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We investigate a joint inventory placement and online fulfillment problem. At the beginning, the inventory

of a single item is distributed to different warehouses. Then, at each period, an order arrives from one

of the demand regions, and the decision maker makes an irrevocable decision on whether to accept or

reject the order. In our model, we propose the minimum-inventory regret, a notion that includes both the

selection of initial inventories and the performance of the selected fulfillment policy. We consider two state-of-

the-art fulfillment policies: probabilistic fulfillment and score-based fulfillment. We prove that probabilistic

fulfillment has a minimum-inventory regret that scales with the square root of the time horizon. On the

other hand, we show that the score-based fulfillment policy has a minimum-inventory regret bound that is

independent of the time horizon and polynomial with respect to the number of warehouses and demand

regions. Our results have the following implication: the score-based fulfillment policy, when paired with

offline inventory placement, outperforms probabilistic fulfillment with any inventory placement, and the

performance gap increases with the time horizon.

This version: April 24, 2024

1. Introduction

The e-commerce sector has expanded rapidly, with retail sales in 2021 accounting for approximately

$768 billion in the United States and $4.9 trillion globally (Statista Research Department, 2021).

However, this growth has led to skyrocketing fulfillment costs, exemplified by Amazon’s $76.7

billion in shipping costs in the same year (Statista Research Department, 2022). Consequently,

e-retailers are actively seeking strategies to curtail these expenses. One strategy that has received

wide interest is online demand fulfillment optimization (Acimovic and Farias, 2019). It is well-

documented that an effective online demand fulfillment policy, which decides the warehouse from

which to fulfill an order upon its arrival, can result in significant cost savings.

In general, determining the optimal fulfillment policy is intractable due to the curse of dimen-

sionality. As a result, one stream of literature has focused on designing fulfillment policies with
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low regret. In this stream, there are two state-of-the-art low-regret policies, which we refer to as

probabilistic fulfillment (e.g., from Balseiro et al., 2023) and score-based fulfillment (e.g., from

Vera et al., 2021). The analysis for both policies was performed under the assumption that the

initial inventory is fixed and exogenous. However, real-world e-commerce retailers face two signif-

icant challenges. Firstly, inventory placement decisions, which are made before the actual online

fulfillment process, play a pivotal role in determining the effectiveness of fulfillment policies. As

highlighted by Acimovic and Graves (2017), these placement decisions can substantially influence

fulfillment costs. As a result, in some real-world situations, to fully comprehend the effectiveness

of online demand fulfillment policies, it is essential to incorporate inventory placement decisions.

Secondly, with the rise in e-commerce sales, there is a substantial increase in the number of demand

locations and warehouses. Thus, the efficiency of an online fulfillment policy becomes increasingly

tied to its performance with respect to the rising number of demand regions and warehouses.

With these two challenges in mind, we study a joint online demand fulfillment and inventory

placement model with multiple warehouses and multiple demand regions. Specifically, we propose

and study the minimum-inventory regret, a metric that incorporates the endogeneity of the inven-

tory placement before the fulfillment process. This definition compares the expected cost of a

fulfillment policy at the inventory placement that yields the lowest expected cost, with the optimal

expected cost of the offline (full-information) fulfillment policy.

Our analysis addresses the question of which of the state-of-the-art fulfillment policies is prefer-

able when one focuses on the minimum-inventory regret. We analyze how this regret metric interacts

with three key parameters: the length of the time horizon T , the total number of warehouses, I,

and the total number of demand regions, J . Our findings indicate that the probabilistic fulfillment

policy fails to achieve a constant minimum-inventory regret, scaling instead at an order of
√
T .

We also show that the score-based fulfillment policy attains a minimum-inventory regret that is

independent of T and scales as I2J2 log(J), with the number of warehouses I and the number

of demand regions J . Our intuition for deriving a polynomial bound for score-based fulfillment

stems from the online fulfillment settings where T tends to scale much faster than I and J . In

these settings, a policy that has
√
T regret can easily exceed regret of the policy which is constant

with respect to T and polynomial in I and J . Therefore, our regret analysis suggests that, in the

online fulfillment setting where T is much larger than I and J , the score-based fulfillment policy

is preferable to the probabilistic fulfillment policy when the initial inventory in the warehouses is

endogenized.
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Our analysis of minimum-inventory regret also provides some insights into inventory placement

decisions. The findings indicate that combining score-based fulfillment policy with the offline inven-

tory placement, which is the placement decision that minimizes the expected cost of the offline

policy, can achieve lower costs in the joint inventory placement and online fulfillment context. It

is important to note that offline inventory placement can be efficiently approximated using sample

average approximation. Hence, it is a practical inventory placement decision in real-world settings.

Conversely, our lower-bound analysis for probabilistic fulfillment indicates that low regret is not

always achievable with the probabilistic fulfillment policy, even when its optimal inventory place-

ment is selected. We also conduct a set of numerical experiments to show that the score-based

fulfillment policy outperforms the probabilistic fulfillment policy in non-asymptotic settings.

1.1. Literature Review

Several studies examine regret analysis in the context of general resource allocation problems which

includes online fulfillment as a special case. The survey paper by Balseiro et al. (2023) studies

a policy, which in our context is referred to as probabilistic fulfillment, that resolves the fluid

approximation at each period and uses that solution to make probabilistic allocation decisions.

When the fluid problem is finite-dimensional, Balseiro et al. (2023) provide a regret bound that

remains constant with respect to T , whereas the regret in the infinite-dimensional setting grows

logarithmically in T . This work generalizes the findings of Jasin and Kumar (2012), who showed

that the probabilistic resolving policy achieves constant regret in a certain revenue management

setting. Central to the results of Balseiro et al. (2023) and Jasin and Kumar (2012) is the assumption

that the initial fluid approximation problem yields a nondegenerate solution.

Another constant regret policy for general allocation problems was suggested by Vera and Baner-

jee (2020); Vera et al. (2021, 2023) (see also Arlotto and Gurvich, 2019). The policy, which in our

context is referred to as score-based fulfillment, uses fluid relaxations at each period, but the deci-

sions are made based on the interpretation of the fluid solutions as scores. Their constant regret

analysis holds for any finite-dimensional fulfillment problem, with or without the nondegeneracy

assumption. It is worthwhile to note that Vera and Banerjee (2020); Vera et al. (2021) introduced

a framework to achieve low regret which hinges on a novel “compensated coupling” technique that

helps in quantifying the regret of online problems. Compensated coupling is also used under dif-

ferent problems. See e.g., Freund and Banerjee (2019) for its application on online bin packing,

and Freund and Zhao (2021) for a network revenue management problem with no-shows. Inter-

estingly, while the regret for the score-based policy is constant for finite-dimensional fulfillment

problems, the recent work of Bray (2023) shows that for an infinite dimensional multi-secretary
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problem (which is a special case of our fulfillment problems), the regret scales at the rate of log(T )

as T →∞.

Our work is also closely related to the growing literature on online fulfillment (see e.g., Acimovic

and Farias, 2019). For instance, Acimovic and Graves (2015) delve into a problem that minimizes

the total shipping cost of a single item and introduce a policy that uses the dual values of the fluid

relaxation to predict future expected costs. Subsequently, Acimovic and Graves (2017) consider

inventory allocation in online fulfillment and propose inventory replenishment policies combined

with myopic fulfillment. Govindarajan et al. (2021) study the single-item joint inventory allocation

and fulfillment problem in an omnichannel retail environment and also propose inventory replen-

ishment methods. Chen and Graves (2021) formulate an integer program to choose the initial

locations of the SKUs under deterministic demand.

The design of fulfillment networks has also received considerable attention. Asadpour et al. (2020)

study the single-item fulfillment problem that aims to minimize the expected number of lost sales

in the long-chain fulfillment network. One of their findings shows that a modified greedy policy

achieves constant regret under the long chain. Xu et al. (2020) modify the policy of Asadpour

et al. (2020) for more general fulfillment networks and incorporate initial inventory placement

decisions. For more general fulfillment costs, DeValve et al. (2023) evaluate the performance of

different fulfillment networks by simulating a number of fulfillment policies. They also propose a

new class of spillover-limit fulfillment policies, which are shown to achieve a regret that scales as
√
T as T →∞.

There are also studies on the worst-case performance guarantees of single-item online fulfillment.

For an adversarial demand arrival model, Andrews et al. (2019) propose a primal-dual algorithm

and derive an optimal competitive ratio for the single-item fulfillment model. In the joint online

fulfillment and inventory placement setting, Chen et al. (2022) develop worst-case guarantees for a

myopic policy coupled with an inventory placement method. Epstein and Ma (2024) also develop

the worst-case guarantees considering myopic, offline and fluid inventory placements under two

demand arrival models. In addition, recent work has quantified competitive ratios for multi-item

fulfillment models. For a stochastic demand arrival model, Jasin and Sinha (2015) provide a policy

for a multi-item fulfillment model with order size q and derive a finite asymptotic competitive ratio

of q/4 as T goes to infinity. The asymptotic ratio is later improved by Ma (2023) to 1 + log(q).

Xie et al. (2022) study an omnichannel fulfillment problem with in-store and online customers

and study an adaptive booking limit algorithm with a tight competitive ratio. Zhao et al. (2022)
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examine the multi-item fulfillment problem with a two-layer distribution network with one regional

and one front distribution center and present tight competitive ratio bounds for a myopic policy.

In this paper, we analyze the regret of joint inventory placement and online demand fulfillment

policies. To the best of our knowledge, Xu et al. (2020) is the only work that analyzes regret with

inventory placement decisions. Their model aims to minimize the total number of lost sales while

the fulfillment network satisfies a certain flexibility condition. In contrast, the model we study

allows for general fulfillment costs and arbitrary fulfillment networks.

2. Joint Inventory Placement and Online Demand Fulfillment Model

In this section, we formally define the joint inventory placement and online demand fulfillment

problem. We have a set [I] := {1, · · · , I} of warehouses and a set [J ] := {1, · · · , J} of demand regions.

Time is discrete with T periods and indexed by t∈ [T ] := {1,2, · · · , T}. Before the beginning of the

first period, the decision maker places γ units of total inventory into the I warehouses. The initial

inventory in warehouse i is denoted by κi, where γ :=
∑

i∈[I] κi and κ := [κi]i∈[I].

After the initial inventory is placed, unitary demand arrives in each period t∈ [T ]. The probability

that the arrival is from demand region j is λj and we have
∑J

j=1 λj = 1. We define the arrival

probability vector as λ := [λj]j∈[J]. If the demand arrives from region j in period t, we set Dj(t) =

1 and Dj(t) = 0 otherwise. Hence, the demand vector D(t) := [Dj(t)]j∈[J] has the generalized

Bernoulli distribution with J categories and event probability vector [λj]j∈[J]. We also use D :=

[D(t)]t∈[T ] to denote the demand matrix over the entire time horizon with T periods.

When an order arrives from region j, a decision maker has to choose which warehouse to use

to fulfill the order, or whether to lose the arriving order. The cost of using inventory from ware-

house i to fulfill a region-j order is cij, and the cost of a lost sale from region j is c•j with c :=

[cij]i∈[I]∪{•},j∈[J] as the cost matrix. The goal of the decision-maker is to minimize the total expected

costs by making sequential fulfillment decisions. Throughout the paper, we let λmin =minj∈[J] λj

and cmax =maxi∈[I]∪{•},j∈[J] cij.

A sequential policy π makes fulfillment decisions as soon as an order arrives and by using only

the information available up to and including that time. If we receive an order from region j at

time t, then we set ℓπj (t) = 1 if the order is rejected and ℓπj (t) = 0 otherwise. Upon accepting the

incoming region-j order, we set xπ
ij(t) = 1 if the inventory from warehouse i is used to fulfill the

incoming order, and xπ
ij(t) = 0 otherwise. Analogously to previous notations, we employ the vector

ℓπ(t) := [ℓπj (t)]j∈[J] and the matrix xπ(t) := [xπ
ij(t)]i∈[I],j∈[J] to keep track of the period t decisions.

An admissible policy π is then a sequence of random pairs ξπ(t) := (ℓπ(t),xπ(t)) such that each

ξπ(t) is measurable with respect to the σ-field generated by the history up to and including time t.
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When the inventory placement vector κ is given and π is a sequential fulfillment policy, we let

cπ(κ,D) be the corresponding (random) total cost. Let Π denote the set of all admissible sequential

fulfillment policies and U := {κ :
∑

i∈[I] κi ≤ γ} denote the set of all feasible inventory placement

vectors. Our joint placement-fulfillment dynamic optimization problem is thus given by

min
κ∈U

{
min
π∈Π

E [cπ(κ,D)]
}
.

