

constant, and a service system may experience a high customer arrival rate especially at the start of

its service availability. Note that if we assume that customers are fully rational in the open routing

game with stochastic arrival times, then each customer would be required to perform prohibitively

difficult analysis to solve for a Bayesian Nash Equilibrium. Even highly intelligent customers are

unlikely to implement such outcomes. Accordingly, we next perform a simulation study designed

to test Hypothesis 1. We assume that the simulated customers learn about the system through

repeated rounds of play, and we simulate systems in which customers arrive stochastically over

time and the service times at both stations are stochastic.
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9.1. Simulation Setup

The setting for the simulation is as follows. Play proceeds for multiple rounds, and customers

update their beliefs after each round of play based on the wait time that they experience. In each

round, customers also observe what their wait time would have been had they chosen the opposite

route, fixing the moves of the other customers. Thus, in each round all customers get samples

for both routes. Each customer’s assessment of her expected system time on a particular route

is equal to the empirical average of her own samples for that route across all rounds. Moves are

randomly generated in the first round, and thereafter each customer chooses the route with the

smaller expected system time according to her beliefs in that round.

We define the parameters γ and φ to control the mean and variance of the arrival times. Specif-

ically, the arrival time of customer i ∈ {1, . . . ,N} is assumed to be uniformly distributed on the

interval [iγ−φ, iγ+φ]. Thus the mean arrival time for customer i is equal to iγ, and the width of

the uniform distribution is 2φ. Arrival times of different customers are mutually independent. If φ

is large enough relative to γ, then successive intervals may overlap and customers may not always

arrive in the same order. For example, if γ = .1 and φ= .25, then the arrival time of customer 1 will

be uniformly distributed on [−.15, .35], the arrival time of customer 2 will be uniformly distributed

on [−.05, .45], etc. Service times at each station are taken to be exponentially distributed, where

the service rate µB at station B is fixed at 1 and the rate µA at station A varies in each experiment.

We simulated all combinations of γ ∈ {.001, .1, .25, .5, .75,1}, φ ∈ {0, .25, .5, .75,1}, and

µA ∈ {.1, .25, .5, .75}, for a total of 120 experiments. For each parameter combination we ran 100

independent trials with 250 rounds of play in each trial. In all cases we consider N = 50 customers.

We analyze the results of the simulation study in the next subsection.

9.2. Results of Simulation

In Figure 2, we depict the empirical frequencies for the number of simulated customers who choose

route AB in the final round (round 250) for three different values of the service rate µA. The left

panel shows the results when the arrival times are deterministic and the arrival order is fixed,

i.e., when γ = .001 and φ= 0. This example closely resembles the sequential open routing game of

Section 5, where customers are all present at time zero and make their moves sequentially. In the

simulation, unlike in Section 5, customers are not able to observe the moves of those before them in

the order when making their routing decisions. Similarly, customers do not explicitly incorporate

the strategies of later arrivals. Instead, each customer decides her route based on her experience

from the historical rounds.
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Figure 2 Frequency charts for number of AB customers in round 250 (100 trials).

Recall from Proposition 7 that in the subgame perfect equilibrium of the sequential game, the

first N −1 customers choose route AB, and the final customer chooses route BA. Referring to the

plot in the left of Figure 2, we see that the outcome of the simulation is similar to the equilibrium;

the density is mostly concentrated close to 50. As noted, in our simulated system, customers do not

condition their strategies on the moves of earlier arrivals, and we therefore do not always see exactly

N − 1 customers choosing route AB. Still, experience from the previous rounds has taught them

that if they take route BA, then they may be overtaken at station A by later arrivals, resulting in

more total time in the system. The same observation persists for all values of µA.

In the right panel of Figure 2, we see results for the case in which again customers all arrive

very close to the start of service, but now there is significantly more variance in the arrival order.

We thus have a setting which is reminiscent of the one-shot open routing game of Section 4. The

arrival times have the same tightly-spaced means—γ = .001—as in part (a). Now, however, we have

φ= .75, which is much greater than the successive difference in mean arrival times γ. Far from a

fixed order, each player now could arrive in any position among the 50 customers. As she forms

her beliefs over several rounds, the empirical averages will reflect this randomness in her priority.

Continuing to consult the right plot of Figure 2, when the service rate at station A is 75% of that

at station B, we see that the outcomes in the final round are split between the two herding profiles,

with more than 90% of trials ending up with herding at route AB and the rest ending with herding

at route BA. When the service rate at station A is less than half of that at station B (25% and

50%), in all 100 trials we see play converging to herding at route AB. These outcomes match our

analytical results from Section 4; that is, the herding equilibria are the only pure-strategy Nash
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Table 2 Summary statistics with µA = .75 for number of AB customers (out of 50) in the final round.

(a) Sample Mean

φ
0 .25 .5 .75 1

.1 46.22 46.61 45.42 47.45 49.2
.25 46.55 45.83 46.22 46.07 45.72

γ .5 45.2 45.27 45 44.64 44.32
.75 41.68 42.7 41.59 41.73 42.46

1 35.9 37.38 36.47 36.23 38.17

(b) Sample First Quartile

φ
0 .25 .5 .75 1

.1 44 45 45 47 49

.25 45 44 44.75 44 44
γ .5 43 43 42 42 42

.75 39.75 41 38.75 40 40.75
1 33.75 34.75 34 34 35

equilibria of the open routing game; that a large class of learning rules will converge to one of the

herding profiles; and that when the service rates differ by a factor greater than 2, route AB is a

strictly dominant strategy for all customers.

We have thus far discussed examples with arrivals that are very close together (γ = .001), which

matches closely with our theoretical models. We now discuss settings for which arrivals are more

spaced out in time, i.e. γ ≥ .1. We begin by fixing µA at .75, varying γ within [.1,1] and φ within

[0,1]. We note that in our simulations, herding on route BA never occurs when γ ≥ .1. Because

herding at station B does not arise, the number of AB customers in the final round—more specif-

ically, how close this number is to 50—is a reasonable measure of the strength of herding. The

mean and first quartile for this quantity can be found in Table 2, over ranges of γ and φ. We

observe that all three summary statistics for the number of AB customers tend to decrease as

γ increases. That is, as the arrivals occur less frequently, herding begins to dissipate. For γ ≤ .5
we see a marked tendency toward herding. For example, when γ = .25, the mean number of AB

customers in the final round for any φ is above 45, which is more than 90% of the total number of

customers. However, once γ nears one, the herding effect is less pronounced.

Results of the simulation runs with smaller values of µA are qualitatively similar. First, recall

that our theoretical results for service networks with all customers present at the start of service

tell us that route AB is a strictly dominant strategy if 2µA ≤ µB. Our numerical analysis suggests

that this extends to cases with stochastic arrivals as well. In our simulations, we find that across

all trials and for all parameter combinations such that 2µA ≤ µB, the minimum number of AB

customers in the final round is 44. We now discuss the particular case of µA = .5, the summary

statistics for which are reported in Table 3. We note that every entry in Table 3 is at least 47, and

that the values in Table 3 are greater than the corresponding values in Table 2 (with µA = .75) in

all cases. This pattern of successively more prominent herding continues as µA decreases further.

Such a pattern indicates, as also suggested by the proofs establishing the herding equilibria, that

an important driver of the herding behavior is the severity of the penalty of being behind one

additional customer.
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Table 3 Summary statistics with µA = .5 for number of AB customers (out of 50) in the final round.

(a) Sample Mean

φ
0 .25 .5 .75 1

.1 48.47 48.53 49.98 50 50
.25 48.34 48.39 47.81 48.61 49.18

γ .5 48.05 48.07 48.3 48.1 47.82
.75 47.88 47.9 47.81 47.8 47.76

1 47.48 47.42 47.47 47.52 47.33

(b) Sample First Quartile

φ
0 .25 .5 .75 1

.1 48 48 50 50 50
.25 48 48 47 48 49

γ .5 47 47 48 47.75 47
.75 47 47 47 47 47

1 47 47 47 47 47

The outcomes of our simulation study provide strong evidence for Hypothesis 1, i.e., that herding

emerges when the open routing service network is congested. Moreover, our study shows that as

arrivals begin to be spaced further apart in time, herding correspondingly diminishes in prevalence,

verifying our analysis in Section 8. Additionally, when the service rates are far apart (i.e., when

2µA <µB), the pull to the slower station A is strong enough that herding is more robust to slower

arrivals. These numerical results mirror qualitatively the theoretical results from previous sections,

reinforcing the plausibility of herding in congested service systems in more realistic settings.

10. Conclusion

We model customer behavior for service networks in which self-interested customers require service

at each station and are permitted to determine their routes through the network. In our base

two-station model, customers are present in the system when service becomes available and make

decisions about which station to visit first. We find that the expected system time for each customer

is a submodular function, and we exploit this property throughout.

In equilibrium, customers herd at one station; that is, all of the customers take the same route

through the network. This behavior is motivated by the need to avoid arriving late to the congested

station. If all of the other customers are visiting the same station first, then a customer who visits

the other station guarantees herself to be served last at the busy one, and she is thus better off

following the crowd. However, if the service rates are far apart, then it is a dominant strategy for

all players to visit the slower station first. We see also that the herding behavior is stable enough

that a large class of learning rules converges to one of the herding equilibria, even if players play

both strategies early on. In addition, we find from an investigation of the central optimum that

herding is good for social welfare. The cumulative system time—the sum of the system times for

all customers—is at its lowest when all but one customer takes route BA. Interestingly, in the

presence of herding the welfare loss is usual only a single service time.
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Further theoretical and numerical analyses suggest that the herding behavior highlighted by our

base model is prevalent whenever the system is congested. Alternatively, we also find that when

the arrival rate is less than the bottleneck service rate of the system, herding no longer occurs. Our

findings thus suggest that in a service network with open routing, strategic customers will herd if

the network is congested.

Our paper provides the following two main takeaways to practitioners. First, in a congested

open-routing service network, experienced customers are likely to herd. This insight is important

because if system planners assume that strategic customers choose routes at random or join the

shortest queue, then they would incorrectly evaluate the system. Second, our analysis shows that

herding achieves a near-optimal cumulative system time. Therefore, if cumulative system time is

the main objective, instead of requiring customers to take a certain route, system planners can

attempt to incentivize herding, or simply help the customers to understand that herding is their

best strategy.

Service networks with open routing are an exciting area of study, and this paper generates

multiple avenues for future work. For example, in some cases, customers might have complex utility

functions; if customers were risk averse or if they preferred not to wait too long at any one station,

then the equilibrium analysis would be substantially different from ours. Another system worth

studying would be one with more than two stations wherein each customer visits only a subset of

the stations, extending our results on two-station systems with dedicated customers. Intriguing also

would be a system with more than two stations where customers dynamically choose their routes

after each successive service completion. Finally, it would be of interest to learn about customer

routing behavior in a system when jockeying between queues is allowed.
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Appendix A: Proofs of Results in Sections 4 and 5

Proof of Proposition 1. The fact that priorities are drawn uniformly at random implies that the game is

symmetric, and we thus consider player (or customer) i, where i is an arbitrary player index. Suppose that

all customers take route AB and that N ≥ 2µA/µB + 1. The system time experienced by player i depends

on which priority she is assigned. Because all customers are taking route AB, by Property 1, customer i will

always find station B idle when she finishes service at station A. When assigned priority j, customer i will

wait for j−1 players to be served at station A, be served herself, and then immediately be served at station

B. Thus, as a function of her priority j, customer i’s total system time SA(j) is given by

SA(j) =
j

µA
+

1

µB
, j = 1, . . . ,N.

Let T (1,m) denote customer i’s expected system time if she chooses route AB and m other customers also

choose route AB, and let T (0,m) denote customer i’s expected system time if she chooses route BA and

m other customers choose route AB. As priorities are drawn uniformly at random, customer i’s expected

system time when following the candidate equilibrium strategy is given by

T (1,N − 1) =

N∑
j=1

1

N
SA(j) =

N∑
j=1

1

N
(
j

µA
+

1

µB
) =

1

µB
+
N + 1

2µA
.

If she takes route BA, then player i will be behind all N − 1 other players when she gets to station A. So,

her total system time T (0,N − 1) is deterministic and is given by

T (0,N − 1) =
1

µB
+ (

N

µA
− 1

µB
) =

N

µA
.

Now, our assumption that N ≥ 2µA/µB + 1 implies that

1

µB
+

1

2µA
≤ N

2µA
=⇒ 1

µB
+
N + 1

2µA
≤ N

µA
.

Therefore, customer i has no incentive to deviate as T (1,N − 1)≤ T (0,N − 1), and we have a Nash equilib-

rium.

With the herding equilibrium at station A established, assume now that µB < 2µA and N ≥max{µB/µA+

1,2µA + µB/(2µA − µB)}, and suppose that all customers take route BA. We will evaluate whether any

customer has incentive to deviate. The condition N ≥ (µB/µA)+1 ensures that, if player i deviates and takes

route AB, then station B will not finish serving all N − 1 other players before player i finishes at station A.

Applying the same notation as the previous case, customer i’s total system time T (1,0) from taking route

AB is deterministic and is given by

T (1,0) =
N

µB
.

If customer i takes route BA, then her priority at station B is drawn uniformly at random, and with

probability 1/N she will be in position j, for j = 1, . . . ,N . Suppose that she draws priority j; she will wait

for j−1 customers to be served at station B, be served herself there, and then wait in a queue at station A.

Because all customers take route BA, station A will idle for the first 1/µB units of time, and then will work
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continuously until it has processed all N customers. Player i’s system time corresponds to the time when

station A finishes with the j-th job. Thus, we have that customer i’s system time SB(j) is

SB(j) =
j

µA
+

1

µB
.

We can now calculate her expected total system time T (0,0) as

T (0,0) =

N∑
j=1

1

N
SB(j) =

N∑
j=1

1

N
(
j

µA
+

1

µB
) =

1

µB
+
N + 1

2µA
.

By our assumption that µB < 2µA and N ≥ (2µA +µB)/(2µA−µB), we have

2µA +µB ≤ (2µA−µB)N =⇒ 1

µB
+
N + 1

2µA
≤ N

µB
.

Therefore we have T (0,0)≤ T (1,0), implying that no customer has incentive to deviate, and we have a Nash

equilibrium. �

Proof of Proposition 2. As discussed, submodularity is equivalent to the decreasing differences condi-

tion (3). For our proof, we divide T (1,m), the expected system time for a fixed player choosing route AB

when m other players are also choosing the same route, into two components. We first define T̃ (1,m) to be

the expected system time for the player choosing route AB, not counting any waiting time that she may

experience in the queue at station B. Because priorities are drawn uniformly at random, we have

T̃ (1,m) :=

m+1∑
j=1

1

m+ 1

(
j

µA
+

1

µB

)
=

1

µB
+
m+ 2

2µA
. (13)

Next, we define δm as the difference between the total expected system time and the expression in equation

(13), i.e., δm := T (1,m)− T̃ (1,m). By definition, then, δm is equal to the expected time spent waiting in the

queue at station B.

Station A never idles until it finishes as long as at least one player chooses route AB. Therefore, for m≥ 1,

the expected system time for a player choosing route BA when m other players choose route AB is given by

T (0,m) =

N−m∑
`=1

1

N −m

(
m+ `

µA

)
=
N +m+ 1

2µA
. (14)

By equations (13) and (14), we have that for all m≥ 1,

dm := T (1,m)−T (0,m) = δm + T̃ (1,m)−T (0,m) = δm +
1

µB
− N − 1

2µA
, (15)

which implies that for all 1≤ m̃≤m≤N − 1,

dm ≤ dm̃ if and only if δm ≤ δm̃. (16)

For m≥ 1, define δ(j)
m to be the wait time in queue at station B experienced by the fixed player when m

other players choose route AB, given that she chooses route AB and receives priority j at station A. Then

we have the representations

δ(1)
m =

(
N −m− 1

µB
− 1

µA

)+

, and δ(j+1)
m =

(
δ(j)
m +

1

µB
− 1

µA

)+

for all j = 1, . . .m.
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Because 1/µB − 1/µA < 0, we have that

δ(j+1)
m ≤ δ(j)

m for all j = 1, . . . ,m. (17)

Moreover, because the function f(x) := (x− 1/µA)+ is non-decreasing, we also have

δ
(1)
m+1 ≤ δ(1)

m ,

and therefore, for j = 2, . . . ,m+ 1,

δ
(j)
m+1 =

(
δ

(j−1)
m+1 +

1

µB
− 1

µA

)+

≤
(
δ(j−1)
m +

1

µB
− 1

µA

)+

= δ(j)
m . (18)

We have thus established that δ(j)
m is monotonically decreasing both in j for any given m and in m for any

given j. Next, because priorities are drawn uniformly at random, we have that

δm =
1

m+ 1

m+1∑
j=1

δ(j)
m for all m≥ 1. (19)

Equation (19) expresses δm as the average of the terms δ(1)
m , . . . , δ(m+1)

m . By equation (17), δ(j)
m is non-increasing

in j, and therefore the average of δ(1)
m , . . . , δ(m+1)

m is bounded above by the average of δ(1)
m , . . . , δ(m)

m . We then

have

δm =
1

m+ 1

m+1∑
j=1

δ(j)
m ≤

1

m

m∑
j=1

δ(j)
m ≤

1

m

m∑
j=1

δ
(j)
m−1 = δm−1 for all 2≤m≤N − 1, (20)

where the second inequality comes from the monotonicity in m in equation (18). Equations (16) and (20)

then imply that

dm ≤ dm−1 for all 2≤m≤N − 1, (21)

which satisfies the decreasing differences condition. Moreover, when 2≤m<N −µB/µA, we have that

δ(1)
m =

(
N −m− 1

µB
− 1

µA

)+

<

(
N −m
µB

− 1

µA

)+

= δ
(1)
m−1, (22)

so we conclude that the inequalities in equations (20) and (21) hold strictly in this range.