This dynamic optimization problem becomes intractable as the number of warehouses becomes

large, even for a fixed inventory placement κ. As a result, we propose heuristic policies and assess

their performance in terms of their regret against an offline (full-information) solution to the

problem. Our analysis begins with a discussion of such offline formulation.

2.1. Deterministic Demand Fulfillment Problem

In the deterministic version of this fulfillment problem, we are given an inventory placement vector

κ and a demand vector z = [zj]j∈[J], and we consider the linear programming problem

F (κ,z) =min
x,ℓ

∑
i∈[I]

∑
j∈[J]

cijxij +
∑
j∈[J]

c•jℓj

s.t.
∑
i∈[I]

xij + ℓj ≥ zj j ∈ [J ]∑
j∈[J]

xij ≤ κi i∈ [I]

xij ≥ 0 i∈ [I], j ∈ [J ]

ℓj ≥ 0 j ∈ [J ].

(1)

In the linear programming formulation above, the decision variable xij corresponds to the amount

of inventory in warehouse i that we use to fulfill the region-j demand; and the decision variable

ℓj is the amount of lost sales from region j. The optimization problem F (·, ·) in (1) provides

us with different insights that come from specifying different inventory and demand vectors. For

instance, if Zj =
∑T

t=1Dj(t) is the total demand that we receive from region j over T periods

and Z = (Z1, · · · ,ZJ), then the offline (full-information) minimal cost of our demand fulfillment

problem with an inventory placement κ is given by coff(κ,D) := F (κ,Z).

2.2. Minimum-Inventory Regret

The expected offline cost E[coff(κ,D)] represents our natural benchmark in quantifying the regret

of different heuristic policies, but the initial inventory placement κ will play a crucial role both in

defining and quantifying such regret. When a fulfillment policy π and the offline solution are both

evaluated at the same inventory placement κ, then we have the notion of fixed-inventory regret.
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Definition 2.1. The fixed-inventory regret of a fulfillment policy π given an inventory place-

ment vector κ is

E [cπ(κ,D)]−E[coff(κ,D)].

We emphasize that for the fixed-inventory regret, both the online policy and the offline problem

use an arbitrary inventory placement vector κ. In practice, however, the initial inventory placement

for the fulfillment problem is often endogenized to further reduce the expected costs (see e.g.,

Acimovic and Graves, 2017). This opens up the question of which are suitable inventory placement

vectors to be used when quantifying the regret of a given fulfillment policy. We let κoff be an

optimal inventory placement that minimizes the expected offline costs over the stochastic demand

D, i.e. κoff ∈ argmin
κ∈U

E[coff(κ,D)]. The optimality of the placement vector and the full-information

property of the offline solution gives us, for any inventory vector κ and any admissible policy π,

that

E[coff(κoff ,D)]≤E
[
coff(κ,D)

]
≤E [cπ(κ,D)] .

The expected offline cost with initial inventory placement κoff is then a lower bound for any

admissible policy and any inventory placement. This motivates us to define the minimum-inventory

regret of a given policy π as follows.

Definition 2.2. Given a fulfillment policy π, let κπ ∈ argminκ∈U E [cπ(κ,D)], then minimum-

inventory regret of π is defined as

E [cπ(κπ,D)]−E[coff(κoff ,D)].

By optimality of κπ, we have that the minimum-inventory regret, which is computed as

E [cπ(κπ,D)] − E[coff(κoff ,D)], is upper-bounded by E [cπ(κoff ,D)] − E[coff(κoff ,D)]. This repre-

sents the fixed-inventory regret of policy π with the inventory vector κoff . Additionally, the online

fulfillment problem can be seen as a specialized case of the broader online resource allocation prob-

lem studied in Balseiro et al. (2023) and Vera et al. (2021). Leveraging this connection, we can

apply the results from the latter to identify fulfillment policies and calculate their corresponding

fixed-inventory regret under inventory vector κoff . This approach would immediately yield upper

bounds for each of the policies. However, these upper bounds do not provide us with a sufficient

understanding of the effectiveness of the two state-of-the-art fulfillment policies in the context of

fulfillment with inventory placement.

Specifically, Theorem 1 of Balseiro et al. (2023) implies that the upper bound on the regret of the

probabilistic fulfillment policy is independent of T under the nondegeneracy assumption. However,
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such regret bound also scales with 1/δ, where δ is a measure of the degeneracy of F (κoff ,λT ).

Since κoff is selected endogenously based on D, c, and T , there is no guarantee that 1/δ does not

grow with T . Similarly, Theorem 2 of Vera et al. (2021) suggests that the regret of our score-based

fulfillment policy has an upper bound that is independent of T and 1/δ. This result, however, does

not quantify the policy’s dependency on parameters I and J .

While the above upper bounds on the fixed-inventory regret for probabilistic and scored-based

fulfillment policies offer valuable perspectives, they do not provide a clear picture of which policy

is more suitable for the online fulfillment problem with endogenized inventory placement. For the

probabilistic fulfillment policy, the regret is not guaranteed to be good because δ, the measure

of the degeneracy of F (κoff ,λT ), can become close to zero as the inventory and T are scaled to

infinity. In comparison, although the regret upper bound for the scored-based fulfillment policy

does not depend on δ, it is not clear how it scales with parameters such as I and J . While it is

commonly accepted that T is much larger than I and J in fulfillment settings, regrets that scale

exponentially with I or J can easily dominate regrets that scale with
√
T .

The above discussion motivates us to perform a sharper analysis of the minimum-inventory regret

of each of the aforementioned policies. Interestingly, as we will show in the subsequent sections, the

minimum-inventory regret of the probabilistic fulfillment policy is Ω(
√
T ) 1, while the minimum-

inventory regret of the score-based fulfillment policy exhibits an upper bound that is independent

of T and polynomial in I and J .

3. Comparison between Probabilistic and Score-Based Policies

In this section, we formally introduce the probabilistic fulfillment and score-based fulfillment poli-

cies for our joint inventory placement and online demand fulfillment problem, and state our main

results.

3.1. Probabilistic Fulfillment Policy (PF)

In each period t, the probabilistic fulfillment heuristic solves a linear programming problem that

considers the remaining amount of inventory in the warehouses and the expected remaining demand

(i.e., the expected value of the total demand that arrives between periods t and T ). The (scaled)

solution of that optimization problem is then interpreted as a probability vector. Heuristic actions

are randomized on the basis of that probability vector and of the arrival type. More formally, in

each period t∈ [T ], the probabilistic fulfillment heuristic follows the steps listed below.

1 Throughout the paper, we will study how regret scales with model parameters, including T , I, and J . We will often
use big-O notations, where O(·) represents an upper bound up to a constant factor, Ω(·) represents a lower bound up
to a constant factor, Õ(·) represents an upper bound up to a logarithmic factor, and Θ(·) represents both an upper
and lower bound up to a constant factor.
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1. Given the inventory vector κ(t) at the beginning of period t, solve the linear program

F (κ(t),λ(T − t+1)) in (1) and let (ℓ̂, x̂) be the solution;

2. If the demand arrives from region j, construct the probability vector

Φj =
[
ϕ1j , ϕ2j , · · · , ϕIj , ϕ(I+1)j

]
=

[
x̂1j

(T − t+1)λj
,

x̂2j
(T − t+1)λj

, · · · ,
x̂Ij

(T − t+1)λj
,

ℓ̂j
(T − t+1)λj

]
.

Each component
x̂ij

(T−t+1)λj
represents the probability the policy will choose warehouse i to fulfill the

demand from region j; while
ℓ̂j

(T−t+1)λj
is the probability that the policy will select no warehouse;

3. Draw a warehouse (or select no warehouse) according to the probability vector Φj. If no

warehouse is selected, the demand is lost.

The fixed-inventory regret bound in Balseiro et al. (2023) for a general class of resource-

constrained problems applies to the online demand fulfillment problem. From their work, it follows

that under the so-called fluid scaling, where T is scaled to infinity and κj = κ̄jT for some fixed

κ̄, the PF policy admits fixed-inventory regret independent of T , provided that the fluid prob-

lem, F (κ̄,λ), has a non-degenerate optimal solution. However, when the initial inventories are

endogenized, i.e., κPF ∈ argminκ∈U E [cPF(κ,D)], then κPF is no longer scaling with some fixed

κ̄. More importantly, the minimum-inventory regret of probabilistic fulfillment policy, instead of

being independent of T , scales as
√
T . This is formalized in the next theorem.

Theorem 3.1. There exist problem instances such that the minimum-inventory regret under the

probabilistic fulfillment is Ω(
√
T ). That is,

E
[
cPF(κPF,D)

]
−E

[
coff(κoff ,D)

]
=Ω(

√
T ). (2)

In general, it is difficult to characterize κPF exactly, and as a result, while proving the lower

bound in Theorem 3.1, we divide all possible values of κPF into two regions and study the regret

separately in each region via telescoping and compensated coupling. This essentially suggests that

we can lower bound the performance of PF for all possible inventory placement vectors. Moreover,

in Appendix A, we show that the minimum-inventory regret of PF is upper bounded by O(I
√
T )

and thus, the lower-bound in Theorem 3.1 is tight with respect to T .

3.2. Score-based Fulfillment Policy (SF)

Similar to PF, the score-based fulfillment policy solves a linear optimization problem at the begin-

ning of each period. The optimal solution to this linear program is then interpreted as a set of

scores, and the heuristic decides on the arriving demand by choosing an action with the highest

score. More precisely, the score-based fulfillment policy takes the following steps at each time period

t∈ [T ] when the inventory at the beginning of period t is κ(t):
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1. Solve the linear optimization problem F (κ(t),λ(T − t+ 1)) defined in (1) and denote with

(ℓ̂, x̂) its optimal solution;

2. Decide on demand arriving from region j as follows:

—If max{ℓ̂j, x̂ij, · · · , x̂Ij}= ℓ̂j, then the arriving demand is rejected.

—If max{ℓ̂j, x̂ij, · · · , x̂Ij} ≠ ℓ̂j, find î ∈ argmax{x̂ij, · · · , x̂Ij} and then fulfill the arriving

demand with the inventory from warehouse î.

The next theorem shows that the minimum-inventory regret of the score-based fulfillment policy

is independent of the length of the time horizon and polynomial with respect to the number of

warehouses and demand regions.

Theorem 3.2. The minimum-inventory regret of SF satisfies the bound

E
[
cSF(κSF,D)

]
−E

[
coff(κoff ,D)

]
≤ cmax ·

J2(I +1)2

λ2
min

(1+2 log(2J))

where cmax =max
ij

cij and λmin =minj λj.

Consistently with Vera et al. (2021), Theorem 3.2 shows the regret bound is independent of T .

However, in contrast with previous work, our result also quantifies that the regret bound scales

with I, the number of warehouses, and J , the number of demand regions, as Õ(I2J2).

4. Regret Analysis

In this section, we formally prove the regret bounds of Section 3 for probabilistic and score-based

fulfillment policies. In Section 4.1, we present an example showing that probabilistic fulfillment

has a minimum-inventory regret of Ω(
√
T ). Then, in Section 4.2, we derive an upper bound for the

regret of score-based fulfillment, which is independent of T and scales polynomially with I and J .

Central to our analysis is the compensated coupling idea introduced in Vera and Banerjee (2020);

Vera et al. (2021), which divides the regret into per-period nonnegative quantities using a telescop-

ing sum approach. Specifically, at time 1 ≤ t ≤ T , let Cπ
t be the cost incurred by policy π, κ(t)

(which depends on π) be the inventory vector at the start of the time period, and Z(t) be the total

arrivals from period t to T . We then have:

E[cπ(κ,D)]−E[coff(κ,D)] =
T∑

t=1

E[Cπ
t ]−

T∑
t=1

E[F (κ(t),Z(t))−F (κ(t+1),Z(t+1))]

=
T∑

t=1

E[Cπ
t −F (κ(t),Z(t))+F (κ(t+1),Z(t+1))]. (3)

The first equality follows because we divide the total cost of the offline problem and the policy into

per-period costs, and the second equality follows by the linearity of the expectation. Furthermore,

we define:

∆π
t :=Cπ

t −F (κ(t),Z(t))+F (κ(t+1),Z(t+1)). (4)
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By definition, the overall regret is decomposed into a sum of ∆π
t for t from 1 to T . Throughout

the paper, ∆π
t will be referred to as the t-th period regret (under π). One of the key features of

compensated coupling, is that for any t, the t-th period regret is nonnegative almost surely, i.e.,

P(∆π
t ≥ 0) = 1. (5)

For a formal proof, see Lemma B.1 in the appendix.

4.1. Minimum-Inventory Regret Analysis for Probabilistic Fulfillment Policy

Theorem 3.1 indicates that the minimum-inventory regret of probabilistic fulfillment grows like the

square root of T as T →∞. We will prove the lower bound by constructing a specific setting with

I = 2 warehouses and J = 2 demand regions.

Example 4.1. Consider a setting with two warehouses and two demand regions, and a cost vector

such that c22 < c11, c•1 = c•2, c11 < c21 < c•1, and c22 < c•2 < c12. For any given horizon length T ,

we set the total inventory γ = θT , with λ2 < θ < 1.

Under the conditions of Example 4.1, the offline policy, which knows all the arrivals in advance,

fulfills the demand in the following order:

1. Fulfill the region-2 demand from warehouse 2. If there is not sufficient inventory in warehouse

2, the excess demand from region 2 is lost.

2. Fulfill the region-1 demand from warehouse 1. If there is still any unfulfilled demand from

region 1, first check warehouse 2 and fulfill the demand as much as possible. If there is still unfulfilled

demand, the remaining sales are lost.

In Lemma B.2, we formally present the solution to the offline problem at any time t, following the

structure in Example 4.1.

We now describe a road map for our analysis that lower-bounds the minimum-inventory regret

of probabilistic fulfillment. We will examine the difference E[cPF(κPF,D)]−E[coff(κoff ,D)] where

κPF ∈ argminκ∈U E [cPF(κ,D)] and demonstrate that this difference is always bounded below by

C
√
T for some constant C > 0. Because the actual value of κPF is difficult to characterize, we

will separately study what happens when κPF
2 and λ2T are far apart or in close proximity. More

specifically, we first study the case with κPF
2 more than 2C∗

√
T away from λ2T for some constant

C∗, then the case with κPF
2 at most 2C∗

√
T away from λ2T

2.

To start our formal analysis, we first observe that, as Example 4.1 considers only I = 2 ware-

houses, the initial inventory γ is split between them: if κ2 ∈ [0, γ] is the amount of inventory placed

2 We note that the fractional inventories are wasted at the end of the horizon.
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in warehouse 2, then the initial inventory in warehouse 1 is κ1 = γ−κ2. Hence, the total expected

cost E[coff(κ,D)] =E[coff((γ−κ2, κ2),D)] is a univariate function of κ2, and we set

f(κ2) :=E[coff((γ−κ2, κ2),D)]. (6)

Because coff(κ,D) is the objective of a linear optimization problem, it is convex in κ, implying

that coff((γ−κ2, κ2),D) and hence f(κ2) is convex in κ2.

In order to bound the difference between E [cPF(κPF,D)] and E [coff(κoff ,D)] in the case that κPF
2

is “far” apart from λ2T , we focus on the offline difference component of the minimum-inventory

regret, which is expressed as

E
[
coff(κPF,D)

]
−E

[
coff(κoff ,D)

]
= f(κPF

2 )− f(κoff
2 )

For this purpose, we next present a pair of bounds on the marginal changes in the expected

offline costs when κ2 differs from λ2T .

f(κ2 +1)− f(κ2)≥ (c21 − c11)− (c21 + c•1) exp

{
−2

(κ2 −λ2T )
2

T

}
for κ2 >λ2T ; (7)

and

f(κ2 +1)− f(κ2)≤−(c11 − c22)+ (c21 − c22) exp

{
−2

(λ2T −κ2)
2

T

}
for κ2 <λ2T . (8)

In the interest of space, we leave the proof for (7) and (8) as Lemma B.3 in the appendix. Next, we

use this pair of inequalities to show an important characteristic of the offline inventory placement

in Example 4.1: that κoff
2 and λ2T does not differ much from each other.

Lemma 4.2. Let C∗ be a constant defined as

C∗ =max

{√∣∣∣∣log(c21 − c11
c21 + c•1

)∣∣∣∣+1,

√∣∣∣∣log(c11 − c22
c21 − c22

)∣∣∣∣
}
. (9)

Then, in the setting of Example 4.1, κoff satisfies |κoff
2 −λ2T | ≤C∗

√
T for all T where λ2T ≥C∗

√
T .

Proof. Recall from Example 4.1, that 0 < c22 < c11 < c21 < c•1. Let C ′ =

√∣∣∣log( c21−c11
c21+c•1

)∣∣∣+ 1. If

κ2 ≥ λ2T +C ′
√
T , then we have κ2 − 1≥ λ2T +(C ′ − 1)

√
T as

√
T ≥ 1. By Inequality (7), we have

that whenever κ2 − 1≥ λ2T +(C ′ − 1)
√
T ,

f(κ2)− f(κ2 − 1)≥ (c21 − c11)− (c21 + c•1) exp

{
−2

(κ2 − 1−λ2T )
2

T

}
> 0. (10)

Similarly, let C ′′ =

√∣∣∣log( c11−c22
c21−c22

)∣∣∣. By Inequality (8), if κ2 ≤ λ2T −C ′′
√
T , we have that

f(κ2 +1)− f(κ2)≤−(c11 − c22)− (c21 + c22) exp

{
−2

(κ2 −λ2T )
2

T

}
< 0. (11)
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Next, we will prove by contradiction that C∗ is sufficient to show |κoff
2 − λ2T |<C∗

√
T . To see

this, note that if |κoff
2 −λ2T |>C∗

√
T , then (10) and (11) imply that either

f(κoff
2 )− f(κoff

2 − 1)> 0 or f(κoff
2 +1)− f(κoff

2 )< 0,

contradicting the optimality of κoff
2 . Thus, we must have that |κoff

2 −λ2T | ≤C∗
√
T . This completes

the proof of the lemma. Q.E.D.

A simple consequence of Lemma 4.2 is that when the difference between κPF
2 and λ2T exceeds

2C∗
√
T , then the difference between κPF

2 and κoff
2 is at least C∗

√
T . Next, we use this fact, combined

with the bounds on the marginal changes in the expected costs provided in (7) and (8) to show

that when |κPF
2 −λ2T | ≥ 2C∗

√
T , the discrepancy between E[coff(κPF,D)] and E[coff(κoff ,D)] is at

least on the order of
√
T .

Proposition 4.3. Let C∗ be the constant in Lemma 4.2. In the setting of Example 4.1, if κPF

satisfies |κPF
2 −λ2T | ≥ 2C∗

√
T , then there exists a constant C > 0 such that

f(κPF
2 )− f(κoff

2 ) =E[coff(κPF,D)]−E[coff(κoff ,D)]≥C
√
T .

Consequently, we have

E[cPF(κPF,D)]−E[coff(κoff ,D)]≥C
√
T .

Proof. Let’s first consider the case where κPF
2 ≥ λ2T + 2C∗

√
T . By Lemma 4.2, this also implies

κPF
2 ≥ κoff

2 + C∗
√
T . Recall that f is convex, which implies that it is monotonically increasing

in κ2 over the interval [κoff
2 , γ] where γ is the total inventory to be distributed and κoff

2 is the

inventory vector that minimizes f(κ2). Then, using κPF
2 ≥ λ2T +2C∗

√
T and the fact that f(κoff

2 )≤

f(λ2T +C∗
√
T ), we have

f(κPF
2 )− f(κoff

2 )≥ f(λ2T +2C∗
√
T )− f(κoff

2 )≥ f(λ2T +2C∗
√
T )− f(λ2T +C∗

√
T ). (12)

We next divide the right-hand side of (12) using telescoping sum and then use (7) to bound the

first differences:

f(λ2T +2C∗
√
T )− f(λ2T +C∗

√
T ) =

2C∗√T∑
t=C∗√T+1

(f(λ2T + t)− f(λ2T + t− 1))

≥
C∗√T∑
t=1

(c21 − c11)− (c21 + c•1) exp
(
−2(C∗ + t/

√
T )2
)

≥C∗
√
T
(
(c21 − c11)− (c21 + c•1) exp(−2C∗2)

)
.
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By plugging in C∗ defined in Lemma 4.2, we observe that (c21 − c11)− (c21 + c•1) exp(−2C∗2)> 0.

Hence, the difference f(κPF
2 )− f(κoff

2 ) scales with
√
T .

The case where κPF
2 ≤ λ2T − 2C∗

√
T builds on similar ideas. Note that, the function f is mono-

tonically decreasing in κ2 over the interval [0, κoff
2 ] by its convexity. Then, by κPF

2 ≤ λ2T − 2C∗
√
T

and f(κoff
2 )≤ f(λ2T −C∗

√
T ) we have that

f(κPF
2 )− f(κoff

2 )≥ f(λ2T − 2C∗
√
T )− f(κoff

2 )≥ f(λ2T − 2C∗
√
T )− f(λ2T −C∗

√
T ). (13)

By rewriting the right-hand side of (13) with telescoping sum and using (8), we obtain

f(λ2T − 2C∗
√
T )− f(λ2T −C∗

√
T ) =

2C∗√T∑
t=C∗√T+1

(f(λ2T − t)− f(λ2T − t+1))

≥
C∗√T∑
t=1

−
(
(c22 − c11)+ (c21 − c22) exp

(
−2C∗2))

=−C∗
√
T
(
(c22 − c11)+ (c21 − c22) exp

(
−2C∗2)) .

Observe that the last term scales with
√
T and is positive since (c22 − c11) + (c21 −

c22) exp
(
−2C∗2

)
< 0 again by the definition of C∗ in Lemma 4.2. By combining the two

cases, and letting C to be the maximum of C∗
(
(c21 − c11)− (c21 + c•1) exp(−2C∗2)

)
and

−C∗
(
(c22 − c11)+ (c21 − c22) exp

(
−2C∗2

))
, we obtain

f(κPF
2 )− f(κoff

2 )≥C
√
T .

Finally, we have E[coff(κPF,D)]≤ E[cPF(κPF,D)] because the expected offline cost is always a

lower bound on the expected cost of PF at any inventory vector κ. Therefore, we have

E[cPF(κPF,D)]−E[coff(κoff ,D)]≥E[coff(κPF,D)]−E[coff(κoff ,D)] = f(κPF
2 )− f(κoff

2 )≥C
√
T .

Q.E.D.

Having covered the case where |κPF
2 − λ2T | ≥ 2C∗

√
T in Proposition 4.3, we next analyze when

|κPF
2 −λ2T | ≤ 2C∗

√
T . Before presenting the formal result and its analysis, we describe the intuition

behind the key steps for our analysis.

The first step of our analysis is to carve out an event E with probability bounded away from

zero, such that policy PF has Ω(
√
T ) regret conditioned on E. This event is somewhat parallel

to the one illustrated by Bumpensanti and Wang (2020) in their network revenue management

example, where the authors proved that an analogous policy to PF exhibits a regret of Ω(
√
T ).
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However, our study diverges from the example in Bumpensanti and Wang (2020) in a critical

aspect: the inventory level of warehouse-2 at time t under policy PF, κ2(t), does not conform

to the typical martingale behavior conditioned on event E. This deviation leads us to forgo the

conventional martingale concentration approach in the literature. Instead, we derive a novel anal-

ysis focusing on the decomposed per-period regret ∆PF
t under compensated coupling. Although

compensated coupling was initially introduced by Vera and Banerjee (2020) to establish an upper

bound on regret, our application in determining a lower bound on regret for policy PF is novel and

could be of significant independent interest for analyzing other policies.

Because of the non-standard behavior of κ2(t), we derive a lower bound for

E

[
∆PF

t +

∑T

s=1∆
PF
s

T ′ |κ2(t)

]
,

for any value of κ2(t) where T ′ =Θ(T ) and T ′ ≤ T . Our rationale is intuitive: since ∆PF
t is non-

negative for any t almost surely, we can establish a lower bound for E [∆PF
t |κ2(t)] when κ2(t) closely

aligns with the average offline trajectory, and a lower bound for E
[∑T

s=1 ∆PF
s

T ′ |κ2(t)
]
otherwise.