Lastly, we directly evaluate and compare d1 and d0. Observe that N > Nsub implies that 2/µA < (N −
1)/µB, so when m = 0 or m = 1, if the fixed player chooses route AB, then she always faces a queue at

station B. Therefore,

T (1,1) =
1

2

(
N − 1

µB
+
N

µB

)
=

2N − 1

2µB
and T (1,0) =

N

µB
.

When the player chooses route BA, we note that station A will not idle if m= 1, but it idles for 1/µB units

of time if m= 0. Therefore,

T (0,1) =
1

N − 1

N−1∑
j=1

j+ 1

µA
=
N + 2

2µA
and T (0,0) =

N∑
j=1

1

N

(
j

µA
+

1

µB

)
=

1

µB
+
N + 1

2µA
.

Applying the equations above, we have the relation

d1 =
N − 1

µB
− N + 1

2µA
+

(
1

2µB
− 1

2µA

)
<
N − 1

µB
− N + 1

2µA
= T (1,0)−T (0,0) = d0. (23)

Equations (21) and (23) imply that the expected system time has decreasing differences and is therefore

submodular, and equations (22) and (23) imply equation (4). �
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Proof of Corollary 1. If m<N − µB/µA, then the statement is immediately verified by Proposition 2.

If m≥N −µB/µA, we then must have
N −m
µB

≤ 1

µA
,

which implies that the queue at station B clears before the first AB customer arrives. Recall that δm =

T (1,m)− T̃ (1,m) is equal to the expected time spent waiting in the queue at station B. Because the queue

at station B clears before the first AB customer arrives, we have δm = 0, and equation (15) implies that

dm =
1

µB
− N − 1

2µA
<

1

µB
− 1

µA
< 0,

where the first inequality follows because N >Nsub > 3. �

Proof of Proposition 3.

Proof. Let 〈·,·〉 denote the standard vector product, and let d be the vector of differences dm = T (1,m)−
T (0,m) of waiting times for choosing routes AB and BA, i.e., d := (d0, d1, . . . , dN−1). Define π

(t)
i as the

expected difference in system times for player i, given her belief at time t, which is given by

π
(t)
i := 〈β(t)

i ,d〉.

We proceed by cases.

Case 1: suppose that x(`) ≥m∗+ 1. Then for any player i who chose route AB in period `, we must have

x
(`)
−i ≥m∗, and also π

(`)
i ≤ 0 because otherwise player i would have chosen route BA in period `. This implies

that

π
(`+1)
i = (1−α`)π(`)

i +α`〈e(x
(`)
−i ),d〉 ≤ (1−α`)π(`)

i +α`dm∗ ≤ 0, (24)

where the first inequality follows from the submodularity of the expected system time, and the second

inequality follows by the definition of m∗. Equation (24) implies that all of the customers who chose route

AB in period ` will do so again in periods `+ 1, `+ 2, . . . . Therefore, for any t≥ `, we have that x
(t)
i = 1 for

each player i that chose route AB in period `, and this implies that

m∗+ 1≤ x(`) ≤ x(t) for all t≥ `.

For t̄≥ ` and for any customer i who chose route BA in period `, we have that

π
(t̄+1)
i =

t̄∏
t=`

(1−αt)π(`)
i +

t̄∑
t=`

αt〈e(x
(t)
−i ),d〉

t̄∏
s=t+1

(1−αs)

≤
t̄∏
t=`

(1−αt)π(`)
i +

t̄∑
t=`

αtdm∗+1

t̄∏
s=t+1

(1−αs)

=

t̄∏
t=`

(1−αt)π(`)
i +

(
1−

t̄∏
t=`

(1−αt)
)
dm∗+1,

where the inequality follows by the submodularity of the expected system time. Note that we always have

dm∗+1 < 0, because if dm∗ < 0, then dm∗+1 ≤ dm∗ < 0; and if dm∗ = 0, then by Corollary 1, we have dm∗+1 < 0.

Combining this with the assumption in equation (6), there must exist t0 such that for all t̄≥ t0,

π
(t̄+1)
i ≤

t̄∏
t=`

(1−αt)π(`)
i +

(
1−

t̄∏
t=`

(1−αt)
)
dm∗+1 < 0.
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This implies that for all t̄≥ t0, we have x
(t̄+1)
i = 1 for every customer i that chose route BA in period `.

Case 2: suppose that x(`) ≤m∗ − 1. Then for any customer i who chose route BA in period `, we must

have π
(`)
i > 0 and x

(`)
−i ≤m∗− 1. This implies that

π
(`+1)
i = (1−α`)π(`)

i +α`〈e(x
(`)
−i ),d〉 ≥ (1−α`)π(`)

i +α`dm∗−1 > 0,

where the first inequality follows from the submodularity of the expected system time, and the second

inequality follows from the definition of m∗. Therefore, for any t≥ `, we have that x
(t)
i = 0 for every customer

i that chose route BA in period `. Finally, for t̄≥ ` and for any customer i that chose route AB in period `,

we have

π
(t̄+1)
i ≥

t̄∏
t=`

(1−αt)π(`)
i +

(
1−

t̄∏
t=`

(1−αt)
)
dm∗−2.

The assumption in equation (6) and the fact that dm∗−2 > 0 together imply that there must exist t0 such

that for all t̄≥ t0,

π
(t̄+1)
i ≥

t̄∏
t=`

(1−αt)π(`)
i +

(
1−

t̄∏
t=`

(1−αt)
)
dm∗−2 > 0.

This implies that for all t̄≥ t0, we have x
(t̄+1)
i = 0 for each customer i that chose route AB in period `. �

Proof of Corollary 2. By Proposition 3, we know that if there exists some `≥ 0 such that x(`) 6=m∗, then

Cournot best-response will converge to herding because it is a special case of {αt}-learning. We proceed to

show that with Cournot best-response, there always exists some such `. Consider an arbitrary path of play

in which customers play Cournot best-response, that is, {αt}-learning with αt = 1 for all t≥ 1. In period t,

x(t) players choose route AB. If x(t) 6=m∗, then Proposition 3 implies that play will converge to herding in

finitely many periods. If instead x(t) =m∗, then we have dx(t) ≤ 0 and dx(t)−1 > 0 by the definition of m∗.

Clearly, if N is odd, then m∗ 6=N/2, and next, we show that m∗ 6=N/2 when N is even. Define QN
2

by

QN
2

:= min{N
2
, b
µA(N

2
− 1)

µB −µA
c}.

The quantity QN
2

represents the number of AB customers who face a queue at station B when they depart

station A, given that a total of N/2 customers chose route AB. We now have

T (1,
N

2
− 1) =

QN
2∑

k=1

1

(N
2

)

(
k+ N

2

µB

)
+

N
2∑

k=QN
2

+1

1

(N
2

)

(
k

µA
+

1

µB

)

and

T (0,
N

2
− 1) =

N
2

+1∑
j=1

(
1

N
2

+ 1

)(
j+ N

2
− 1

µA

)

≥
N
2∑

k=1

1

(N
2

)

(
j+ N

2
− 1

µA

)
, (25)
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where the inequality in equation (25) comes from the fact that the average of a set of (N/2)+1 real numbers

is larger than the average of the smallest N/2 numbers in the set. We can then write

dN
2
−1 = T (1,

N

2
− 1)−T (0,

N

2
− 1)

≤

QN
2∑

k=1

1

(N
2

)

(
k+ N

2

µB
−
k+ N

2
− 1

µA

)
+

N
2∑

k=QN
2

+1

1

(N
2

)

(
k

µA
+

1

µB
−
k+ N

2
− 1

µA

)
.