Next, we present the formal statement of our result and its proof.

Proposition 4.4. Let C∗ be the constant in Lemma 4.2. If κPF satisfies |κPF
2 − λ2T | ≤ 2C∗

√
T ,

then

E[cPF(κPF,D)]−E[coff(κPF,D)] = Ω(
√
T )

for the setting in Example 4.1.

Proof. Let T ′ = (1−θ)T

2
and denote B2(t) to be the total number of region-2 arrivals from the

beginning to period t, i.e., B2(t) =
∑t

s=1D2(s). Recall that in contrast, Z2(t) is defined as the

number of region-2 arrivals from period t to T .

We divide the horizon into three distinct sub-intervals: [0, T ′], (T ′,2T ′], and (2T ′, T ]. We then

define the events E1, E2, and E3 to represent the arrivals from region 2 at each of these sub-intervals,

respectively.

E1 =
{
B2(T

′)−λ2T
′ ∈ [−7C∗

√
T ,−6C∗

√
T ]
}
,

E2 =
{
B2(t)−B2(T

′)−λ2(t−T ′)∈ [−C∗
√
T ,C∗

√
T ],∀t∈ (T ′,2T ′]

}
,

E3 =
{
B2(T )−B2(2T

′)−λ2(T − 2T ′)∈ [10C∗
√
T ,∞)

}
.

Let E =E1 ∩E2 ∩E3. Under the event E, we have that the number of arrivals from region 2 is

smaller than its expectation in the first interval (event E1), approximately equal to its expectation

throughout the second interval (event E2), and larger than its expectation in the last interval (event
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E3). Moreover, for any arrival instance in E, we have that the number of total arrivals from region

2 exceeds κPF
2 , as

Z2 =B2(T )≥ λ2T − 7C∗
√
T −C∗

√
T +10C∗

√
T ≥ λ2T +2C∗

√
T ≥ κPF

2 , (14)

where the last inequality follows because |κPF
2 −λ2T | ≤ 2C∗

√
T .

To analyze the fixed-inventory regret of PF, we use the compensated coupling equation described

in (3), which decomposes the regret as:

E[cPF(κPF,D)− coff(κPF,D)] =
T∑

t=1

E[CPF
t −F (κ(t),Z(t))+F (κ(t+1),Z(t+1))] =

T∑
t=1

E[∆PF
t ].

Recall that the t-th period regret, ∆PF
t , is nonnegative almost surely. We also note that for T large

enough, events E1, E2, and E3 happen with a positive probability independent of T , as proved in

Lemma B.4. Note that P(E) = P(E1)∩P(E2)∩P(E3) = P(E1)P(E2)P(E3), because E1, E2 and E3

are independent. Hence, event E happens with positive probability as well. Thus, it is sufficient to

show that the expected total regret conditioned on E, scales as
√
T . For the rest of the proof, we

will only consider scenarios occurring in E, and whenever an expectation is taken, it would be the

conditional expectation with respect to E.

To establish the desired lower-bound of
∑T

t=1E[∆PF
t ] (conditioned on E), we will show that for

T large enough, any T ′ +1≤ t≤ 2T ′, and any κ2(t),

E

[
∆PF

t +

∑T

s=1∆
PF
s

T ′ |κ2(t)

]
≥ C√

T
, (15)

where C > 0 is a fixed constant independent of T .

We will establish (15) by considering three cases of κ2(t), for any fixed t ∈ [T ′ +1,2T ′]. Before

analyzing each case, we make the following observation under any fixed arrival sequence (condi-

tioned on E). Recall that xPF
ij (t) denotes the indicator for whether PF fulfills the region-j order

from warehouse i at period t, and let (ℓPF,xPF) represent the aggregated fulfillment decisions over

all periods for the probabilistic fulfillment policy. Then, there exists a cost parameter cl > 0 such

that

∆PF
t ≥ cl, if x

PF
21 (t) = 1 and κ2(t)≤Z2(t) for some fixed t > 0, (16)

T∑
t=1

∆PF
t ≥ cl · (κPF

2 −xPF
22 ). (17)

The intuition behind this observation is that when κ2(t)≤Z2(t), then the optimal offline policy will

use inventory at warehouse 2 for region 2, and this incurs cl regret at period t whenever xPF
21 (t) = 1.
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Also, since Z2 ≥ κ2 under event E, the aggregate regret over time is at least cl times the number of

times PF failed to use inventory at warehouse 2 for region 2. For a formal proof of this observation,

we refer readers to Lemma B.5.

We will prove (15) by dividing all possible values of κ2(t) into three cases. For the first case, we

assume κ2(t) ∈X1 := [0, κPF
2 − λ2(t− 1) + 3C∗

√
T ]. Then, for any t ∈ (T ′,2T ′] and κ2(t) ∈X1 we

have

t−1∑
s=1

xPF
21 (s) = κPF

2 −κ2(t)−
t−1∑
s=1

xPF
22 (s)

≥ κPF
2 −κ2(t)−B2(t− 1)

≥−3C∗
√
T +6C∗

√
T −C∗

√
T

= 2C∗
√
T ,

where the first inequality follows because
∑t−1

s=1 x
PF
22 (s)≤B2(t−1), and the second inequality follows

from E1 and E2. This implies that the total fulfillment for region 1 from warehouse 2, xPF
21 , satisfies

xPF
21 ≥ 2C∗

√
T , implying xPF

22 ≤ κPF
2 − 2C∗

√
T .

Therefore, by (17), we have
∑T

s=1∆
PF
s ≥ 2clC

∗
√
T , which implies that

E

[
∆PF

t +

∑T

s=1∆
PF
s

T ′ |κ2(t)

]
≥ C√

T
,

for some constant C > 0, for any κ2(t)∈X1. This completes our analysis for the first case.

Consider case 2 where κ2(t)∈X2 := [κPF
2 −λ2(t−1)+3C∗

√
T , κPF

2 −λ2(t−1)+100C∗
√
T ]. Then,

we have that

κ2(t)

T − t+1
>

κPF
2 −λ2(t− 1)+3C∗

√
T

T − t+1
≥ λ2(T − t+1)+C∗

√
T

T − t+1
≥ λ2 +

C∗
√
T

T − t+1
≥ λ2 +

C∗
√
T
, (18)

where the second inequality follows from |κPF
2 − λ2T | ≤ 2C∗

√
T . In addition, note that κ1(t) +

κ2(t) ≤ γ = θT ≤ T − t for t ≤ 2T ′, implying that the capacity constraint for warehouse 2 in

F (κ(t),λ(T − t+1)) is binding. This implies that any optimal solution (ℓ̂, x̂) for F (κ(t),λ(T − t+

1)) must satisfy

x̂22 + x̂21 = κ2(t), x̂22 = λ2(T − t+1),

which, combined with (18), imply that

ϕ21 =
x̂21

T − t+1
≥ C∗

√
T
, (19)
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where ϕ21 is the probability PF chooses to fulfill from warehouse 2, given the order at period t is

from region 1.

In order to apply (16) to derive a lower bound for ∆PF
t , we also need the condition κ2(t)≤Z2(t)

in addition to (19). For this purpose, define event E3,A as

E3,A =
{
B2(T )−B2(2T

′)≥ λ2(T − 2T ′ +1)+104C∗
√
T
}
.

Note that E3,A ⊂E3, and by Lemma B.4, P(E3,A) is bounded away from 0 for T large enough, and

conditioned on E3,A, we have that κ2(t)≤Z2(t), as

Z2(t+1)=B2(T )−B2(2T
′)+B2(2T

′)−B2(t)

≥ λ2(T − 2T ′ +1)+104C∗
√
T +(B2(2T

′)−λ2T
′)− (B2(t)−λ2(t−T ′))−λ2(t− 2T ′)

= λ2(T − t+1)+104C∗
√
T +(B2(2T

′)−λ2T
′)− (B2(t)−λ2(t−T ′))

≥ λ2T −λ2(t− 1)+102C∗
√
T

≥ κPF
2 −λ2(t− 1)+100C∗

√
T

≥ κ2(t)

where the second inequality holds because both B2(2T
′)− λ2T

′ and B2(t− 1)− λ2(t− 1− T ′) lie

within the interval [B2(T
′)−C∗

√
T ,B2(T

′)+C∗
√
T ], and the third inequality holds as |κPF

2 −λ2T | ≤

2C∗
√
T .

As κ2(t)≤Z2(t) under E3,A, by (16), we have that conditioned on event E3,A,

E[∆PF
t |κ2(t)]≥ λ2ϕ21 ·P(E3,A) · cl,

whenever κ2(t)∈X2. By our lower bound for ϕ21 in (19), we obtain

E[∆PF
t |κ2(t)]≥ λ2P(E3,A)cl ·

C∗
√
T

>
C√
T
,

for some constant C > 0. Thus, we have that

E

[
∆PF

t +

∑T

s=1∆
PF
s

T ′ |κ2(t)

]
≥ C√

T
for any κ2(t)∈X2.

In the last case, we assume κ2(t)∈X3 := [κPF
2 −λ2(t− 1)+100C∗

√
T , ∞). Then, it follows that

t−1∑
s=1

xPF
22 (s)≤ κPF

2 −κ2(t)≤ λ2(t− 1)− 100C∗
√
T ≤B2(t− 1)− 92C∗

√
T , (20)

where the last inequality holds due to E1 and E2.
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Next, consider another event E3,B, defined as

E3,B =
{
λ2(T − 2T ′)+ 10C∗

√
T ≤B2(T )−B2(2T

′)≤ λ2(T − 2T ′)+ 11C∗
√
T
}
.

Note that E3,B ⊂ E3, and by Lemma B.4, P(E3,B) is bounded away from zero for any T large

enough. Conditioned on E3,B, we obtain

T∑
s=2T ′+1

xPF
22 (s)≤B2(T )−B2(2T

′)≤ λ2(T − 2T ′)+ 11C∗
√
T . (21)

Finally, due to E2, we have that

2T ′∑
s=t

xPF
22 (s)≤B2(2T

′)−B2(t− 1)≤ λ2(2T
′ − t+1)+2C∗

√
T . (22)

Combining (20), (21) and (22) suggests that

xPF
22 =

T∑
s=1

xPF
22 (s)≤B2(t− 1)− 79C∗

√
T .

Therefore, by (17), we have
∑T

s=1∆
PF
s ≥ 79clC

∗
√
T , which implies that

E

[
∆PF

t +

∑T

s=1∆
PF
s

T ′ |κ2(t)

]
≥ P(E3,B) · 79clC∗

√
T ≥ C√

T
,

for κ2(t)∈X3 and some constant C > 0. This completes our analysis for the last case.

Now that we established (15) for any given κ2(t), by the law of total expectation, we have

2
T∑

t=1

E[∆PF
t ]≥

2T ′∑
t=T ′+1

E

[
∆PF

t +

∑T

s=1∆
PF
s

T ′

]
≥ T ′ C√

T
=

C(1− θ)

2
·
√
T ,

for any κPF
2 satisfying |κPF

2 −λ2T | ≤ 2C∗
√
T and T large enough.

Q.E.D.

We next complete the proof for Theorem 3.1, which immediately follows from Propositions 4.3

and 4.4.

Proof of Theorem 3.1. In Example 4.1, by Proposition 4.3 and Proposition 4.4, there exists C > 0

and C∗ > 0 such that

E[coff(κPF,D)]−E[coff(κoff ,D)]≥C
√
T , if |κPF

2 −λ2T | ≥ 2C∗
√
T ,

E[cPF(κPF,D)]−E[coff(κPF,D)]≥C
√
T , if |κPF

2 −λ2T | ≤ 2C∗
√
T .

Because E[coff(κPF,D)]− E[coff(κoff ,D)] ≥ 0, E[cPF(κPF,D)]− E[coff(κPF,D)] ≥ 0. Therefore, we

have the minimum-inventory regret, defined as E[cPF(κPF,D)]−E[coff(κoff ,D)], is at least C
√
T .

Thus, Example 4.1 is a set of problem instances such that the minimum-inventory regret under PF

is Ω(
√
T ). This completes the proof of Theorem 3.1. Q.E.D.



Online Demand Fulfillment Problem with Initial Inventory Placement: A Regret Analysis 20

4.2. Minimum-Inventory Regret Analysis of Score-based Fulfillment Policy

To show Theorem 3.2, we will derive an upper bound on the fixed inventory regret of the score-

based policy for any starting inventory vector κ. Note that such a bound immediately implies

an upper bound on the minimum-inventory regret, denoted minκ∈U E[cSF(κ,D)]−E[coff(κoff ,D)],

because

min
κ∈U

E[cSF(κ,D)]−E[coff(κoff ,D)]≤E[cSF(κoff ,D)]−E[coff(κoff ,D)].

Our analysis applies the compensated coupling technique introduced in (Vera and Banerjee,

2020; Vera et al., 2021). Let cmax :=max
ij

cij. Recall that the fixed inventory regret given κ can be

decomposed as

E[cSF(κ,D)]−E[coff(κ,D)] =
T∑

t=1

E[∆SF
t ]≤ cmax

T∑
t=1

P(∆SF
t > 0). (23)

In the analysis of Vera et al. (2021), it was demonstrated that the probability P(∆SF
t > 0) is

bounded by C(T − t)−2, with C being a constant that does not depend on T − t in a general

resource allocation setting. However, the authors did not specify how C can be bounded in terms

of other model parameters. Recently, it has been observed that C can scale exponentially with the

dimension of the constraint matrix in a network revenue management problem (Jiang et al., 2022).

In contrast, we derive an upper bound on P(∆SF
t > 0) that decreases exponentially with respect to

T − t, and explicit polynomial dependencies with I, J , and λmin. The upper bound is subsequently

used to show that the regret of the score-based policy is not only independent with respect to T

but also upper-bounded by Õ(I2J2). Our analysis relies crucially on the network flow structure

inherent in F (κ,z).

To simplify our analysis, we start by rewriting the linear program in (1) by letting x0j replace

ℓj, c0j replace c•j for all j ∈ [J ]:

F (κ,z) =min
x

∑
i∈[I]∪{0}

∑
j∈[J]

cijxij

s.t.
∑

i∈[I]∪{0}

xij ≥ zj j ∈ [J ]∑
j∈[J]

xij ≤ κi i∈ [I]

xij ≥ 0 i∈ [I]∪{0}, j ∈ [J ].

(24)

A critical component of our analysis is the distance between the optimal solutions of (24) when

z changes. Specifically, let x̄ be an optimal solution of (24). For any δ ∈RJ , we claim that there

exists an optimal solution xδ of F (κ,z+ δ) such that

|xδ
ij − x̄ij| ≤

J∑
j=1

|δj|= ∥δ∥1 , ∀i∈ [I]∪{0}, j ∈ [J ]. (25)
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More general bounds on the sensitivity of the optimal solutions with respect to right-hand-side have

been well established in the literature (see, e.g., Hoffman, 2003; Mangasarian and Shiau, 1987).

The inequality we derived in (25) is obtained by applying the specific network flow structure of

(24), and is thus tighter. In the interest of space, we leave the derivation of (25) as proof of Lemma

B.7 in the appendix.

Next, we provide a bound on the probability that the per-period regret incurred by SF is greater

than 0 for each 1≤ t≤ T .

Proposition 4.5. For any 1≤ t≤ T , we have

P(∆SF
t > 0)≤ 2J exp

(
−2

(
λmin(T − t+1)

J(I +1)
− 1

J

)2

(T − t+1)−1

)
where λmin =minj∈[J] λj.

Proof. First, we observe that whenever xSF
ij (t) = 1 for some i and j, the regret ∆SF

t is guaranteed to

be zero as long as an optimal solution to F (κ(t),Z(t)), denoted as x̄, satisfies x̄ij ≥ 1 (see Lemma

B.8 in appendix for a formal analysis). As a result, we have that

P(∆SF
t > 0)≤max

κ,j
P(∆SF

t > 0 |κ(t) =κ,Dj(t) = 1)

≤max
κ,j

P(xSF
îj
(t) = 1, x̄îj < 1 |κ(t) =κ,Dj(t) = 1) (26)

where the maximization is taken over all of the plausible κ, j ∈ [J ], and î is the warehouse selected

given that κ(t) =κ and the demand at period t is from region j.

Now, fix any κ, j ∈ [J ] and let E be the event such that κ(t) = κ and Dj(t) = 1. We will now

bound P(xSF
îj
(t) = 1, x̄îj < 1 |E). To this end, let δ(t) = Z(t) − λ(T − t + 1). By (25), we have

|x̂îj − x̄îj| ≤ ∥δ(t)∥1, where x̄ is an optimal solution to F (κ(t),Z(t)). This consequently implies

that x̄îj ≥ 1 if x̂îj ≥ ∥δ(t)∥1 +1. Hence, we can further bound the probability that xSF
îj
(t) = 1 and

x̄îj < 1 given event E as follows:

P
(
xSF
îj
(t) = 1, x̄îj < 1 |E

)
≤ P

(
x̂îj < ∥δ(t)∥1 +1 |E

)
. (27)

Now, recall that the score-based fulfillment selects x̂îj =maxn∈I∪{0} x̂nj, which implies that

x̂îj ≥
∑

n∈I∪{0}

x̂nj/(I +1)= λj(T − t+1)/(I +1) almost surely.

Therefore, the right-hand-side of (27) can be bounded as

P
(
x̂îj < ∥δ(t)∥1 +1 |E

)
≤ P

(
λj(T − t+1)

I +1
< ∥δ∥1 +1 |E

)
(28)

≤ P
(
λmin(T − t+1)

I +1
< ∥δ∥1 +1

)
. (29)
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Finally, by union bound and Hoeffding’s inequality, we can bound (27), as

P
(
λmin(T − t+1)

I +1
< ||δ(t)||1 +1

)
≤ P

(
δj(t)>

λmin(T − t+1)

J(I +1)
− 1

J
,∀j ∈ J

)
≤

J∑
j=1

P
(
δj(t)>

λmin(T − t+1)

J(I +1)
− 1

J

)

≤ 2J exp

(
−2

(
λmin(T − t+1)

J(I +1)
− 1

J

)2

(T − t+1)−1

)
.

Q.E.D.

Next, we complete the proof of Theorem 3.2.

Proof of Theorem 3.2. By Proposition 4.5, we have

P(∆SF
t > 0)≤ 2J exp

(
−2

(
λmin(T − t+1)

J(I +1)
− 1

J

)2

(T − t+1)−1

)
.

For any t≤ T − 2(I+1)

λmin
+1, we have λmin(T−t+1)

2J(I+1)
≥ 1

J
. Thus,

P(∆SF
t > 0)≤ 2J exp

(
−λ2

min(T − t+1)

J2(I +1)2

)
, for t≤ T − 2(I +1)

λmin

+1. (30)

Furthermore, as 2 log(2) ≥ 1 and λmin < 1, if t ≤ T − 2J2(I+1)2 log(2J)

λ2
min

+ 1, then (30) implies that

P(∆SF
t > 0)≤ 1. Next, define

a :=
2J2(I +1)2 log(2J)

λ2
min

, and b :=
λ2
min

J2(I +1)2
.

Considering the summation of P(∆SF
t > 0) from 1 to T − a+1, we have

T−a+1∑
t=1

P(∆SF
t > 0)≤

T∑
s=a

2J exp

(
− λ2

mins

J2(I +1)2

)
=

T∑
s=a

2J exp(−bs).

Note that ab = 2 log(2J). Moreover, since λmin ≤ 1, I ≥ 1 and J ≥ 1 it follows that b ≤ 1
4
, which

implies eb ≤ 2. Then, we have that

T−a+1∑
t=1

P(∆SF
t > 0)≤

T∑
s=a

2J exp(−bs) = 2J
eb−ab

eb − 1
=

1

2J

eb

eb − 1
≤ 1

J

1

eb − 1
≤ b−1

J
≤ b−1 (31)

where the second inequality is established by eb ≤ 2, the third inequality follows from exp(b)≥ b+1

for any b ̸= 0, and the last inequality holds because J ≥ 1.

Recall that, by (23) the regret is bounded by
∑T

t=1 cmaxP(∆SF
t > 0). We finish the proof by

dividing the sum for t≤ T − a+1 and t > T − a+1. From equation (31) and given that P(∆SF
t >

0)≤ 1 for all t, the regret bound can be expressed as:

T−a+1∑
t=1

cmaxP(∆SF
t > 0)+

T∑
t=T−a+2

cmaxP(∆SF
t > 0)≤ cmax(b

−1 + a) = cmax ·
J2(I +1)2

λ2
min

(1+2 log(2J)) .

This concludes the proof of Theorem 3.2. Q.E.D.
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5. Numerical Examples

The analysis in Section 4 suggests that SF has smaller regret than PF when T grows to infinity.

In this section, we test the performance of SF and PF over two sets of examples with finite values

of T . For each example, we vary T ∈ {100,200,300,400,500} while scaling the initial inventory

placement as γ = θT = 0.8T , and for each value of T , we run 1000 simulations. Throughout this

section, instead of calculating κSF, we simulate the performance of SF at the inventory placement

κoff which already provides an upper-bound on the minimum-inventory regret of SF. We start by

introducing our first example, which satisfies the conditions of Example 4.1.

Example 5.1. Let the number of warehouses and the number of demand regions be I = 2, and

J = 2, respectively. Let c11 = 2, c21 = 3, c12 = 5, c22 = 1, c•1 = c•2 = 4, and let the arrival probabilities

satisfy λ1 = λ2 =
1
2
.

(a) Regret of (SF,κoff) and (PF,κPF) with respect to dif-

ferent values of T for Example 5.1

(b) The difference E[cPF(κPF,D)−cSF(κoff ,D)] for vary-

ing values of T for Example 5.1. The gray shaded region

specifies the 95% confidence band given the 1000 simula-

tions.

Figure 1 Regret of (SF,κoff) and (PF,κPF) (left) and the regret difference between the policies SF and PF

(right) for Example 5.1

In our simulation, we first identify the value for κPF that minimizes the expected cost for policy

PF, by computing the expected cost for all feasible integral inventory placement vectors. Subse-

quently, we compute the difference in the expected costs of PF at κPF and the expected cost of

the offline policy at κoff , termed as the minimum-inventory regret of PF. Similarly, we find the

difference between the expected cost of SF under placement vector κoff and the expected cost of the

offline policy at κoff which upper bounds the minimum-inventory regret of SF. To approximate κoff ,

we utilize the sample average approximation method and solve minκ∈U E[F (κ,z)] by generating

1000 demand scenarios.
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The graphical representation of the regrets for both PF and SF policies is illustrated in Figure 1a.

This figure shows that, unlike the regret of the score-based fulfillment policy (SF), which remains

stable as T increases, the regret for the probabilistic fulfillment policy (PF) grows with T as a

concave function. Additionally, Figure 1b presents the difference in the regrets between PF and

SF, including a 95% pointwise confidence band, illustrating that the difference between PF and

SF is statistically significant for different values of T . We note that for this particular numerical

example, κPF =κoff for all selected T .

For the next example, we generate locations for the demand regions and the warehouses at

random within the unit square (See Figure 2). The cost structure is simply determined based on

the distances between the demand locations and warehouses.

Example 5.2. Let the number of warehouses and demand regions be I = 3, and J = 5, respectively.

We let the lost sales cost be c•j = 2 for all j ∈ [J ]. Set also arrival probabilities to be the same for

any demand region, i.e., λj =
1
5
, for all j ∈ [J ].

Figure 2 Warehouse and Demand region locations in Example 5.2.

For I ≥ 3, precisely determining κPF becomes computationally challenging due to the significantly

larger search space. Therefore, in our numerical example, we resort to optimizing the inventory

placement for PF over a smaller search space with a set of randomly generated inventory placement

vectors. More specifically, we select 100 inventory placement vectors randomly over the region

[κoff − 1
√
T ,κoff + 1

√
T ] and also include κoff in our randomly generated set. By evaluating for

T values in the set {100,200,300,400,500}, we obtain an approximate measure of the minimum-

inventory regret for PF.

Similar to the first numerical example, Figure 3a suggests that the regret of SF remains stable

with increasing T , whereas the regret of PF increases with T as a concave function. Moreover,
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(a) “Approximate” minimum-inventory regret of SF and

PF for Example 5.2

(b) The difference E[cPF(κPF,D)−cSF(κoff ,D)] for vary-

ing values of T for Example 5.2. The gray shaded region

specifies the 95% pointwise confidence band given the

1000 simulations.