From the assumption that N > 2µA/(µB −µA), we get

k+ N
2

µB
−
k+ N

2
− 1

µA
=−N(µB −µA)

2µAµB
+

k

µB
− k− 1

µA
<
k− 1

µB
− k− 1

µA
≤ 0;

which implies that every term in the first summation above is strictly negative. Also, by the assumption that

N ≥Nsub + 1 = 2µB/µA + 2, we have

1

µB
− N

2µA
+

1

µA
≤ 1

µB
− µB
µ2
A

<
1

µB
− 1

µA
< 0;

which implies that every term in the second summation is strictly negative. By this reasoning and the

decreasing differences condition, we conclude that

dN
2
≤ dN

2
−1 < 0,

contradicting the definition of m∗, which requires that dm∗−1 > 0. Therefore m∗ 6=N/2. If x(t) =m∗, then in

period t+ 1 the customers who played route AB in period t will switch to route BA, and the customers who

played route BA will switch to route AB. The fact that m∗ 6=N/2 implies that x(t+1) 6=m∗, and therefore

play will converge to herding by Proposition 3. �

Proof of Corollary 3. Assume by contradiction that there exists a pure-strategy Nash equilibrium in

which 0<NAB <N players choose route AB, and NBA =N −NAB players choose route BA. These assump-

tions imply that dNAB
≥ 0 and dNAB−1 ≤ 0. But by Proposition 2, we must also have dNAB

≤ dNAB−1. This

implies that dNAB
= dNAB−1 = 0, which contradicts Corollary 1. Therefore, there exist no pure-strategy Nash

equilibria besides the herding equilibria of Proposition 1. �

Proof of Corollary 4. Proposition 2 tells us that if N >Nsub, then the game has decreasing differences,

i.e., dN−1 ≤ dN−2 ≤ · · · ≤ d1 ≤ d0. The relation 2µA ≤ µB then implies that

µB
2µA

>
N − 1

N + 1
=⇒ N − 1

µB
<
N + 1

2µA
=⇒ d0 = T (1,0)−T (0,0) =

N − 1

µB
− N + 1

2µA
< 0.

Decreasing differences and the fact that d0 < 0 gives us that dm = T (1,m) − T (0,m) < 0 for all m ∈

{0,1, . . . ,N − 1}. Therefore a player’s expected system time is always smaller for route AB than route BA,

no matter how many other players choose route AB. �
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Proof of Proposition 4. For players i= 1,2, . . . ,N , let si ∈ [0,1] denote player i’s strategy—specifically,

the probability that player i chooses route AB. Assume by way of contradiction that there exists a Nash

equilibrium with some players adopting mixed strategies and other players adopting pure strategies. Let NAB

be the number of customers playing the pure strategy of choosing route AB, NBA be the number of players

playing the pure strategy of choosing route BA, and NM :=N −NAB −NBA be the number of customers

playing “properly” mixed strategies, i.e., placing strictly positive probability on both routes. Let the index

i be defined such that si = 1 for i= 1, . . . ,NAB; si = 0 for i=NAB + 1, . . . ,NAB +NBA; and 0< si < 1 for

i=NAB +NBA + 1, . . . ,N . By our assumption, NAB +NBA <N and either NAB ≥ 1 or NBA ≥ 1.

Let Γi denote the difference between player i’s expected system time from choosing route AB and the

expected system time from choosing route BA. Let ηk be the probability, given their strategies, that exactly

k players choose route AB among players in the set {NAB + NBA + 2, . . . ,N}. Player NAB + NBA + 1’s

difference between her expected system times from taking routes AB and BA can be expressed as

0 = ΓNAB+NBA+1 =

NM−1∑
k=0

ηkdNAB+k, (26)

where the fact that ΓNAB+NBA+1 = 0 is true by assumption; if player NAB +NBA + 1 is employing a mixed

strategy in this Nash equilibrium, then she must be indifferent between route AB and route BA.

Assume first that NAB ≥ 1. Then player 1 is choosing route AB. In this case, the difference between her

expected system times from taking routes AB and BA can be expressed as

Γ1 = sNAB+NBA+1

NM−1∑
k=0

ηkdNAB+k + (1− sNAB+NBA+1)

NM−1∑
k=0

ηkdNAB+k−1

= (1− sNAB+NBA+1)

NM−1∑
k=0

ηkdNAB+k−1,

where the last equality holds by equation (26). Moreover, because player 1 is choosing route AB, that route

must be weakly better for her, implying that

NM−1∑
k=0

ηkdNAB+k−1 ≤ 0. (27)

Now, combining equations (26), (27), and the decreasing differences property, we get

NM−1∑
k=0

ηkdNAB+k−1 =

NM−1∑
k=0

ηkdNAB+k = 0 (28)

If the decreasing differences condition holds strictly (that is, if dNAB+k < dNAB+k−1) for some k ∈
{0,1, . . .NM − 1}, then equation (28) cannot hold. Therefore we must have

dNAB−1 = dNAB
= . . .= dNAB+NM−1 = 0. (29)

Equation (29) contradicts Corollary 1, and thus NAB must be equal to zero and therefore NBA ≥ 1. In that

case, player 1 is choosing route BA, and the difference between her expected times from choosing routes AB

and BA can be expressed as

Γ1 = sNAB+NBA+1

NM−1∑
k=0

ηkd1+k + (1− sNAB+NBA+1)

NM−1∑
k=0

ηkdk = sNAB+NBA+1

NM−1∑
k=0

ηkd1+k,
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where the last equality holds by equation (26). Moreover, because player 1 is choosing route BA, that route

must be weakly better for her, implying that

NM−1∑
k=0

ηkd1+k ≥ 0. (30)

Now, applying a similar argument as in the case with NAB ≥ 1, combining equations (26), (30), and the

decreasing differences property gives us

d0 = d1 = . . .= dNM
= 0. (31)

Equation (31) also contradicts Corollary 1. Therefore, there are no Nash equilibria of the open routing game

in which some players adopt mixed strategies and other players adopt pure strategies.

Consider now an equilibrium in which all N players mix, that is, NM = N and NAB = NBA = 0. Let νk

be the probability, given their strategies, that exactly k players choose route AB among players in the set

{3, . . . ,N}. Player 1’s expected savings from taking route BA instead of route AB is given by

Γ1 = s2

N−2∑
k=0

νkd1+k + (1− s2)

N−2∑
k=0

νkdk = 0,

by assumption since player 1 must be indifferent if she plays a mixed strategy in equilibrium. Denote by Γ̃ε1

the perturbed expected savings for player 1 if player 2 increases her probability of route AB to s2 + ε. We

have

Γ̃ε1 = (s2 + ε)

N−2∑
k=0

d1+kνk + (1− s2− ε)
N−2∑
k=0

dkνk

= ε

(N−2∑
k=0

νk(d1+k− dk)
)

< 0,

where the strict inequality follows from decreasing differences and the fact that d1 < d0, from the proof of

Proposition 2. Therefore, for any ε > 0, if player 2 perturbs her strategy by increasing her probability of

route AB to s2 + ε, then s1 is no longer a best response for player 1, and thus this mixed-strategy Nash

equilibrium is not “ε-stable.” The same argument applies to the perturbation of any one player’s strategy.

It should be observed that this notion of ε-stability is related to but much stronger than the notion of an

“evolutionarily stable strategy” as defined in Hassin and Haviv (2003). �

Proof of Corollary 5. Similar to the argument of Corollary 3, suppose that there is a pure-strategy Nash

equilibrium besides the herding equilibria. Then there must exist some NAB <m<NAB +NS − 1 such that

dm ≥ 0 and dm−1 ≤ 0. Combining this with Proposition 2, we must have dm = dm−1 = 0, but this contradicts

Corollary 1. Therefore, there cannot be non-herding pure-strategy Nash equilibria. Next, we identify three

regimes corresponding to the three conclusions in the statement of the proposition.

Case 1: dNAB
< 0.

If dNAB
< 0, then even if only non-strategic customers take route AB, it is in the interest of each strategic

customer to deviate to route AB. Decreasing differences implies that it is a dominant strategy for all of the

strategic players to choose route AB.
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Case 2: dNAB+NS−1 > 0.