Figure 3 Regret of (SF,κoff) and (PF,κPF) (left) and the regret difference between the policies SF and PF

(right) for Example 5.2

Figure 3b displays the difference in regrets between PF and SF, complete with a 95% pointwise

confidence band, underscoring the statistically significant difference across all evaluated T values.

The aggregate numerical results from both examples align with our theoretical findings from

the asymptotic analysis, highlighting that the SF fulfillment policy generally surpasses PF when

considering endogenized inventory placements.

6. Conclusion

We study the performance of two state-of-the-art policies, probabilistic fulfillment and score-based

fulfillment, on joint inventory placement and online demand fulfillment problem. We introduce

a new regret metric called minimum-inventory regret, which factors in the inventory placement

vector while evaluating the performance of the policies.

Our analysis shows that the probabilistic fulfillment policy has a minimum-inventory regret that

scales with
√
T as T → ∞. Meanwhile, the minimum-inventory regret of score-based fulfillment

policy is independent of T . Moreover, by utilizing the network flow structure of our problem, we

show that the regret of score-based fulfillment is also polynomial with respect to the number of

warehouses and demand regions. Our analysis suggests that utilizing the offline inventory placement

with score-based fulfillment policy can outperform probabilistic fulfillment policy at its optimal

inventory placement. Therefore, the score-based fulfillment policy is preferable in our joint inventory

placement and online demand fulfillment problem setting when T is much larger than I and J . In

addition to theoretical analysis, we also confirm our findings in several numerical simulations.
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Appendix A: Minimum-inventory Regret Upper Bound for PF

In this section, we show that the minimum-inventory regret of PF is O(I
√
T ) in our online fulfillment problem

which follows closely the arguments in Bumpensanti and Wang (2020) within the network revenue management

setting, where they provide a fixed-inventory regret bound scaling with
√
T for a policy analogous to PF.

Proposition A.1. The minimum-inventory regret of PF satisfies the bound O(I
√
T ). Specifically,

E
[
cPF(κPF,D)

]
−E

[
coff(κoff ,D)

]
=O(I

√
T ). (32)

Proof. Let cDLP(κ,D) be the cost of the problem T ·F (κ/T,λ), which is formulated as

min
x,ℓ

T

∑
i∈[I]

∑
j∈[J]

cijxij +
∑
j∈[J]

c•jℓj


s.t.

∑
i∈[I]

xij + ℓj ≥ λj j ∈ [J ]

∑
j∈[J]

xij ≤ κi/T i∈ [I]

xij ≥ 0 i∈ [I], j ∈ [J ]

ℓj ≥ 0 j ∈ [J ].

(33)

Note that cDLP(κ,D) is an upper bound on the expected offline cost. Specifically,

E[coff(κoff ,D)] =E[F (κ,z)]≤E[F (κ,λT )] = TF (κ/T,λ) = cDLP(κ,D).

Since we can upper-bound the minimum-inventory regret of PF by the fixed inventory regret at κoff , it follows

that

E[cPF(κPF,D)]−E[coff(κoff ,D)]≤E[cPF(κoff ,D)]−E[coff(κoff ,D)]≤E[cPF(κoff ,D)]− cDLP(κoff ,D). (34)

Now, recall that, at each time t, PF solves F (κ(t),λ(T − t+ 1)). We can equivalently solve the problem

F (κ(t)/(T − t+ 1),λ) which finds the expected per-period fulfillment cost between periods t and T instead.

Let the optimal solution to this problem be (x̂(t), ℓ̂(t)). Furthermore, let (xDLP, ℓDLP) denote the optimal

solution of the problem T ·F (κ/T,λ) given in (33). By Lemma A.2, the cost difference between F (κ/T,λ) and

F (κ(t)/(T − t+1),λ) can be bounded as∑
i∈[I]

∑
j∈[J]

cij x̂ij(t)+
∑
j∈[J]

c•j ℓ̂j(t)−
∑
i∈[I]

∑
j∈[J]

cijx
DLP
ij (t)−

∑
j∈[J]

c•jℓ
DLP
j (t)≤

∑
i∈[I]

cmax

∣∣∣∣κiT − κi(t)

T − t+1

∣∣∣∣ . (35)
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We can also bound the expectation of
∣∣∣κi
T − κi(t)

T−t+1

∣∣∣ as follows:
E
[∣∣∣∣κiT − κi(t)

(T − t+1)

∣∣∣∣]≤
√√√√t−1∑

s=1

1

(T − s)2
, (36)

See Lemma A.3 for the proof of Inequality (36). Because the inequalities (35) and (36) hold for all κ ∈ U , by

combining (34), (35), and (36), we can bound the minimum-inventory regret of PF as follows:

E[cPF(κPF,D)]−E[coff(κoff ,D)]≤E[cPF(κoff ,D)]− cDLP(κoff ,D)

=E

∑
t∈[T ]

∑
i∈[I]

∑
j∈[J]

cij x̂ij(t)+
∑
j∈[J]

c•j ℓ̂j(t)

−
∑
t∈[T ]

∑
i∈[I]

∑
j∈[J]

cijx
DLP
ij (t)+

∑
j∈[J]

c•jℓ
DLP
j (t)


≤E

∑
t∈[T ]

∑
i∈[I]

cmax

∣∣∣∣κiT − κi(t)

T − t+1

∣∣∣∣


≤
∑
t∈[T ]

∑
i∈[I]

cmax

√√√√t−1∑
s=1

1

(T − s)2

≤
∑
t∈[T ]

∑
i∈[I]

cmax

√∫ t−1

1

1

(T − s)2
ds

≤
∑
i∈[I]

cmax

∑
t∈[T ]

√
1

T − t+1

≤
∑
i∈[I]

cmax

∫ T

1

√
1

T − t+1
ds

≤ Icmax(2
√
T − 2).

Q.E.D.

Lemma A.2. Let δ ∈RI such that κ+ δ≥ 0. Then,

F (κ,z)−F (κ+ δ,z)≤ cmax

∑
i∈[I]

|δi|.

Proof. First, we write the dual formulations for the problems F (κ,z) and F (κ+ δ,z). Let (µ,ν), where µ=

[µ]j∈[J] and ν = [ν]i∈[I] be the dual variables corresponding to the demand, and inventory constraints, respec-

tively. The dual problems are then defined as follows:

D(κ,z) =

max

∑
j∈[J]

zjµj −
∑
i∈[I]

κiνi

 s.t. µj − νi ≤ cij , µj ≤ c•j , µj ≥ 0, νi ≥ 0


and

D(κ+ δ,z) =

max

∑
j∈[J]

zjµj −
∑
i∈[I]

(κi+ δi)νi

 s.t. µj − νi ≤ cij , µj ≤ c•j , µj ≥ 0, νi ≥ 0

 .

Let (µ∗,ν∗) be an optimal solution of the problem D(κ,z). Since the feasible regions of D(κ,z) and D(κ+δ,z)

are the same, (µ∗,ν∗) is feasible for D(κ+ δ,z). Then,

F (κ+ δ,z)≥
∑
j∈[J]

zjµ
∗
j −

∑
i∈[I]

(κi+ δi)ν
∗
i = F (κ,z)−

∑
i∈[I]

δiν
∗
i ,
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where the inequality follows from the weak duality and the equality follows from the strong duality. Then, we

have

F (κ,z)−F (κ+ δ,z)≤
∑
i∈[I]

δiν
∗
i ≤max

i∈[I]
ν∗i
∑
i∈I

|δi|. (37)

Next, we will bound ν∗i , for all i ∈ [I]. Since (µ∗,ν∗) is an optimal solution to D(κ,z), we can plug in µ∗ to

D(κ,z) and solve the following optimization problem to find ν∗:max

∑
j∈[J]

zjµ
∗
j −

∑
i∈[I]

κiνi

 s.t. µ∗
j − νi ≤ cij , νi ≥ 0

 .

Since κi ≥ 0 and νi ≥ 0, an optimal solution to this problem is ν∗i =maxj∈[J](µ
∗
j − cij)

+ for all i ∈ [I]. By the

feasibility of µ∗
j , we have 0≤ µ∗

j ≤ c•j which implies

ν∗i =max
j∈[J]

(µ∗
j − cij)

+ ≤max
j∈[J]

|c•j − cij | ≤ cmax,

for all i∈ [I]. Combining this with Inequality (37), we obtain

F (κ,z)−F (κ+ δ,z)≤ cmax

∑
i∈[I]

|δi|.

Q.E.D.

Lemma A.3. Let κi(t) be the remaining inventory in warehouse i in the beginning of time t, under PF policy. Then,

E
[∣∣∣∣κiT − κi(t)

(T − t+1)

∣∣∣∣]≤
√√√√ t∑

s=1

1

(T − s)2
.

Proof. By telescoping sum, we have that∣∣∣∣κiT − κi(t)

T − t+1

∣∣∣∣≤
∣∣∣∣∣
t−1∑
s=1

(
κi(s)

T − s+1
− κi(s+1)

T − s

)∣∣∣∣∣ . (38)

Note that 1
T−s+1 = 1

T−s − 1
(T−s+1)(T−s) . Hence, we can write (38) as∣∣∣∣κiT − κi(t)

T − t+1

∣∣∣∣=
∣∣∣∣∣
t−1∑
s=1

(
κi(s)−κi(s+1)

T − s
− κi(s)

(T − s)(T − s+1)

)∣∣∣∣∣ .
We have

∑
j∈[J] x

PF
ij (t) = κi(s) − κi(s + 1), and the optimal solution to F (κ(t)/(T − t + 1),λ) satisfies∑

j∈[J] x̂ij(t)≤ κi(t)/(T − t+1). Then,∣∣∣∣κiT − κi(t)

T − t+1

∣∣∣∣≤
∣∣∣∣∣
t−1∑
s=1

(∑
j∈[J] x

PF
ij (s)

T − s
−
∑

j∈[J] x̂ij(s)

T − s

)∣∣∣∣∣ .
By taking the expectation on both sides and applying Cauchy-Shwarz inequality, we obtain

E
[∣∣∣∣κiT − κi(t)

T − t+1

∣∣∣∣]≤
√√√√√E

(t−1∑
s=1

∑
j∈[J] x

PF
ij (s)−

∑
j∈[J] x̂ij(s)

T − s

)2
. (39)

Let us define
∑

j∈[J] x
PF
ij (s)−

∑
j∈[J] x̂ij(s)

T−s := as. Furthermore, let (Fs)s∈[T ] denote the filtration generated by the

history up to and not including time s. Then, we can rewrite (39) as

E
[∣∣∣∣κiT − κi(t)

T − t+1

∣∣∣∣]≤
√√√√√E

(t−1∑
s=1

as

)2
=

√√√√t−1∑
s=1

E [a2s]+ 2
t−1∑
s=1

t−1∑
l=s+1

E [asal]

=

√√√√t−1∑
s=1

E [E [a2s |Fs]]+ 2
t−1∑
s=1

t−1∑
l=s+1

E [E [asal|Fl]],
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where the last equality follows by the law of total expectation. Note that, for any s∈ [T ], E[
∑

j∈[J] x
PF
ij (s)|Fs] =∑

j∈[J] x̂ij(s) which follows by the definition of PF policy. This suggests that E[as|Fs] = 0 for all s ∈ [T ].

Consequently, it follows that E [asal|Fl] = asE [al|Fl] = 0. Then,

E
[∣∣∣∣κiT − κi(t)

T − t+1

∣∣∣∣]≤
√√√√t−1∑

s=1

E [E [a2s |Fs]]

=

√√√√√E

t−1∑
s=1

E

(∑j∈[J] x
PF
ij (s)−

∑
j∈[J] x̂ij(s)

T − s

)2
∣∣∣∣∣∣Fs



=

√√√√√E

t−1∑
s=1

1

(T − s)2
E

∑
j∈[J]

xPF
ij (s)−

∑
j∈[J]

x̂ij(s)

2∣∣∣∣∣∣Fs



=

√√√√√t−1∑
s=1

1

(T − s)2
E

Var
∑

j∈[J]

xPF
ij (s)−

∑
j∈[J]

x̂ij(s)

∣∣∣∣∣∣Fs


≤

√√√√t−1∑
s=1

1

(T − s)2
,

where the third equality follows by the linearity of the expectation, the fourth equality follows since

E[
∑

j∈[J] x
PF
ij (s) −

∑
j∈[J] x̂ij(s)|Fs] = 0 and the last inequality follows because Var(

∑
j∈[J] x

PF
ij (s) −∑

j∈[J] x̂ij(s)|Fs)≤ 1.

Q.E.D.

Appendix B: Additional Lemmas for Section 4

Lemma B.1. P(∆π
t ≥ 0) = 1.

Proof. Let j∗ ∈ [J ] represent the region where the demand arrives at time t, and let i∗ ∈ I ∪ {•} denote the

fulfillment decision made by policy π for that time period (where {•} refers to the lost sales). This implies that

the cost incurred by policy π at time t is Cπ
t = ci∗j∗ . Moreover, let (x̄(t+1), ℓ̄(t+1)) be the optimal solution to

F (κ(t+1),Z(t+1)). Let us define a solution x̃ such that x̃i∗j∗ = x̄i∗j∗(t+1)+1 and x̃ij = x̄ij(t+1) otherwise.

Then, x̃ is feasible for F (κ(t),Z(t)) since κi∗(t) = κi∗(t+1)+1 and Zj∗(t) =Zj∗(t+1)+1. Then, the t-th period

regret can be bounded as:

∆π
t =Cπ

t −F (κ(t),Z(t))+F (κ(t+1),Z(t+1))

≥Cπ
t −

∑
i∈[I]

∑
j∈[J]

cij x̃ij(t+1)+
∑
j∈[J]

c•j ℓ̃j(t+1)

+
∑
i∈[I]

∑
j∈[J]

cij x̄ij(t+1)+
∑
j∈[J]

c•j ℓ̄j(t+1)

=Cπ
t −

∑
i∈[I]

∑
j∈[J]

cij x̄ij(t+1)+
∑
j∈[J]

c•j ℓ̄j(t+1)+ ci∗j∗

+
∑
i∈[I]

∑
j∈[J]

cij x̄ij(t+1)+
∑
j∈[J]

c•j ℓ̄j(t+1)

=Cπ
t − ci∗j∗

=0.

Q.E.D.
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B.1. Lemmas for Section 4.1

Lemma B.2. Under Example 4.1, the optimal solution to F (κ(t),Z(t)) is unique and satisfies the following:

1. If Z1(t)>κ1(t), and Z2(t)>κ2(t):

x̄11 = κ1(t), x̄12 =0, x̄21 =0, x̄22 = κ2(t), x̄•1 =Z1(t)−κ1(t), x̄•2 =Z2(t)−κ2(t). (40)

2. If Z1(t)≤ κ1(t), and Z2(t)>κ2(t):

x̄11 =Z1(t), x̄12 =0, x̄21 =0, x̄22 = κ2(t), x̄•1 =0, x̄•2 =Z2(t)−κ2(t). (41)

3. If Z1(t)>κ1(t), and Z2(t)≤ κ2(t):

3a. When κ2(t)−Z2(t)>Z1(t)−κ1(t):

x̄11 = κ1(t), x̄12 =0, x̄21 =Z1(t)−κ1(t), x̄22 =Z2(t), x̄•1 =0, x̄•2 =0. (42)

3b. When κ2(t)−Z2(t)≤Z1(t)−κ1(t):

x̄11 = κ1(t), x̄12 =0, x̄21 = κ2(t)−Z2(t), x̄22 =Z2(t), x̄•1 =Z1(t)+Z2(t)−κ1(t)−κ2(t), x̄•2 =0. (43)

4. If Z1(t)≤ κ1(t), and Z2(t)≤ κ2(t):

x̄11 =Z1(t), x̄12 =0, x̄21 =0, x̄22 =Z2(t), x̄•1 =0, x̄•2 =0. (44)

Proof. For each of the cases, it is easy to check that the solutions provided in the lemma are feasible. Next, we

will show that the solution is optimal and unique using the cost structure in Example 4.1 via complementary

slackness. To show this, we will start by writing the dual of Example 4.1:

max y1Z1(t)+ y2Z2(t)− y3κ1(t)− y4κ2(t)

s.t. y1 − y3 ≤ c11

y1 − y4 ≤ c21

y2 − y3 ≤ c12

y2 − y4 ≤ c22

y1 ≤ c•1

y2 ≤ c•2

y1, y2, y3, y4 ≥ 0.

First, consider Case 1. One can check that the following is a dual feasible solution:

ȳ1 = c•1, ȳ2 = c•2, ȳ3 = c•1 − c11, ȳ4 = c•2 − c22. (45)

By complementary slackness, we have the following:

x̄11(ȳ1 − ȳ3 − c11) = 0, x̄21(ȳ1 − ȳ4 − c21) = 0, x̄12(ȳ2 − ȳ3 − c12) = 0, (46)

x̄22(ȳ2 − ȳ4 − c22) = 0, x̄•1(ȳ1 − c•1) = 0, x̄•2(ȳ2 − c•2) = 0, (47)

and

ȳ1(Z1(t)− x̄11 − x̄21 − x̄•1) = 0, ȳ2(Z2(t)− x̄22 − x̄12 − x̄•2) = 0, (48)

ȳ3(κ1(t)− x̄11 − x̄12) = 0, ȳ4(κ2(t)− x̄22 − x̄21) = 0. (49)
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Note that x̄ provided in (40) and ȳ provided in (45) satisfy the complementary slackness conditions provided

above. Hence, x̄ and ȳ are optimal for primal and dual problems, respectively. To show the uniqueness of x̄, we

will show that ȳ is a nondegenerate optimal dual solution. Observe that the second and third constraints of the

dual problem are not binding since ȳ1 − ȳ4 = c•1 − c•2 + c22 = c22 < c21 and y2 − y3 = c•2 − c•1 + c11 = c11 < c12.

This implies that only four constraints of the dual problem are binding which suggests that ȳ is a nondegenerate

dual solution. This shows the uniqueness of x̄. The uniqueness and optimality of x̄ in Case 2 can be shown by

considering the following dual solution:

ȳ1 = c11, ȳ2 = c•2, ȳ3 =0, ȳ4 = c•2 − c22. (50)

While the demonstration of optimality and uniqueness for Case 3 and Case 4 have been omitted, their proofs

can be established using analogous methods.

Q.E.D.

Lemma B.3. Under the settings of Example 4.1, the cost function f satisfies the following first-difference properties:

f(κ2 +1)− f(κ2)≥ (c21 − c11)− (c21 + c•1) exp

{
−2

(κ2 −λ2T )
2

T

}
for κ2 >λ2T ; (51)

and

f(κ2 +1)− f(κ2)≤−(c11 − c22)+ (c21 − c22) exp

{
−2

(λ2T −κ2)
2

T

}
for κ2 <λ2T . (52)

Proof. We first focus on proving that (51) holds. We begin by observing that the cost function f defined in (6)

can be written as

f(κ2) =c22E[min{Z2, κ2}]+ c11E[min{Z1, γ−κ2}]+ c21E[min{(Z1 − γ+κ2)
+, (κ2 −Z2)

+}]

+ c•1E[max{Z1 − γ+κ2 − (κ2 −Z2)
+),0}]+ c•2E[(Z2 −κ2)

+]. (53)

In the above expression, the first and second terms respectively correspond to the cost of using warehouse-

2 inventory to fulfill region-2 demand and warehouse-1 inventory to fulfill region-1 demand. The third term

accounts for the scenario in which region-1 demand is fulfilled with the remaining inventory of warehouse 2.

The fourth and fifth terms represent the cost of expected lost sales from region 1 and region 2. Notably, there

is no term involving c12; Example 4.1 assumes that c•2 ≤ c12, so it is less costly to lose the demand from region

2 rather than fulfilling it from warehouse 1.

Because γ = θT ≤ T and Z1 +Z2 = T , we have that κ2 −Z2 = κ2 − T +Z1 ≤ κ2 − γ +Z1, so we see that the

third term in (53) is equal to its right minimand: E[min{(Z1 − γ+κ2)
+, (κ2 −Z2)

+}] =E[(κ2 −Z2)
+].

Moreover, as c•1 = c•2, we can rewrite the sum of the last two terms in (53) as

c•1E[max{Z1 − γ+κ2 − (κ2 −Z2)
+,0}]+ c•2E[(Z2 −κ2)

+]

= c•1E[max{Z1 − γ+κ2 − (κ2 −Z2)
+,0}+(Z2 −κ2)

+]

= c•1E[max{Z1 − γ+κ2 − (κ2 −Z2), (Z2 −κ2)
+}]

= c•1
(
T − γ+E[(Z2 −κ2 −T + γ)+)]

)
= c•1

(
T − γ+E[(γ−κ2 −Z1)

+)]
)
.

Hence, after rearranging, the cost function f(κ2) can be written as

f(κ2) =c22E[min{Z2, κ2}]+ c11E[min{Z1, γ−κ2}]

+ c21E[(κ2 −Z2)
+]+ c•1

(
T − γ+E[(γ−κ2 −Z1)

+)]
)
. (54)
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The representation (54) allows us to study the difference f(κ2+1)−f(κ2) by examining how much each term

on the right-hand side changes when κ2 increases by one. For the first term of (54), we have

c22E[min{Z2, κ2 +1}]− c22E[min{Z2, κ2}] =
∞∑
z=0

(min{z,κ2 +1}−min{z,κ2})P(Z2 = z)

=
∞∑

z=κ2+1

P(Z2 = z)

= c22P(Z2 >κ2).

Similarly, for the remaining terms, we also get

c11E[min{Z1, γ− (κ2 +1)}]− c11E[min{Z1, γ−κ2}] =−c11P(Z1 ≥ γ−κ2);

c21E[(κ2 +1−Z2)
+]− c21E[(κ2 −Z2)

+] = c21P(Z2 ≤ κ2); and

c•1
(
T − γ+E[(γ− (κ2 +1)−Z1)

+)]
)
− c•1

(
T − γ+E[(γ−κ2 −Z1)

+)]
)
=−c•1P(Z1 < γ−κ2).

By recalling (54) and adding up the four terms above, we obtain

f(κ2 +1)− f(κ2) = c22P(Z2 >κ2)− c11P(Z1 ≥ γ−κ2)+ c21P(Z2 ≤ κ2)− c•1P(Z1 < γ−κ2). (55)

Next, we obtain a sequence of lower bounds for f(κ2+1)− f(κ2) that will eventually lead to (51). Dropping

the first addend on the right-hand side of (55), and replacing P(Z1 ≥ γ−κ2) with 1, we get

f(κ2 +1)− f(κ2)≥−c11 + c21P(Z2 ≤ κ2)− c•1P(Z1 < γ−κ2).

Continuing from this inequality, recall that Z1 = T −Z2 and γ ≤ T , we have P(Z1 < γ−κ2) = P(T −Z2 < γ−κ2) =

P(Z2 >κ2 +T − γ)≤ P(Z2 >κ2), which implies

f(κ2 +1)− f(κ2)≥−c11 + c21{1−P(Z2 >κ2)}− c•1P(Z2 >κ2).

= (c21 − c11)− c21P(Z2 >κ2)− c•1P(Z2 >κ2).

Because κ2 −λ2T > 0, Hoeffding’s inequality (see, e.g., Boucheron et al., 2003) gives us that

f(κ2 +1)− f(κ2)≥ (c21 − c11)− c21P(Z2 −λ2T > κ2 −λ2T )− c•1P(Z2 −λ2T > κ2 −λ2T )

≥ (c21 − c11)− (c21 + c•1) exp

{
−2

(κ2 −λ2T )
2

T

}
, (56)

completing the proof of (51).

For the proof of (52), we begin by recalling that c11 < c•1, so we also have that c11 ≤ c11P(Z1 ≥ γ − κ2) +

c•1P(Z1 < γ − κ2). If we plug this last lower bound in the decomposition (55) and rearrange, we obtain the

upper bound

f(κ2 +1)− f(κ2)≤ c22P(Z2 >κ2)+ c21P(Z2 ≤ κ2)− c11 =−(c11 − c22)+ (c21 − c22)P(Z2 ≤ κ2).

Applying the Hoeffding inequality together with λ2T −κ2 > 0 give us the further upper bound

f(κ2 +1)− f(κ2)≤−(c11 − c22)+ (c21 − c22)P(Z2 −λ2T ≤−(λ2T −κ2))

≤−(c11 − c22)+ (c21 − c22) exp

{
−2

(λ2T −κ2)
2

T

}
,

completing the proof of (52). Q.E.D.
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Lemma B.4. Consider independent random variables X1, X2, · · · , XT that are Bernoulli distributed with parameter

λ∈ (0,1). For −∞≤C1 <C2 ≤∞ and C3 ≥ 1, let E and E′ be the events respectively defined as

E =

{
T∑

s=1

(Xs −λ)∈ [C1

√
T ,C2

√
T ]

}
,

and

E′ =

{
t∑

s=1

(Xs −λ)∈ [−C3

√
T ,C3

√
T ],∀t∈ (0, T ]

}
.

Then, for T large enough, the probabilities P(E) and P(E′) are bounded away from 0.

Proof. Observe that
∑t

s=1Xs is binomial with parameters (t, λ). Let Ft be the cumulative distribution function

of
∑t

s=1(Xs−λ)√
λ(1−λ)t

for all t∈ [T ]. Then,

P(E) = P

(
T∑

s=1

(Xs −λ)∈
[
C1

√
T ,C2

√
T
])

= P

(
C1√

λ(1−λ)
≤
∑T

s=1(Xs −λ)√
λ(1−λ)T

≤ C2√
λ(1−λ)

)

= P

(∑T
s=1(Xs −λ)√
λ(1−λ)T

≤ C2√
λ(1−λ)

)
−P

(∑T
s=1(Xs −λ)√
λ(1−λ)T

≤ C1√
λ(1−λ)

)

=Φ

(
C2√

λ(1−λ)

)
−Φ

(
C1√

λ(1−λ)

)
+FT

(
C2√

λ(1−λ)

)
−Φ

(
C2√

λ(1−λ)

)

−FT

(
C1√

λ(1−λ)

)
+Φ

(
C1√

λ(1−λ)

)

≥Φ

(
C2√

λ(1−λ)

)
−Φ

(
C1√

λ(1−λ)

)
−

∣∣∣∣∣FT

(
C2√

λ(1−λ)

)
−Φ

(
C2√

λ(1−λ)

)∣∣∣∣∣
−

∣∣∣∣∣FT

(
C1√

λ(1−λ)

)
−Φ

(
C1√

λ(1−λ)

)∣∣∣∣∣ .
By the Berry-Esseen theorem (see Shevtsova, 2011), we have |Ft(x) − Φ(x)| ≤ 0.4847λ

(λ(1−λ))3/2
√
t
for all x and t.

Hence, for large enough T , P(E)> 0.

It is easy to check that
∑t

s=1(Xs − λ) is a martingale with respect to Xi, i= 1, · · · , t. Now, we will bound

P(E′) using Kolmorogov’s inequality (see, e.g Billingsley, 2017). For any T > 0, we have

P

(
t∑

s=1

(Xs −λ)∈ [−C3

√
T ,C3

√
T ],∀t∈ (0, T ]

)

= P

(
max

t∈(0,T ]

∣∣∣∣∣
t∑

s=1

(Xs −λ)

∣∣∣∣∣≤C3

√
T

)

=1−P

(
max

t∈(0,T ]

∣∣∣∣∣
t∑

s=1

(Xs −λ)

∣∣∣∣∣≥C3

√
T

)

≥ 1−
Var(

∑t
s=1Xs)

C2
3T

=1− λ(1−λ)t

C2
3T

≥ 1− λ(1−λ)

C2
3

> 0,
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where the first inequality follows Kolmorogov’s inequality and the last inequality follows since C3 ≥ 1 and λ< 1.

Q.E.D.

Lemma B.5. Consider the setting in Example 4.1, under policy PF. Suppose that Z2(t)≥ κ2(t), then there exists a

constant cl > 0 which is determined by {cij} and {c•j} such that

∆PF
t ≥ cl, if xPF

21 (t) = 1,

T∑
s=t

∆PF
t ≥ cl

(
κ2(t)−

T∑
s=t

xPF
22 (s)

)
.

In particular, when t=1 and Z2 =Z2(1)≥ κ2 = κ2(1), we have

T∑
t=1

∆PF
t ≥ cl

(
κ2 −

T∑
t=1

xPF
22 (t)

)
.

Proof. Let (ℓ̄, x̄) be a solution for F (κ(t),Z(t)). By Lemma B.2, the optimal solution for F (κ(t),Z(t)) is unique

and x̄22 = κ2(t). Because F (κ(t),Z(t)) can be formulated as a min-cost network flow problem, we have that

the cost of any augmenting path or cycle for (ℓ̄, x̄) is positive. Let cl be the minimum cost of all the possible

augmenting paths or cycles. Then, cl > 0 is determined by {cij} and {c•j} and any feasible solution (ℓ′,x′) with

x′22 < x̄22 = κ2(t) must have an objective that is at least cl(κ2(t)−x′22).

Suppose xPF
21 (t) = 1. Let (ℓt+1,xt+1) be the optimal offline solution for F (κ(t + 1),Z(t + 1)). Note that

(ℓt+1,xt+1 +xPF(t)) is a feasible solution for F (κ(t),Z(t)), and

xt+1
22 +xPF

22 (t) = xt+1
22 ≤ κ2(t+1)= κ2(t)− 1. (57)

Thus,

∆PF
t =

∑
i,j

cij

(
xPF
ij (t)+xt+1

ij

)
+
∑
j

c•j l
t+1
j −

∑
i,j

cij x̄ij +
∑
j

c•j l̄j


≥ cl(κ2(t)−xPF

22 (t)−xt+1
22 )

= cl.

where the first inequality follows by the definition of cl and uniqueness of x̄, the second equality follows because

xPF
22 (t) = 0 and x̄22 = κ2(t), and the second inequality follows from (57).

Let xPF
ij =

∑T
s=t x

PF
ij (s) and lPF

j =
∑T

s=t l
PF
j (s), and observe that (ℓPF,xPF) is a feasible solution for

F (κ(t),Z(t)). Thus, by definition of ∆PF
t , we have

T∑
s=t

∆PF
t =

∑
i,j

cij

T∑
s=t

xPF
ij (s)+

∑
j

c•j

T∑
s=t

lPF
j (s)−

∑
i,j

cij x̄ij +
∑
j

c•j l̄j


=
∑
i,j

cijx
PF
ij +

∑
j

c•j l
PF
j −

∑
i,j

cij x̄ij +
∑
j

c•j l̄j


≥ cl(x̄22 −xPF

22 )

= cl(κ2(t)−xPF
22 ).

where the inequality holds by uniqueness of x̄, and definition of cl. Q.E.D.
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B.2. Lemmas for Section 4.2

Lemma B.6. Let x̄1 be an optimal solution of F (κ,z1). Consider a vector z2 is such that z2n ̸= z1n for some n∈ [J ],

and z2j = z1j for j ∈ [J ] \ {n}. Then, there exists x̄2 such that

x̄2 is an optimal solution of F (κ,z2), (58)

|x̄2ij − x̄1ij | ≤ |z1n − z2n| for all i∈ [I]∪{0}, j ∈ [J ]. (59)

Proof. Observe that F (κ,z) can be converted to a minimum-cost flow problem by including additional source

and sink nodes. Specifically, define dummy nodes s (source node) and t (sink node). Let N = {s} ∪ [I]∪ {0} ∪
[J ]∪{t} be the set of nodes, and A be the set of arcs. Then, F (κ,z) can be written in the following form.

min
∑

i∈[I]∪{0},j∈[J]

cijfij

s.t.
∑

i∈[I]∪{0}

fij = fjt j ∈ [J ]

∑
j∈[J]

fij = fsi i∈ [I]∪{0}

∑
j∈[J]

fjt =
∑

i∈[I]∪{0}

fsi

0≤ fsi ≤ κi i∈ I ∪{0}

zj ≤ fjt j ∈ [J ]

0≤ fij i∈ [I]∪{0}, j ∈ [J ].

It is easy to check that any optimal solution x∗ of F (κ,z) in the original formulation (24) has a corresponding

optimal network flow f∗ in the new formulation, where x∗ij = f∗ij for any i∈ [I]∪{0}, and j ∈ [J ].

Recall that x̄1 is the optimal solution of F (κ,z1), and let f̄1 be the corresponding optimal network flow. Let

G be the residual graph corresponding to flow vector f̄1. By the optimality of f̄1, it must satisfy the reduced

cost optimality condition, that is, there exists a |N | dimensional potential vector π1 such that

cij −πi+πj ≥ 0, for every arc (i, j) in G.

If z2n − z1n =1, let p be the shortest path between s and n in the residual graph G. By Lemma 9.12 of Ahuja

et al. (1988) on the property of the successive shortest path algorithm, we can send a unit flow along path p

to obtain a feasible flow f̄2 that satisfies the reduced cost optimality condition with some potential vector π2.

Let x̄2 be the corresponding optimal solution for F (κ,z2), we then have that

|f̄2
ij − f̄1

ij |= |x̄2ij − x̄1ij | ≤ 1= |z1n − z2n| for all i∈ [I]∪{0}, j ∈ [J ].

If z2n− z1n =−1, let p be the shortest path between n and s in the residual graph G. Again by Lemma 9.12 of

Ahuja et al. (1988) we can send a unit flow along path p to obtain a feasible flow f̄2 that satisfies the reduced

cost optimality condition with some potential vector π2. Let x̄2 be the corresponding optimal solution for

F (κ,z2). We obtain that

|x̄2ij − x̄1ij | ≤ 1= |z1n − z2n| for all i∈ [I]∪{0}, j ∈ [J ].

Finally, for the case where |z2n − z1n| > 1, we can simply apply the successive shortest path algorithm for

multiple iterations until we reach an optimal solution f̄2. By induction, the optimal solution x̄2 corresponding

to f̄2 satisfies that

|x̄2ij − x̄1ij | ≤ |z1n − z2n| for all i∈ [I]∪{0}, j ∈ [J ].

Q.E.D.
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Lemma B.7. Let x̂ be an optimal solution of (24). For any δ ∈RJ , there exists xδ such that

xδ is an optimal solution of F (κ,z+ δ),

|xδij − x̂ij | ≤
J∑

j=1

|δj |= ∥δ∥1 , ∀i∈ [I]∪{0}, j ∈ [J ].

Proof. The proof follows from Lemma B.6 where we show that for any z′ that only differs from z in the nth

component, then F (κ,z′) has an optimal solution x̂′ such that |x̂′ij − x̂ij | ≤ |z′n − zn|.
First, define δ(n) = [δ1, δ2, · · · , δn,0, · · · ,0]. In other words, δ(n) is the truncation of δ with just the first n

terms. Let xn be the optimal solution to F (κ,z+ δ(n)). By Lemma B.6, there exists some xn+1 which is an

optimal solution to F (κ,z1 + δ(n+1)) such that |xnij −xn+1
ij | ≤ |δn+1| because δ(n) and δ(n+1) only differ by

their (n+1)th component. Hence, by triangle inequality,

|x̂ij −xJij | ≤ |x̂ij −x1ij |+ · · ·+ |xJ−1
ij −xJij | ≤

J∑
j=1

|δj |.

Denote xδ =xJ . Then, xδ is the optimal solution to F (κ,z+ δ) which satisfies |xδij − x̂ij | ≤ ∥δ∥1.
Q.E.D.

Lemma B.8. Suppose that xSFmn(t) = 1 for any t > 0, m∈ [I] and n∈ [J ]. If x̄ is the optimal solution of F (κ(t),Z(t)),

and x̄mn ≥ 1, then ∆SF
t , defined as CSF

t −F (κ(t),Z(t))+F (κ(t+1),Z(t+1)), is equal to zero.

Proof. Since the optimal solution of F (κ(t),Z(t)) satisfies x̄mn ≥ 1, we have that

F (κ(t),Z(t)) =min cmn+
∑

i∈[I]∪{0}

∑
j∈[J]

cijxij

s.t.
∑

i∈[I]∪{0}

xij ≥Zj(t)− I(j = n) j ∈ [J ]

∑
j∈[J]

xij ≤ κi(t)− I(i=m) i∈ [I]

xij ≥ 0 i∈ [I]∪{0}, j ∈ [J ],

where I is the indicator function. Then, as Zj(t+1)=Zj(t)− I(j = n) for j ∈ [J ] and κi(t+1)= κi(t)− I(i=m)

for i∈ [I], we have that F (κ(t),Z(t)) = cmn+F (κ(t+1),Z(t+1)) =CSF
t +F (κ(t+1),Z(t+1)), which implies

∆SF
t =0. Q.E.D.
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