If dNAB+NS−1 > 0, then even if all of the other strategic customers are taking route AB, a strategic customer

would rather take route BA. Decreasing differences gives that it is a dominant strategy for all of the strategic

players to choose route BA.

Case 3: dNAB
≥ 0 and dNAB+NS−1 ≤ 0.

In this case, both herding profiles are Nash equilibria. �

Proof of Proposition 5. Assume that all N players visit station A first, so station B is initially empty

until the first departure from station A. Observe that if all N customers visit station A first, then station

B behaves like a GI/GI/1 queueing system with arrival rate µA and service rate µB (recall that µA < µB,

so such a system would be stable). Let FWB
0

be the distribution function for a random variable which is

independent of the arrival and service processes and which may modify the initial state of the queueing

system. Let WB
k , k≥ 1, be the waiting time that the k-th departure from station A experiences at station B,

and let FWB
k

be the distribution function of WB
k . Note that with probability 1 we have WB

0 = 0 and WB
1 = 0

because station B is initially empty. Therefore, FWB
1

stochastically dominates FWB
0

, which we denote as

FWB
0
≤st FWB

1
.

Define FWB
∞

as the stationary waiting-time distribution function for a GI/GI/1 queueing system with

arrival rate µA and service rate µB. By Theorem 6.2.1 in Müller and Stoyan (2002), we then have that

FWB
k
≤st FWB

∞
for all k= 1,2, . . . . (32)

Armed with the stochastic dominance relation (32), we consider the candidate equilibrium profile in which all

customers visit station A first and evaluate the prospect of deviating to route BA. If the customer follows her

current strategy, she will receive priority k at station A, for k= 1, . . .N , with probability 1/N . Conditional

on her priority k, her expected total system time E[SA|k] is given by

E[SA|k] =
k

µA
+E[WB

k ] +
1

µB
.

Equation (32) implies that E[WB
k ] ≤ E[WB

∞], where E[WB
∞] is the steady-state expected waiting time from

the distribution function FWB
∞

. We then have the bound

E[SA|k]≤ k

µA
+E[WB

∞] +
1

µB
≤ k

µA
+
µA(σ2

A +σ2
B)

2(1−µA/µB)
+

1

µB
, (33)

where the last inequality follows from bounds for the steady-state expected waiting time in queue for a

GI/GI/1 queue found in Kingman (1962). Taking expectation over the priority in equation (33), we have

E[SA]≤ 1

N

N∑
k=1

(
k

µA
+
µA(σ2

A +σ2
B)

2(1−µA/µB)
+

1

µB
)

=
N + 1

2µA
+
µA(σ2

A +σ2
B)

2(1−µA/µB)
+

1

µB
.
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If a customer deviates and visits station B first, then she will be the last to be served at station A, so her

expected system time E[SB] satisfies E[SB]≥N/µA. Finally, by equation (7), we have

2µA
µB

+
µ2
A(σ2

A +σ2
B)

1−µA/µB
<N − 1

⇒ µA(σ2
A +σ2

B)

2(1−µA/µB)
+

1

µB
<
N − 1

2µA

=⇒ E[SA]≤ N + 1

2µA
+
µA(σ2

A +σ2
B)

2(1−µA/µB)
+

1

µB
<
N

µA
≤ E[SB].

As a customer’s expected total system time is shorter if she follows the candidate profile and visits station

A first, she has no incentive to deviate. We conclude that it is a Nash equilibrium for all customers to visit

station A first. �

Proof of Proposition 6. Let XA
k and XB

k be the service time experienced by the k-th customer to be

served at stations A and B, respectively. Suppose that all players visit station B first, and let WA
k be the

waiting time at station A experienced by the k-th departure from station B. Define Uk by

Uk :=XA
k −XB

k+1.

By Lindley’s equation, then, we have

WA
1 = 0

WA
2 = max{0,WA

1 +U1}= max{0,U1}

. . .

WA
k+1 = max{0,Uk,Uk +Uk−1, . . . ,Uk +Uk−1 + · · ·+U1}.

Now, define IAk to be the cumulative idle time experienced by station A before the arrival of the k-th customer,

when all customers visit station A first. We can relate the waiting time WA
k of the k-th customer to the idle

time and the excess workload by

IAk =WA
k −

( k−1∑
i=1

XA
i −

k∑
j=1

XB
j

)

=WA
k −

k−1∑
i=1

Ui +XB
1

=XB
1 + max

{
−
k−1∑
i=1

Ui,−
k−2∑
i=1

Ui, . . . ,−U1,0

}
.

Note then that −Ui has the same distribution as XB
k−i −XA

k−i+1, and therefore, IAk −XB
1 has the same

distribution as

WB
k := max

{ k−1∑
i=1

(XB
i −XA

i+1),

k−1∑
i=2

(XB
i −XA

i+1), . . . , (XB
k−1−XA

k ),0

}
, (34)

which is the “dual process” of WA
k . Moreover, by Lindley’s equation, we can view the equation (34) as the

wait time of a single server queue with interarrival time distribution corresponding to station A’s service
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time distribution, and service time distribution corresponding to station A’s interarrival time distribution.

From equation (32) in the proof of Proposition 5 and Kingman (1962), we have that

E[WB
k ]≤ E[WB

∞]≤ µA(σ2
A +σ2

B)

2(1−µA/µB)
. (35)

Let SA be the system time associated with choosing route AB, and SB be the system time associated

with choosing route BA. Now, given a priority k at station B, we have

E[SB|k] =
k

µA
+E[IAk ]

=
k

µA
+

1

µB
+E[WB

k ]

≤ k

µA
+

1

µB
+E[WB

∞],

where the equality follows from the fact that IAk −XB
1 has the same distribution as WA

k , while the inequality

follows from equation (35). Applying this inequality, we get that

E[SB]≤ E[WB
∞] +

1

µB
+

N∑
k=1

1

N

(
k

µA

)
= E[WB

∞] +
1

µB
+
N + 1

2µA

≤ µA(σ2
A +σ2

B)

2(1−µA/µB)
+

1

µB
+
N + 1

2µA
,

with the last inequality follows from equation (35). Finally, because a player deviating to route AB will be

the last customer served at station B, we clearly have

E[SA]≥ N

µB
.

Equation (8) then gives

1

2µA
+

1

µB
+
µAµB(σ2

A +σ2
B)

2(µB −µA)
≤N

(
2µA−µB

2µAµB

)
=⇒ E[SB]≤ N + 1

2µA
+

1

µB
+
µA(σ2

A +σ2
B)

2(1−µA/µB)
≤ N

µB
≤ E[SA].

As it is, the expected system time from choosing route BA is less than that from choosing route AB.

Therefore, no customer has incentive to deviate, and we have that it is a Nash equilibrium for every player

to choose route BA. �

Proof of Proposition 7. We establish the subgame perfect equilibrium using backward induction. First,

equations (9) and (10) tell us that the unique optimal strategy for customer N is to take route BA if

yAN−1 =N − 1 and route AB otherwise. Note that this strategy ensures that in equilibrium always at least

one customer will take route AB. Consequently, being the slower station, in equilibrium station A will never

idle until it has processed all N customers. Next, we use induction to identify the optimal strategy for all

other players. For the induction hypothesis, assume for some integer 2 ≤ n ≤ N − 1 that the strategy of

subsequent customers N −n′, where 1≤ n′ <n, is to always take route AB, and that the final customer to

move, customer N , follows the optimal strategy derived above.
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To serve as the base case, we first verify the induction hypothesis for n= 2 by deriving the equilibrium

strategy for customer N −1. Player N , the last to move, is the only customer that follows player N −1, and

in equilibrium customer N will follow the strategy of visiting station B first if yAN−1 =N − 1, and station

A otherwise. So, if customer N − 1 visits station B first, then customer N will visit station A first, and

customer N − 1 will be the last person served at station A. She will then experience system time given by

SBN−1 =
N

µA
(36)

because, as noted, station A never idles given player N ’s equilibrium strategy. If customer N −1 takes route

AB, then her system time will depend on how many players before her made the same choice. If a small

enough number of them chose route AB that when player N −1 departs from station A she will find station

B busy, then her system time SAN−1 is given by

SAN−1 =
N − 1

µB
<
N − 1

µA
<
N − 1

µA
+

1

µA
= SBN−1. (37)

On the other hand, if enough customers before customer N − 1 chose route AB that she will find station

B idle when she departs from station A, then her system time SAN−1 is given by

SAN−1 =
yAN−2 + 1

µA
+

1

µB
<
N − 1

µA
+

1

µA
= SBN−1 (38)

Thus, the equilibrium strategy for customer N − 1 is to visit station A first in every subhistory. Combined

with the equilibrium strategy for customer N , equations (36)-(38) verify the induction hypothesis for n= 2.

Now, assume that the induction hypothesis holds for some integer 2≤ n≤N − 1. Let SBN−n be the system

time that customer N −n experiences if she chooses to join station B first. Similarly, let SAN−n be the system

time that customer N −n experiences if she chooses to join station A first. If customer N −n chooses route

AB, then everyone after her will join station A first, and customer N − n will be the last to be served at

station A. Because station A never idles, we then must have SBN−n = N/µA. To study SAN−n, we need to

consider the following two cases.

Case 1: The number of AB customers before customer N −n, denoted by yAN−n−1, is small enough that

customer N − n finds station B busy when she finishes at station A. Then by Property 2, station B has

never idled since starting service and we must have SAN−n = (N −n)/µB. Moreover,

SAN−n =
N −n
µB

<
N −n
µA

<
N − 1

µA
+

1

µA
= SBN−n. (39)

Case 2: The number of AB customers before customer N −n, denoted by yAN−n−1, is big enough that

customer N −n finds station B idle when she finishes at station A. In this case, we have SAN−n = (yAN−n−1 +

1)/µA + (1/µB). Therefore, we have that

SAN−n =
yAN−n−1 + 1

µA
+

1

µB
<
N − 1

µA
+

1

µA
= SBN−n.

In either case, choosing route AB results in a strictly shorter system time for customer N − n. Thus, if

the induction hypothesis holds for some n≥ 2, we now have that for any n≤ ñ≤N − 1, the unique optimal

strategy for customer N − ñ is to take route AB regardless of the subhistory, given that all subsequent

customers act optimally. Having verified the induction hypothesis for n= 2, we obtain the unique subgame

perfect equilibrium of our game, comprised of the strategies stated in the proposition. Furthermore, inspection

of the strategies reveals that the resulting equilibrium path entails the first N − 1 players taking route AB,

and the final player N taking route BA. �
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Appendix B: Additional Discussion and Proofs for Section 6

We now study the cumulative system time, that is the sum of the system times of all customers, under

different routing assignments. Suppose that x customers are assigned to route AB and the remaining N −x
customers are assigned to route BA. Let Q be the number of AB customers who, after their service at station

A, find station B busy. We use Di
A(x), i∈ {1, . . . , x}, to denote the total time spent in the system by the i-th

AB customer; similarly, we use Dj
B(x), j ∈ {1, . . . ,N − x}, to denote the total time spent in the system by

the j-th BA customer. Finally, define D(x) to be the cumulative system time, i.e.,

D(x) :=

x∑
i=1

Di
A(x) +

N−x∑
j=1

Dj
B(x). (40)

If the i-th AB customer finds station B busy upon completing her service at station A, then her total

system time is given by

Di
A(x) =

N −x
µB

+
i

µB
, i= 1, . . . ,Q. (41)

We may understand this by recalling from Property 1 that if the i-th customer finds station B busy, then

station B must necessarily have never been idle since the start of service availability. Thus, the i-th AB

customer will enter service at station B exactly when station B has finished processing all N −x of the BA

customers plus the i− 1 customers who visited station A first and are in front of the i-th AB customer.

Adding her own service time, she will experience the total system time related in equation (41).

On the other hand, if the i-th AB customer finishes service at station A and finds station B idle, then her

total system time is given by

Di
A(x) =

i

µA
+

1

µB
, for i=Q+ 1, . . . , x. (42)

Finding station B idle is equivalent to not facing a wait at station B, so a customer’s total system time is the

sum of the time that she spends at station A and her service time at station B. She must wait at station A

for the service of the i− 1 customers in front of her there, and then she must be served. She then moves to

station B, where she immediately enters service, resulting in the system time given by equation (42).

Finally, we have that the j-th BA customer has total system time given by

Dj
B(x) =

x+ j

µA
, for j = 1, . . . ,N −x, (43)

if x > 0. To build some intuition around this last quantity, we note that the j-th BA customer will enter

service at station A exactly when station A finishes processing all x of the AB customers plus all j − 1 of

the BA customers in front of her at station B. We recall from Property 2 that station A never idles as

long as x > 0, so the time until she enters service at station A is given by the sum of the service times of

x+ j− 1 customers at station A. Adding her own service time at station A, we see that her system time is

as expressed in equation (43). Note that if x= 0, then we have Dj
B(x) = j/µA + 1/µB, i.e., the quantity in

equation (43) plus 1/µB, where 1/µB is the time that station A is idle before its first customer departs from

station B.

Therefore, the cumulative system time, D(x), is simply the sum of all of the terms in equations (41)-(43),

and we present this quantity in the following lemma as a function of the number x of customers that visit

station A first.



A. Arlotto, A. E. Frazelle, and Y. Wei: Strategic Open Routing in Service Networks 45

Lemma 2 (Cumulative System Time). Take x∈ {0, . . . ,N}, and define Q̃ as

Q̃ := max

{
k ∈N :

k

µA
≤ N −x+ k− 1

µB

}
=

⌊
µA(N −x− 1)

µB −µA

⌋
.

The number Q of AB customers who find station B busy upon service completion at station A is given by

Q= min{x, Q̃},

and the cumulative system time D(x) is given by

D(x) =



N

µB
+
N2 +N

2µA
x= 0,

x(2N −x+ 1)

2µB
+

(N −x)(N +x+ 1)

2µA
1≤ x≤ µA(N − 1)

µB
,

Q̃(2N − 2x+ Q̃− 1) + 2x

2µB
+
N +N2− Q̃− Q̃2

2µA

µA(N − 1)

µB
<x≤N − µB

µA
,

x

µB
+
N2 +N

2µA
N − µB

µA
<x≤N.

(44)

Substituting x=N into the function D(x), we observe that the cumulative system time is the same under

either herding profile, i.e., D(0) =D(N).

Proof. First, observe that

x>
µA(N − 1)

µB

µBx−µAx> µA(N − 1)−µAx

x>
µA(N − 1−x)

µB −µA

x>

⌊
µA(N − 1−x)

µB −µA

⌋
= Q̃,

where the last equivalence condition holds because x is an integer. Therefore we have

Q= Q̃ < x if x>
µA(N − 1)

µB
and Q= x if x≤ µA(N − 1)

µB
. (45)

Next, we will study D(x) under the four cases listed in equation (44).

Case 1: x= 0. In this case, station A will be idle for the first 1/µB units of time. Since all customers visit

station B first, each customer must wait for the customers in front of her to finish at station A before she is

served there. Hence the customer with priority j at station B will finish at station A exactly when station A

completes its j-th service, which because of the idling will occur after (1/µB) + (j/µA) units of time. Thus,

the cumulative system time is equal to

D(x) =

N∑
j=1

Dj
B(0) =

N∑
j=1

(
1

µB
+

j

µA

)
=
N

µB
+
N2 +N

2µA
.

Case 2: 1≤ x≤ µA(N − 1)/µB. By equation (45), here we have Q= x. Equations (40) and (41) give us

that

D(x) =

x∑
i=1

Di
A(x) +

N−x∑
j=1

Dj
B(x) =

x(2N −x+ 1)

2µB
+

(N −x)(N +x+ 1)

2µA
.
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(a) N = 300, µA = 2/3, µB = 1.
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(b) N = 300, µA = 1/3, µB = 1.

Figure 3 Cumulative system time as a function of the number of AB customers x.

Case 3: µA(N − 1)/µB <x≤N −µB/µA. By equation (45), in this case Q= Q̃. By equations (40), (41),

and (42), we get

D(x) =

Q̃∑
i=1

Di
A(x) +

x∑
i=Q̃+1

Di
A(x) +

N−x∑
j=1

Dj
B(x) =

Q̃(2N − 2x+ Q̃− 1) + 2x

2µB
+
N +N2− Q̃− Q̃2

2µA
.

Case 4: N − µB/µA < x ≤ N. Recall that if station B idles then it will never build up a queue again.

In this case, even the first AB customer does not face a queue at station B, and therefore the cumulative

system time is equal to

D(x) =

x∑
i=1

Di
A(x) +

N−x∑
j=1

Dj
B(x) =

x

µB
+
N2 +N

2µA
. �

The four ranges for x that appear in equation (44) correspond to four regimes for the number of AB

customers: if x = 0, then there are no AB customers and station A will be idle during the first 1/µB

time periods; if 1 ≤ x ≤ µA(N − 1)/µB, then all of the AB customers will face a queue at station B; if

µA(N −1)/µB <x≤N −µB/µA, then some of the earlier AB customers will face a queue at station B, while

the later AB customers will be served at station B immediately; and finally, if N −µB/µA <x≤N , then no

AB customers will face a queue at station B.

Lemma 2 provides an explicit formula for the cumulative system time D(x), when x customers visit station

A first. Because Q̃ is a discrete function of x, we now develop tight upper and lower bounds for D(x) when

x ∈ {dµA(N − 1)/µBe, . . . , bN − (µB/µA)c}. Both the upper and lower bounds are outputs of continuous

functions, which are much more amenable to analysis, and the lower bound will be used in the proof of

Proposition 8.

Lemma 3 (Bounds on Cumulative System Time). Defining the functions S1(·) and S2(·) and the

quantity S3 by

S1(t) =
t

2

(
N −x+ 1

µB
+
N −x+ t

µB

)
,

S2(t) =
x− t

2

(
t+ 1

µA
+

1

µB
+

x

µA
+

1

µB

)
,

and S3 =
N −x

2

(
x+ 1

µA
+
N

µA

)
,
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we have that if µA(N − 1)/µB <x≤N − (µB/µA), then D(x) is bounded by

D(x)≥ S1

(
µA(N −x− 1)

µB −µA
− 1

)
+S2

(
µA(N −x− 1)

µB −µA

)
+S3, (46)

D(x)≤ S1

(
µA(N −x− 1)

µB −µA

)
+S2

(
µA(N −x− 1)

µB −µA
− 1

)
+S3.

Proof. Recall from the proof of Lemma 2 that if (µA(N − 1)/µB)<x≤N − (µB/µA), then

D(x) =

Q̃∑
i=1

N −x+ i

µB
+

x∑
i=Q̃+1

(
i

µA
+

1

µB

)
+

N−x∑
j=1

x+ j

µA
= S1(Q̃) +S2(Q̃) +S3.

The function S1(t) is non-decreasing on R+, and the function S2(t) is non-increasing on R+. Here we have

that x≤N −µB/µA, so

1≤ Q̃≤ µA(N −x− 1)

µB −µA
,

and the monotonicity properties of S1(·) and S2(·) give us that

D(x)≥ S1

(
µA(N −x− 1)

µB −µA
− 1

)
+S2

(
µA(N −x− 1)

µB −µA

)
+S3

and D(x)≤ S1

(
µA(N −x− 1)

µB −µA

)
+S2

(
µA(N −x− 1)

µB −µA
− 1

)
+S3. �

The lemma follows from the upper and lower bounds on Q̃ given by

µA(N −x− 1)

µB −µA
− 1< Q̃=

⌊
µA(N −x− 1)

µB −µA

⌋
≤ µA(N −x− 1)

µB −µA
.

In turn, the bounds that we obtain are extremely tight when N is large, as they are essentially the bounds

for the discretization error. Figure 3 plots the function D(x), along with these upper and lower bounds, for

two problem instances.

Proof of Proposition 8. We will establish that D(1) is a lower bound on the value of D(x) everywhere

except the region where Q̃ appears in the expression for D(x), and we will bound the difference between

D(1) and the minimum possible value of D(x) in that region.

Case 1: x= 0. Substituting 1 for x in equation (44), we get

D(1) =
N

µB
+

(N − 1)(N + 2)

2µA

=
N

µB
+
N2 +N

2µA
− 1

µA

=D(0)− 1

µA
,

and therefore 1/µA ≤DH
N −D∗N .

Case 2: 1≤ x≤ µA(N − 1)/µB. In this interval, the continuous extension of D(x) is a concave quadratic

function. Thus, the minimum of D(x) in this region must be at one of the endpoints. We evaluate

D(µA(N − 1)/µB) and get

D

(
µA(N − 1)

µB

)
=
N2 +N

2µA
+
N2(µ2

AµB −µ3
A)

2µAµ3
B

+
N(2µ3

A +µ2
AµB −µAµ2

B)

2µAµ3
B

+
µ2
B − 2µAµB −µ2

A

2µ3
B

.

The difference D(µA(N − 1)/µB)−D(1) is then given by

D

(
µA(N − 1)

µB

)
−D(1) =

N2µA(µB −µA)

2µ3
B

− N(µB −µA)(2µA + 3µB)

2µ3
B

+
(µB −µA)(µ2

A + 3µAµB + 2µ2
B)

2µAµ3
B
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The larger root of this convex quadratic function of N occurs at N = 1 + 2µB/µA, and thus

N ≥ 1 +
2µB
µA

=⇒ D

(
µA(N − 1)

µB

)
−D(1)≥ 0.

We deduce therefore that D(1) is the minimum value of D(x) for 1≤ x≤ µA(N − 1)/µB.

Case 3: µA(N − 1)/µB < x ≤ N − µB/µA. In this region we will work relative to the lower bound in

equation (46). Evaluating this bound, we have

D(x)≥ S1

(
µA(N −x− 1)

µB −µA
− 1

)
+S2

(
µA(N −x− 1)

µB −µA

)
+S3

= x2

(
µA

2µB(µB −µA)

)
+x

(
5

2(µB −µA)
− µA(2N + 1)

2µB(µB −µA)

)
+N2

(
µB −µA
2µAµB

+
1

2(µB −µA)

)
+N

(
µB +µA
2µAµB

− 2

µB −µA

)
+

2µA +µB
2µB(µB −µA)

=:
¯
D(x).

We note that
¯
D(x) is a convex quadratic function in x. Differentiating with respect to x, we get

∂
¯
D

∂x
=

5µB −µA(1 + 2N − 2x)

2µB(µB −µA)
.

Because the first-order condition is sufficient for a minimum, we set the derivative ∂
¯
D/∂x equal to zero and

solve for the root x∗, obtaining

5µB −µA(1 + 2N − 2x∗) = 0

2µAx
∗ = µA(2N + 1)− 5µB

x∗ =N +
1

2
− 5µB

2µA
.

We then have that
¯
D(x∗) is a lower bound on the value of D(x) for any µA(N − 1)/µB <x≤N −µB/µA.

The bound holds whether or not x∗ falls within the relevant interval, as
¯
D(x∗) is the global minimum of the

quadratic function. Evaluating
¯
D(x∗), we get

¯
D(x∗) =

N2 +N

2µA
+
N

µB
− 25µ2

B − 14µAµB − 7µ2
A

8µAµB(µB −µA)

=D(0)− 25µ2
B − 14µAµB − 7µ2

A

8µAµB(µB −µA)

=D(1) +
1

µA
− 25µ2

B − 14µAµB − 7µ2
A

8µAµB(µB −µA)
.

Because µA <µB, we have

0< 17µ2
B − 6µAµB − 7µ2

A

8µ2
B − 8µAµB < 25µ2

B − 14µAµB − 7µ2
A

1

µA
<

25µ2
B − 14µAµB − 7µ2

A

8µAµB(µB −µA)
,

which implies that
¯
D(x∗)<D(1).
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Case 4: N − µB/µA < x≤N. The cumulative system time D(x) is an increasing linear function on the

half-open interval (N − µB/µA,N ]. Therefore, the infimum of D(x) on this interval is given by the output

of the linear function evaluated at N −µB/µA, i.e.,

inf
x∈(N−µB/µA,N]

D(x) =
N −µB/µA

µB
+
N2 +N

2µA

=
N

µB
+
N2 +N

2µA
− 1

µA
=D(1).

Collecting the results from the four cases, we conclude that

1

µA
≤DH

N −D∗N ≤
1

µA
+

17µ2
B − 6µAµB − 7µ2

A

8µAµB(µB −µA)
. �

Appendix C: Results from Section 7

Customers Who Visit Only One Station

Proposition 9 (Nash Equilibrium with Route AB—Dedicated Customers). If

NS ≥ (NB + 1)(
2µA
µB

) + 1−NA, (47)

then it is a Nash equilibrium for all NS strategic players to visit station A first.

Proof. Suppose that all of the strategic players choose route AB. If so, then a player who deviates to take

route BA will be served at station A after all NA of the “A-only” players and after the other NS−1 strategic

players. We therefore have the following lower bound on the expected system time E[SB] from deviation

given by

E[SB]≥ NA +NS

µA
. (48)

Next we calculate an upper bound on the expected system time from following the profile and taking route

AB. Here we note that Property 1 still applies to this system. Namely, if station B ever idles, then it will

never build up a queue again. First, consider the case with no B-only players (that is, NB = 0). In this case,

there will never be a queue at station B, and strategic customers departing from station A will immediately

enter service at station B. Therefore, with no B-only customers we have an exact expression for E[SA] given

by

E[SA] =

NA+NS∑
j=1

1

NA +NS

(
j

µA
+

1

µB

)
.

Now, for a given priority j, if NB is greater than 0, then the maximum increase in the system time SA from

the case with no B-only players is equal to NB/µB, the increased initial workload at station B. Thus, for

any value of NB we have the bound

E[SA]≤
NA+NS∑
j=1

1

NA +NS

(
j

µA
+

1

µB
+
NB

µB

)
=
NA +NS + 1

2µA
+
NB + 1

µB
. (49)
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Equations (47), (48), and (49) give

(NB + 1)(
2µA
µB

) + 1≤NA +NS

=⇒ E[SA]≤ NB + 1

µB
+
NA +NS + 1

2µA
≤ NA +NS

µA
≤ E[SB].

We conclude that strategic players have no incentive to deviate, and therefore it is a symmetric Nash

equilibrium for all strategic players to visit station A first. �

Proposition 10 (Nash Equilibrium with Route BA—Dedicated Customers). If µB < 2µA and

NS ≥
µB(2NA + 1)−µA(NB − 2)

2µA−µB
, (50)

then it is a Nash equilibrium for all NS strategic players to visit station B first.

Proof. Suppose that all of the strategic customers are following the profile of visiting station B first,

and consider a player who contemplates deviating and visiting station A first. If she deviates, then she will

certainly not enter service at station B until after station B processes all NB B-only players as well as the

other NS − 1 strategic customers. Therefore, we can bound her expected system time E[SA] from deviating

by

E[SA]≥ NB +NS

µB
. (51)

Next, suppose that she follows the profile and visits station B first, and further suppose that she receives

priority k at station B. Let Zk be the random variable representing the number of strategic customers among

the first k − 1 players at station B. Given that there are NB +NS − 1 other players at station B, NS − 1

of which are strategic, the random variable Zk has a hypergeometric distribution with k − 1 trials from a

population of size NB +NS − 1 containing NS − 1 successes. Therefore, its mean is

E[Zk] = (k− 1)
NS − 1

NB +NS − 1
. (52)

With a large number of B-only players it is possible that station A will become idle while some strategic

customers have not yet been served at station B. Consider a strategic customer who is assigned priority k

at station B. The greatest amount of idle time that could possibly be introduced at station A is the sum of

the service times at station B of the B-only customers with a higher priority. There are exactly k− 1−Zk
such players. Define Ik as the amount of time that station A spends idle before the customer with priority

k at station B finishes her service at station B. If NA = 0, then station A would also idle for 1/µB before it

receives its first customer. An upper bound on the mean of E[Ik] is then

E[Ik]≤
1

µB
+E

[
k− 1−Zk

µB

]
=

1

µB
+
k− 1−E[Zk]

µB
. (53)

We can now express the expected system time from choosing route BA by

E[SB] =

NB+NS∑
k=1

1

NB +NS

(
NA + 1 +E[Zk]

µA
+E[Ik]

)

≤
NB+NS∑
k=1

1

NB +NS

(
NA + 1 +E[Zk]

µA
+
k− 1−E[Zk]

µB
+

1

µB

)
=

1

µB
+
NA + 1

µA
+
NS − 1

2µA
+
NB

2µB
, (54)
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Table 4 Percent Deviation from Submodularity with Dedicated Customers (NS = 50, µB = 1).

µA
NA,NB 1.1 1.3 1.5 1.7 1.9

0,5 2 0 0 0 0
0,10 0 2 0 0 0
5,0 0 2 2 4 4
5,10 0 0 0 0 0
10,0 2 0 4 4 6
10,5 0 0 0 2 4
10,10 0 0 0 0 0

where the inequality follows from equation (53) and the last equality follows from substituting the expression

in equation (52) for E[Zk] and then evaluating the summation. Because µB < 2µA, equations (50), (51), and

(54) then give

µB(2NA + 1)−µA(NB − 2)

2µA−µB
≤NS

=⇒ 2NA + 1

2µA
− NB − 2

2µB
≤NS

(
1

µB
− 1

2µA

)
=⇒ E[SB]≤ 1

µB
+
NA + 1

µA
+
NS − 1

2µA
+
NB

2µB
≤ NB +NS

µB
≤ E[SA].

Because E[SB]≤ E[SA], we conclude that no player has incentive to deviate, and thus it is a Nash equilibrium

for all NS strategic players to visit station B first. �

We also observe in a series of numerical experiments that, if there is not too much imbalance in the

number of dedicated customers at each station (i.e., only station A vs. only station B), then the expected

system time for the strategic customers is often submodular (or close to submodular) even in the presence

of dedicated customers. The results of the numerical study are summarized in Table 4. We fix NS = 50 and

µB = 1. The number of customers who are dedicated to each station varies; there are always 50 strategic

customers, and any non-strategic customers increase the total population size. For each routing profile of

the strategic customers (i.e., for x= 0,1, . . . ,50 customers on route AB, with the remainder on route BA),

we simulate the system 1,000 times. Service times are deterministic, so the only randomness in the system

is the arrangement of customers of different types in the queues. Using the sample average system time

for AB and BA customers for each routing profile, we compute the sample differences vector. Table 4

depicts the percentage of difference comparisons (i.e., d0 vs. d1, d1 vs. d2, etc.) which do not satisfy the

decreasing differences condition. We note that all instances satisfy the condition within a .5% tolerance.

These numerical experiments provide evidence that the expected system time continues to be submodular or

almost submodular in the presence of dedicated customers, if most of the customers are strategic and there

is not too much imbalance in the number of customers dedicated to each station.

S-Station Open Routing Game

Proposition 11 (Nash Equilibrium for Unobservable S-Station System). If we have

N ≥ 1 + 2µ1

S∑
ξ=2

1

µξ
, (55)
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then the unobservable S-station open routing game has a Nash equilibrium in which all players choose the

routing vector (1,2, . . . ,S).

Proof. Suppose that all players are following the routing vector (1,2, . . . ,S), and consider a player who

contemplates deviation. On path (that is, if everyone follows the prescribed profile), the only time any

customer will face a queue is at station 1. All of the other stations start empty and then receive arrivals

only when the station immediately before them completes a service. Because the routing vector is in order of

increasing service rate, a queue will never build up at any station other than station 1. Thus, if the customer

follows the prescribed profile, then her expected system time E[SEQ] is given by

E[SEQ] =

N∑
j=1

1

N
(
j

µ1

) +

S∑
ξ=2

1

µξ
=
N + 1

2µ1

+

S∑
ξ=2

1

µξ
.

Because the player will not face a queue at any station besides station 1, she cannot possibly improve her

system time by changing the order of stations that she visits after station 1. Thus the only deviations that

we must consider are those which involve a vector that starts at a station other than station 1. If the player

starts at station ξ ≥ 2, then she will necessarily be the last customer to be served at station 1. Thus, we

easily have a lower bound on her expected system time E[SD] from deviating given by

E[SD]≥ N

µ1

.

Equation (55) then gives

N ≥ 1 + 2µ1

S∑
ξ=2

1

µξ

=⇒
S∑
ξ=2

1

µξ
≤ N − 1

2µ1

=⇒ E[SEQ] =
N + 1

2µ1

+

S∑
ξ=2

1

µξ
≤ N

µ1

≤ E[SD].

The player’s expected system time is less if she follows the prescribed profile, and we therefore have a sym-

metric Nash equilibrium where all customers herd at station 1 and follow the routing vector (1,2, . . . ,S). �

Appendix D: Proof of Result from Section 8

Proof of Corollary 6. Let E[SA] be the expected system time for a customer who takes route AB, and

similarly let E[SB] be the expected system time for a customer who takes route BA. Also, take LA(p,z) and

LB(p,z) to be the steady-state expected number of customers at stations A and B, respectively, when the

strategy profile specified by p and z is played. By Lemma 1, we have

E[SA] =
LA(p,z)

µA
+
LB(p,z)

µB
= E[SB]. �


