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Abstract. This paper first shows that when colleges’ preferences are
substitutable there does not exist any stable matching mechanism that makes
truthful revelation of preferences a dominant strategy for every student. The
paper introduces student types and captures colleges’ preferences for
affirmative action via type-specific quotas: A college always prefers a set of
students that respects its type-specific quotas to another set that violates
them. Then it shows that the student-applying deferred acceptance mecha-
nism makes truthful revelation of preferences a dominant strategy for every
student if each college’s preferences satisfy responsiveness over acceptable sets
of students that respect its type-specific quotas. These results have direct
policy implications in several entry-level labor markets (Roth 1991).
Furthermore, a fairness notion and the related incentive theory developed
here is applied to controlled choice in the context of public school choice by
Abdulkadiroğlu and Sönmez (2003).

1. Introduction

A college admissions problem is a many-to-one, two-sided matching problem.
In several real-life applications of this problem, colleges’ preferences over sets
of students are determined by gender, racial and ethnic composition. For
example, in the British entry-level medical labor market, Edinburgh surgeons
may specify that they will employ no more than one female house officer at
the same time (Roth 1991). For some residency programs in the American
resident matching market, preferences of hospitals are determined by the
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composition of professional specialities of students (Roth and Peranson 1999,
Milgrom 2003).

Similar cases arise in controlled public school choice in the US. Many
school districts give parents the opportunity to choose the public school their
child attends. However, in some states, choice is limited by court-ordered
desegregation guidelines (Abdulkadiroğlu and Sönmez 2003). Another
example is New York City, where certain city high schools have to admit
students across the ability range, with quotas reserved for students with low,
middle and high reading scores (Abdulkadiroğlu, Pathak and Roth 2005).1

Giving agents the incentive to reveal their true preferences (dominant
strategy incentive compatibility) is not only of theoretical interest, but also of
practical concern. These incentives are studied in the literature only when col-
leges’ preferences are represented by a simple ordering of individual students
(Dubins andFreedman 1981 andRoth 1982). However, in each of the examples
above, preferences of hospitals/schools cannot be represented by a simple
ordering of individual doctors/students. In this paper, we fill this gap by spec-
ifying a class of preferences for colleges to capture preferences for gender or
racial and ethnic compositions, and studying agents’ incentiveswithin this class.

We first show that, when colleges’ preferences are substitutable, no stable
mechanism is dominant strategy incentive compatible for all students
(Theorem 1). This result follows Milgrom (2003), who shows that, when col-
leges have substitutable preferences, the student-applying deferred acceptance
mechanism (SA-DAA) is not dominant strategy incentive compatible for all
students.

Next, we ask: Is there a non-trivial class of preferences that captures
affirmative action constraints, and at the same time yields a stable mechanism
that is dominant strategy incentive compatible for all students? Our answer is
positive. We formalize preferences for affirmative action by introducing type-
specific quotas as follows: There exists a finite type space for students, such as
fmale, femaleg in case of Edinburgh surgeons. Each student is of exactly one
of these types. In addition to its capacity, each college has a type-specific
quota. We assume that a college always prefers a set of students that respects
its type-specific quotas to another set that violates them. We refer to this
assumption as AA (resembling Affirmative Action).

We further impose a restricted responsiveness condition (RR) on colleges’
preferences: A college’s preferences over sets of students are responsive to its
preferences over individual students, restricting the attention only to the sets
of students that are acceptable for that college. If a set does not respect a
college’s type-specific quotas, it is not acceptable for that college. Therefore,
RR imposes responsiveness only on those sets that respect a college’s type-
specific quotas. RR is a generalization of responsiveness when there is more
than one type of students. A preference profile that satisfies RR may fail to be
responsive (Example 1).

When colleges’ preferences satisfy AA and RR, they are substitutable
(Lemma 1), so that the set of stable matchings is non-empty (Proposition 1).
Moreover, SA-DAA produces a stable matching that every student finds at
least as desirable as any other stable matching (Proposition 2).

1Donald Hirch (1994, page 120) notes similar constraints in UK: City Technology Colleges are
required to admit students across the ability range and their student body should be
representative of the community in the catchment area.
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Our first main result is that, when colleges’ preferences satisfy AA and
RR, SA-DAA is dominant strategy incentive compatible for all students
(Theorem 2). Theorem 2 provides a positive result as opposed to Milgrom’s
negative result and our even more negative result in Theorem 1. It is also the
first to extend dominant strategy incentive compatibility for all students
beyond the class of responsive preferences. The positive dominant strategy
incentive compatibility result with responsive preferences due to Dubins and
Freedman (1981) and Roth (1982) is a corollary of Theorem 2 with a sin-
gleton type space.

Our second contribution is a fairness notion for the controlled school
choice problem. By embodying AA and RR, our fairness notion provides a
novel connection through stability between a controlled school choice
problem and an associated college admissions with affirmative action
problem in which colleges’ preferences satisfy AA and RR. Therefore, it does
not only enhance our understanding of the controlled school choice problem,
but also yields an important mechanism for real-life applications of the
problem.

We introduce our model and give our results in Section 2. We apply our
theory to the American resident matching market and controlled public
school choice in Section 3. We discuss our class of preferences further in
Section 4.

2. The model and the results

2.1. College admissions

A college admissions problem consists of:

[1] A finite set of students S ¼ fs1; . . . ; sng:
[2] A finite set of colleges C ¼ fc1; . . . ; cmg:
[3] A capacity vector q ¼ ðqc1 ; . . . ; qcmÞ; where qc is the capacity of college

c 2 C.
[4] For every student s 2 S; a strict preference relation Ps over C [ fsg: Let

P S ¼ ðPs1 ; . . . ; PsnÞ be the profile of these relations.
[5] For every college c 2 C; a strict preference relation Pc over subsets of S:

Let P C ¼ ðPc1 ; . . . ; PcmÞ be the profile of these relations.

Each preference relation is complete and transitive. For i 2 C [ S; let aRib if
aPib or a ¼ b: From now on, small letters represent individual agents and
singleton sets of individuals, whereas capital letter represent (not necessarily
singleton) sets. A small letter may also represent [:

A matching l is a function from C [ S to the set of all subsets of C [ S
such that

[i] lðsÞj j ¼ 1 for every student s; and lðsÞ ¼ s if lðsÞ j2 C;
[ii] lðcÞ � S and lðcÞj j � qc for every college c;
[iii] lðsÞ ¼ c if and only if s 2 lðcÞ:
lðsÞ denotes s’s match at l; lðcÞ denotes the set of students college c is
matched with at l.

A set of students S0 � S is acceptable for c 2 C if S0Rc[: A college c 2 C is
acceptable for s if cRss:
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Let ChcðS0Þ denote the most preferred subset of S0 � S for college c; i.e.
ChcðS0Þ � S0 and for any other Ŝ � S0 such that Ŝ 6¼ ChcðS0Þ; ChcðS0ÞPcŜ: We
refer to ChcðS0Þ as c’s choice among S0:

A matching l is blocked by a student s if lðsÞ is not acceptable for s: It is
blocked by a college c if c prefers a strict subset of lðcÞ to lðcÞ; i.e.
lðcÞ 6¼ ChcðlðcÞÞ: It is blocked by a student-college pair ðs; cÞ if s and c are not
matched by l but would both prefer s to be matched to c, i.e. cPslðsÞ and
s 2 ChcðlðcÞ [ sÞ: A matching l is stable if it is not blocked by any individual
agent or any student-college pair.

College c has substitutable preferences if for any S0 � S; s0 2 S0; s00 2 S � s0;
when s0 2 ChcðS0Þ, s0 2 ChcðS0 � s00Þ as well: The set of stable matchings is
nonempty when every college has substitutable preferences (Kelso and
Crawford 19822).

Consider the following algorithm, to which we refer as the student-
applying deferred acceptance algorithm (SA-DAA):

Step 1: Each student applies to her most preferred college. Each college
rejects all but those in its choice among its applicants.

Step k � 2: Each student who is rejected at step k � 1 applies to her next
most preferred college. Each college considers applicants that it has not
rejected. It rejects all but those in its choice among these students.

The algorithm terminates when no student is rejected. Then every student is
matchedwiththecollegetowhichsheapplieslastandbywhichsheisnotrejected.

When all the colleges have substitutable preferences, this algorithm pro-
duces a stable matching that every student finds at least as desirable as any
other stable matching (Theorem 6.8, Roth and Sotomayor 1990, p.176).

A (direct) mechanism requires agents to reveal their preferences, and
selects a matching based on submitted preferences. A mechanism is dominant
strategy incentive compatible (DSIC) for an agent if revealing her true pref-
erences is a dominant strategy for that agent in the preference revelation game
induced by that mechanism. A stable mechanism is a mechanism that selects a
matching that is stable with respect to the submitted preference profile.

It is well known that no stable mechanism is DSIC for every agent
(Theorem 3, Roth 1982). However, there exist restrictions on preferences that
are sufficient for the existence of a stable mechanism that is DSIC for every
student. To define these restrictions, we introduce additional definitions.

Each Pc induces a complete, transitive and strict preference relation for c
over singletons of students and [. In particular sPcs0[PcPcs00 reads as follows:
College c prefers enrolling s only to enrolling s0 only; c prefers enrolling s0

only to leaving positions unfilled; and c prefers leaving positions unfilled to
enrolling s00 only. We refer to this preference relation as c’s preferences over
individual students.

A college c’s preference relation over groups of students is responsive (to its
preferences over individual students) if, for any S0; S00 � S; s0 2 S0; s00 2 S � S0

or s00 ¼ [, and S00 ¼ ðS0 � s0Þ [ s00; S0PcS00 if and only if s0Pcs00. If c has responsive
preferences, then ChcðS0Þ is the set of at most qc acceptable students that are
ranked highest in S0 according to c’s preferences over individual students.

2Also see Alkan and Gale (2003), Echenique and Oviedo (2004), Hatfield and Milgrom (2005),
and Ostrovsky (2005) for further discussion on substitutability and existence of stable matchings
in more general matching frameworks.
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A responsive preference relation is substitutable. Furthermore, when all
colleges have responsive preferences, the direct mechanism that is coupled
with SA-DAA is DSIC for all students (Theorem 5.16, Roth and Sotomayor
1990). However, this result does not generalize to substitutable preferences
(Milgrom 2003). We obtain the following even more negative result:

Theorem 1. When colleges can have any substitutable preferences, no stable
mechanism is DSIC for every student.

Proof: The proof is via a counterexample. Let S ¼ fs1; s2; s3g, C ¼ fc1; c2g,
qc1 ¼ 2 and qc2 ¼ 1: Consider the following preference profile P :

Ps1 : c1 c2
Ps2 : c2 c1
Ps3 : c2 c1

and
Pc1 : s3 fs1; s2g s1 s2
Pc2 : s1 s2 s3

Accordingly, c1Ps1c2Ps1s1; and [Pc1fs1; s3g:
Both Pc1 and Pc2 are substitutable. There is a unique stable matching for P :

lðc1Þ ¼ s3; lðc2Þ ¼ s1 and lðs2Þ ¼ s2; i.e. s2 remains unmatched.
Now let P 0 ¼ ðP�s2 ; P

0
s2Þ where P 0s2 reverses the ranking of colleges, i.e.

c1P 0s2c2P
0
s2s2: There are two stable matchings for P 0 : l01 ¼ l; l02ðc1Þ ¼ fs1; s2g

and l02ðc2Þ ¼ s3: Note that l01 is the college-optimal stable matching, whereas
l02 is the student-optimal stable matching.

Next, let P 00 ¼ ðP 0�s3 ; P
00
s3Þ where P 00s3 ranks c1 as ‘‘unacceptable’’, i.e.

c2P 00s3s3P
00
s3c1: There is a unique stable matching l00 ¼ l02:

Suppose to the contrary that there is a stable matching mechanism m that
is DSIC for every student: If mðP 0Þ ¼ l01; then when the true preference profile
is P 0; s3 is better off by misrepresenting her preferences as P 00s3 ; since then m
picks the unique stable matching l00 under P 00; i.e. mðP 00Þ ¼ l00; and
l00ðs3Þ ¼ c2P 0s3c1 ¼ l01ðs3Þ; a contradiction. Then mðP 0Þ ¼ l02. In this case,

when the true preference profile is P ; s2 is better off by misrepresenting her
preferences as P 0s2 ; since m picks the unique stable matching under P ; i.e.
mðP Þ ¼ l; and l02ðs2Þ ¼ c1Ps2s2 ¼ lðs2Þ; a contradiction. So no stable

matching mechanism is DSIC for every student.3 j

Note that even if we assume responsive preferences, no stable mechanism
is DSIC for every college (Proposition 2, Roth 1985).

Next, we ask: Is there a non-trivial class of preferences that captures
affirmative action constraints, and at the same time yields a stable mechanism
that is DSIC for all students? We provide a positive answer to this question in
the next section.

2.2. College admissions with affirmative action

In addition to the five items in a college admissions problem, a college
admissions with affirmative action problem consists of

3Under P 0; students prefer l02 to l01: Milgrom (2003) uses P and P 0 to show that SA-DAA is not
DSIC when colleges can admit any substitutable preferences.
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[6] A type space T ¼ fs1; :::; skg
[7] A type function s : S ! T ; sðsÞ is the type of student s
[8] For every college c, a vector of type-specific quotas qT

c ¼ ðqs1
c ; :::; q

sk
c Þ such

that qs
c � qc for every c and every s; and

P
s2T qs

c � qc: We refer to these
quotas also as affirmative action constraints.

We use type-specific quotas to capture colleges’ preferences for affirmative
action. We interpret qs

c as the maximum number of slots that college c would
like to allocate to type-s students. First, let us give some definitions.

A list of students S0 � S respects the capacity constraint at college c if
S0j j � qc; S0 respects affirmative action constraints at c if it respects
type-specific quotas at c; that is s 2 S0 : sðsÞ ¼ sf gj j � qs

c for every s 2 T ; S0

respects constraints at c if it respects the capacity and affirmative action
constraints at c:We impose the following restriction on preferences to capture
affirmative action constraints.

Property AA: (Affirmative Action) For c 2 C; Pc satisfies AA if for every
S0; S00 � S such that S0 respects constraints at c and S00 does not respect
constraints at c, S0PcS00:

Since Ø trivially respects constraints, AA implies that if S0 � S is
acceptable for c 2 C, then S0 respects constraints at c:We discuss AA further
in the last section. Next we impose responsiveness only on acceptable sets of
students.

Property RR: (Restricted Responsiveness) For c 2 C; Pc satisfies RR if for
every S0; S00 � S such that S0Pc[, S00Pc[; and S00 ¼ ðS0 � s0Þ [ s00 for some
s0 2 S0; s00 2 S � s0 or s00 ¼ [; we have S0PcS00 if and only if s0Pcs00:

If a set does not respect the capacity or affirmative action constraints at
c, it is not acceptable for c. Therefore, RR imposes responsiveness only
on those sets that respect the capacity and affirmative action constraints.
RR reduces to Martı́nez et al. (2000)’s qF -responsiveness when the type space
is a singleton. The following example shows that RR does not imply
responsiveness.

Example 1. There are two female students ff1; f2g and two male students
fm1;m2g: A college c has two seats, qc ¼ 2; and it prefers to enroll at most one
student of each gender, i.e. qf

c ¼ 1 and qm
c ¼ 1: Otherwise, its preference

relation over groups of students is responsive to the following ranking:
f1Pcf2Pcm1Pcm2Pc[: Then, ff1;m2gPcff1; f2g but f2Pcm2: So, Pc is not
responsive although it satisfies RR.

However,

Lemma 1. AA and RR imply substitutability.

Proof: Suppose that Pc satisfies AA and RR. Let S0 � S; s0 2 ChcðS0Þ; and
s00 2 S � s0: Note that ChcðS0Þ respects constraints at c; as does ChcðS0Þ � s0:
Also ChcðS0ÞPcðChcðS0Þ � s0Þ by revealed preferences. Therefore s0Pc[ by RR.

Suppose to the contrary that s0 j2 ChcðS0 � s00Þ: Then s0Pc[, AA and
RR imply (i) s 2 ChcðS0 � s00Þ : sðsÞ ¼ sðs0Þf gj j ¼ qsðs0Þ

c ; and (ii) for all
s 2 ChcðS0 � s00Þ such that sðsÞ ¼ sðs0Þ; sPcs0: But ChcðS0 � s00Þ � S0; so that
there exists s 2 ChcðS0 � s00Þ � ChcðS0Þ such that sðsÞ ¼ sðs0Þ: Then we obtain a
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contradiction with RR since s 2 S0; sðsÞ ¼ sðs0Þ; sPcs0; s0 2 ChcðS0Þ;
ðChcðS0Þ � s0Þ [ s respects constraints at c but s j2 ChcðS0Þ: j

Roth (1991) obtains a similar result in a many-to-two matching model,
where students can be one of two types fmale, femaleg and colleges may
specify that they will employ no more than one female student. Then college
preferences satisfying this constraint, but otherwise responsive to a simple
rank-ordering, are substitutable (Proposition 6, Roth 1991). Lemma 1 gen-
eralizes this observation to a many-to-one matching framework when the
number of student types may be greater than two. We can deduce the fol-
lowing result:

Proposition 1. When colleges’ preferences satisfy AA and RR, the set of stable
matchings is nonempty.

Substitutability is sufficient for the existence of a stable matching. So
Proposition 1 follows directly from Lemma 1. Substitutability is also
sufficient for the following result (Theorem 6.8 of Roth and Sotomayor
1990):

Proposition 2. When colleges’ preferences satisfy AA and RR, SA-DAA
produces a stable matching that every student finds at least as desirable as any
other stable matching.

Now we present our first main result:

Theorem 2. When colleges’ preferences satisfy AA and RR, SA-DAA is DSIC
for every student.

Theorem 2 provides a positive result, which should be compared to
Milgrom’s negative result and our even stronger result in Theorem 1. It is
also the first one to extend DSIC for all students beyond the class of
responsive preferences. Furthermore, the DSIC result of Dubins and Freed-
man (1981) and Roth (1982) is a corollary of our theorem on a singleton type
space.

We defer the proof to the appendix. However a short discussion follows
here. Dubins and Friedman (1981) and Roth (1982) obtain DSIC for marriage
problems (one-to-one matching models). When colleges’ preferences are
responsive, this result can be easily extended to the college admissions problem
as follows: Associate with any college admissions problem a marriage problem
in which (i) for every college c; there are qc colleges, c1; :::; cqc ; each with
capacity one and the same preferences as c; (ii) the set of students is the same,
each student prefers cx to ~cy if and only if she prefers c to ~c in the original
problem; she prefers cn to cnþ1; and cx is acceptable for s if and only if c is
acceptable for s in the original problem. Then SA-DAA is DSIC for students
in this marriage problem, which is equivalent to the original problem.

In our problem with type-specific quotas, the possibility of
P

s2T qs
c > qc

precludes such well-defined constructions of associated marriage problems
when there are more than three types. The following example demonstrates
this point:
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Example 2. Consider a college c with two seats. Suppose that c prefers to
enroll at most one student of each of the following types: White, Black, Asian.
We can create at most two smaller colleges, c1 and c2, each with capacity one.

Suppose that c1 is a ‘‘White’’ college, i.e. it enrolls white students only; and c2
is a ‘‘Black’’ college. Then Asian students cannot be enrolled in c1 and c2 in
the associated marriage problem. If c prefers Asian students to other type of
students in the original problem, then the matching produced in the associ-
ated marriage problem will not be stable in the original problem. Therefore,
we have to assign one of c1 and c2 to at least two types. The following cases
are possible.

Case 1: c1 is a ‘‘White’’ college. Then c2 must be a ‘‘Black or Asian’’ college;
it enrolls Black or Asian students. Then, the final allocation will satisfy the
type-specific constraints, since no more than one student of each type can be
enrolled in these colleges. However, stability is not assured, because c may
prefer all Black or Asian students to all White students in the original
problem, yet a white student is assigned to c via c1 in the associated marriage
problem.

Case 2: Each of c1 and c2 is assigned to at least two types. For example, c1 is
a ‘‘White or Asian’’ college, and c2 is a ‘‘Black or Asian’’ college. Then, one
type (in this example Asian) will appear in both c1 and c2. Consequently, since
more than one Asian student may be matched with c (one with c1 and one
with c2), the match may not respect type-specific quotas.

This simple example can be generalized by extending the type space and/or
increasing the capacity and type-specific quotas at c. We provide a direct
proof of our DSIC result in the appendix by extending Roth (1982).

3. Applications

3.1. Entry-level medical labor markets

A doctor in the UK can become eligible for full registration with the General
Medical Council only if that doctor completes 12 months in a preregistration
position, typically six months in a medical position and six months in a
surgical position. In the Edinburgh case, surgeons may specify that they will
employ no more than one female house officer in any six month period (Roth
1991, 2002). When every doctor applies for single positions and every hos-
pital’s preferences satisfy AA for the type set fmale, femaleg, and are
otherwise responsive to a linear ranking of doctors, i.e. satisfy RR, our results
apply directly.4

Roth and Peranson (1999) observe in the American resident matching
market5 that ‘‘the director of a second-year postgraduate residency program
arranges with the director of a prerequisite first-year program that his

4Note that the Edinburgh case is a many-to-two matching problem in which a doctor applies for
two positions.
5For recent theoretical advances, see Ehlers (2004), Klaus and Klijn (2005).
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residents will spend their first year in that prerequisite program. However if
the second-year program then fails to match as many residents as were
anticipated, this leaves vacancies in the first-year program that can be filled by
other applicants.’’ Our model and results directly apply to this problem: Let p
be such a first-year program with total capacity qp: Set the space of student
types as T ¼ ffirst-year, second-yearg: Suppose that the second-year program
anticipates q2 � qp residents to be matched. Divide p into two smaller pro-
grams, p1 and p2 with capacities qp1 ¼ qp � q2 and qp2 ¼ q2: Set the type-
specific capacity constraints at p1 as follows: qfirst�year

p1 ¼ qp1 and

qsecond�year
p1 ¼ 0; so that p1 admits only first-year students. Let p1’s preferences

over first-year students coincide with p’s preferences over first-year students.
For p2; qfirst�year

p2 ¼ qsecond�year
p2 ¼ qp2 : Also, p2’s preferences are obtained by

elevating second-year students in p’s preferences; otherwise p2’s preferences

over kth-year students coincide with p’s preferences over kth-year students,
k ¼ 1; 2.

3.2. Controlled choice in public schools

Abdulkadiroğlu and Sönmez (2003) introduce a new class of problems,
namely controlled choice problems, in the context of public school choice. A
controlled choice problem consists of (1) a finite set of students S ¼ fs1;...; sng;
(2) a finite set of schools C ¼ fc1;...; cmg; (3) school capacities q ¼ ðqc1 ;...; qcmÞ;
(4) for every student s 2 S; a strict preference relation Ps over C [ fsg; (5) for
every school c 2 C; a strict priority ranking Pc of students in S; (6) a type
space T ¼ fs1;...; skg; (7) a type function s : S ! T ; (8) for every school c, a
vector of type-specific quotas qT

c ¼ ðqs1
c ,...,q

sk
c Þ such that qs

c � qc for every c
and every s; and

P
s2T qs

c � qc: We refer to these quotas also as controlled
choice constraints.

Controlled choice attempts to provide choice to students while main-
taining racial and ethnic balance at schools. In some states, choice is
limited by court-ordered desegregation guidelines, whereas such guidelines
are adopted voluntarily in some other schools districts. Controlled choice
constraints capture the restrictions imposed by such desegregation
guidelines.

A controlled choice problem is essentially a college admissions with
affirmative action problem with one distinction: Priorities may not represent
school preferences in a controlled choice problem. For example, they may be
determined by proximity to a school. One of our main contributions in this
paper is a fairness notion that associates a controlled choice problem with a
problem of college admissions with affirmative action.

Definition. A matching l is fair in a controlled choice problem if

i. the list of students at every school respects capacity and controlled choice
constraints under l; and for every s 2 S; lðsÞ is acceptable for s;

ii. there do not exist students s; s0 2 S and a school c 2 C such that cPslðsÞ and
[a] lðcÞ [ s respects capacity and controlled choice constraints at c; or
[b] lðs0Þ ¼ c; ðlðcÞ � s0Þ [ s respects the controlled choice constraints at c;

and s has a higher priority at c than s0, i.e. sPcs0
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We say that in case (a) s exhibits justified envy at c; and in case (b)
s exhibits justified envy for s0 at c:

Fairness or no-envy is a well-studied property in the literature (see for
example Tadenuma and Thomson (1991), also see Young (1995) and
Thomson (forthcoming) for an excellent survey). Here, s’s envy at c is justified
only when either (a) s can be placed at c without violating the capacity and
controlled choice constraints at c or (b) s can be placed at c by removing a
lower priority student s0 at c; where the resulting matching does not violate
controlled choice constraints at c:

If for some c 2 C; lðcÞ violates c’s capacity or controlled choice con-
straints, then l is not fair. Therefore, (i) embodies the property AA. Also, (ii)
is equivalent to saying that for every c 2 C; c’s preferences are responsive over
sets of students that respect its capacity and controlled choice constraints. In
other words, (ii) embodies the property RR. So, we can associate with each
controlled choice problem a college admissions with affirmative action
problem in which (1) student priorities at schools reflect school preferences
over individual students, (2) controlled choice constraints reflect affirmative
action constraints, and (3) school preferences satisfy AA and RR. Then the
following result follows immediately:

Theorem 3. A matching in a controlled choice problem is fair if and only if it is
stable in the associated college admissions with affirmative action problem.

The proof follows from a simple comparison of the definitions of sta-
bility and fairness. When colleges’ preferences are responsive, Balinski and
Sönmez (1999) observe that fairness in the Turkish college admissions,
which is a one-sided matching problem, is equivalent to stability in a
corresponding two-sided matching problem. Their result is a corollary to
Theorem 3 with singleton type space. Furthermore, Theorem 3 yields the
following mechanism for the controlled choice problem: Run SA-DAA in
the associated college admissions with affirmative action problem. Our
previous results imply the following:

Theorem 4: In the class of controlled choice problems, SA-DAA produces a fair
matching that every student finds at least as desirable as any other fair
matching. Furthermore, it is DSIC for all students.

4. Further discussion

We derive our formulation of preferences for affirmative action from certain
applications. However, one may imagine more complex environments. For
example, in a recent work Hatfield and Milgrom (2005) provide a class of
preferences that allow for overlapping affirmative action constraints. In their
formulation, a hospital can fill a minority slot or a female slot (but not both)
by hiring a female minority doctor.

There are at least two potential improvements for our formalization of
preferences, each of which deserves attention and is left for future research.

First, we assume that the type of each student is a one-dimensional var-
iable. However, a college might have preferences for affirmative action along
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various dimensions. For example, a college might prefer a class that is racially
balanced as well as balanced in terms of gender. The following example shows
that multi-dimensional type spaces introduce complementarity among stu-
dents.

Example 3. Let S ¼ fbm; bf ;wm;wf g. A student xy is of race ‘‘x’’ and
gender ‘‘y’’. College c has a capacity of two and prefers to enroll at most one
student of each race and at most one student of each gender. Its preferences
are given by

Pc : fbm;wf g fbf ;wmg bm wf bf wm

Note that ChcðS0 ¼ fbf ;wm;wf gÞ ¼ fbf ;wmg; whereas bf j2 ChcðS0 � wmÞ ¼ wf :
So, c’s preferences are not substitutable. As opposed to Hatfield and Milgrom
(2005), a female minority student here fills both a minority slot and a female
slot.

Since we lose substitutability, the existence of a stable matching in the case
of a multi-dimensional type space does not follow from previous results.
However, substitutability is not a necessary condition. We leave the identi-
fication of conditions that guarantee existence with multi-dimensional type
spaces for future research.

Second, imposing type-specific quotas alone does not guarantee desegre-
gation unless these quotas are chosen appropriately at each school by the
district authority. Consider a school with racial quotas of 75 for majority
students, and 55 for minority students. Enrolling 75 majority students and no
minority students would not violate the fairness notion above, although the
resulting class is fully segregated. We plan to study the consequences of
minimum quotas in future as well.

Appendix

A Proof of Theorem 2

We extend the proof of Roth (1982) to our general model. First we introduce
more notation. A matching l respects constraints if for every c 2 C; lðcÞ
respects constraints at c: For any S0 � S and s 2 T ; let #sðS0Þ ¼ jfs 2 S0 :
sðsÞ ¼ sgj be the number of type-s students in S0: The quota for type s at
college c is met under l if #sðlðcÞÞ ¼ qs

c:
By AA and RR, a matching l is stable if (i) for every s 2 S; c 2 C; lðsÞRss

and lðcÞ ¼ ChcðlðcÞÞ; (ii) there do not exist s; s0 2 S; c 2 C such that lðs0Þ ¼ c;
cPslðsÞ; ðlðcÞ � s0Þ [ s respects constraints at c; and sPcs0: In this case, we say
that ðs; cÞ blocks l:

Under AA and RR, ChcðS0Þ can be found as follows: Order students in S0

according to Pc: Include one acceptable student in ChcðS0Þ at a time in this
order if the resulting set does not exceed the capacity of c and respects type
specific quotas. If the capacity is met at c; no more students are included in
ChcðS0Þ: If the type-specific quota for type s is met at c; no more students of
type-s are included in ChcðS0Þ:

College admissions with affirmative action 545



For P ¼ ðP S ; P CÞ, DASðP Þ denotes the matching produced by SA-DAA for
P :Given P ; let l ¼ DASðP Þ and lkðcÞ be the set of students that are tentatively
matched with c at the end of step k of DASðP Þ:We say that s is rejected by c in
favor of s0at step k of DASðP Þ if (i) either s 2 lk�1ðcÞ or s applies to c at step k;
(ii) s0 2 lkðcÞ and s j2 lkðcÞ; (iii) ðlkðcÞ � s0Þ [ s respects constraints at c and
(iv) sPc[: By the definition of DASðP Þ; we have s0Pcs for any such s0:

Given P ; define the available set of colleges for s as follows:
Aðs; P Þ ¼fc 2 C [ s : 9~l; ~l is stable for P , ~lðsÞ ¼ cg: Let cðs; P Þ denote the
best alternative in Aðs; P Þ with respect to Ps.

Lemma 2. For every s 2 S; DASðP Þ matches s with cðs; P Þ:

Proof: Since s is acceptable for herself for every s 2 S, no s 2 S rejects herself
in DASðPÞ: Suppose that no s 2 S is rejected by any c 2 Aðs; P Þ at steps
1; :::; k � 1 of DASðPÞ: Suppose to the contrary that some s 2 S is rejected by
some c 2 Aðs; PÞ at step k of DASðP Þ:Define S0 ¼fs0 2 lkðcÞ : sðs0Þ ¼ sðsÞ g and
S00 ¼ lkðcÞ � S0 ¼ f s00 2 lkðcÞ : sðs00Þ 6¼ sðsÞ g:Note that s0Pcs for every s0 2 S0:

Since c 2 Aðs; P Þ; there exists a stable matching ~l such that ~lðsÞ ¼ c: Sta-
bility of ~l implies that, for every s0 2 S0; either ~lðs0ÞPs0c or ~lðs0Þ ¼ c: If ~lðs0ÞPs0c;
then s0 is rejected by ~lðs0Þ 2 Aðs0; P Þ before step k in DASðP Þ; a contradiction.
So ~lðs0Þ ¼ c for all s0 2 S0: Therefore, #sðsÞðlkðcÞÞ � #sðsÞ ð~lðcÞÞ:

If #sðsÞðlkðcÞÞ ¼ qsðsÞ
c ; then #sðsÞð~lðcÞÞ ¼ qsðsÞ

c ; so that there exists s0 2 S0

such that lkðs0Þ ¼ c and ~lðs0Þ 6¼ c: Since s0Pcs; stability of ~l implies ~lðs0ÞPs0c:
But then s0 is rejected by ~lðs0Þ 2 Aðs0; P Þ before step k in DASðP Þ; a contra-
diction. So (i) #sðsÞðlkðcÞÞ < qsðsÞ

c : Then (i) implies that (ii) jlkðcÞj ¼ qc;
otherwise s would not be rejected, and (iii) s00Pcs for every s00 2 S00; otherwise,
since the quota limit for type sðsÞ is not met at c; s would not be rejected.

For any s00 6¼ sðsÞ; if ~lðs00Þ ¼ c for every s00 2 S00 such that sðs00Þ ¼ s00; then
#s00 ðlkðcÞÞ � #s00 ð~lðcÞÞ follows immediately. Now, suppose that ~lðs00Þ 6¼ c for
some s00 2 S00: If ~lðs00ÞPs00c; then s00 is rejected by ~lðs00Þ 2 Aðs00; P Þ before step k
in DASðPÞ; a contradiction. So ~lðs00Þ 6¼ c implies cPs00~lðs00Þ: Then stability of ~l
and s00Pcs imply that #sðs00Þð~lðcÞÞ ¼ qsðs00Þ

c : This implies #sðs00ÞðlkðcÞÞ � #sðs00Þ
ð~lðcÞÞ: So, (iv) #s00 ðlkðcÞÞ � #s00 ð~lðcÞÞ for all s00 6¼ sðsÞ:

Then (i), (ii) and (iv) imply j~lðcÞj > jlkðcÞj ¼ qc; a contradiction. j
Let P�i denote the preference relations of all agents except that of agent

i 2 S [ C: Fix some s 2 S: Let l ¼ DASðPs; P�sÞ and l0 ¼ DASðP 0s ; P�sÞ. Let Qs
be such that l0ðsÞQsc for all c 6¼ l0ðsÞ: We refer to Qs as a simple misrepre-
sentation for P 0s . Let m ¼ DASðQs; P�sÞ:

Lemma 3. If Qs is a simple misrepresentation for P 0s , then l0ðsÞ ¼ mðsÞ:

Proof: Let P ¼ ðPs; P�sÞ; P 0 ¼ ðP 0s ; P�sÞ and P 00 ¼ ðQs; P�sÞ. Suppose that l0 is
not stable under P 00: Then we obtain one of the following contradictions with
the stability of l0 under P 0: (i) If there exists ŝ 2 S such that ŝP 00ŝ l0ðŝÞ; then
ŝP 0ŝl

0ðŝÞ; a contradiction; (ii) if there exists ŝ 2 S and c 2 C such that cP 00ŝ l0ðŝÞ
and ŝ 2 Chcðl0ðcÞ [ ŝÞ; then cP 0ŝl

0ðŝÞ and ŝ 2 Chcðl0ðcÞ [ ŝÞ; a contradiction.
So l0 is stable under P 00:

Then (l0ðsÞQsc for all c 6¼ l0ðsÞÞ and (l0 is stable under P 00Þ imply
cðs; P 00Þ ¼ l0ðsÞ: Then we obtain l0ðsÞ ¼ mðsÞ by Lemma 2. j
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In other words, for any misrepresentation P 0s , there is a simple misrepre-
sentation Qs that works as well as P 0s . So, it suffices to check simple misrep-
resentations only. Then,

Lemma 4. If Qs is a simple misrepresentation such that mðsÞRslðsÞ; then for
every s0 2 S; mðs0ÞRs0lðs0Þ.

Proof: Suppose to the contrary that for some s0; lðs0ÞPs0mðs0Þ: Since s0 6¼ s; s0

states the same preferences, so that s0 applies to and is rejected by lðs0Þ at
some step of DASðQs; P�sÞ: Let k be the first step of DASðQs; P�sÞ at which
some student, say s0; is rejected by lðs0Þ:

Define S00 ¼ f s00 2 S : s00 does not apply to lðs0Þ in DASðPs; P�sÞ g: Then
lðs00ÞPs00lðs0Þ for every s00 2 S00: Also, there exists at least one s00 2 S00 such that
s00 applies to lðs0Þ at step k of DASðQs; P�sÞ and s0 is rejected by lðs0Þ in favor
of s00 at step k. But then s00 is rejected by lðs00Þ before step k in DASðP Þ; a
contradiction. j

The next lemma is an addition to the steps of Roth’s argument. This
lemma holds trivially in Roth’s model.

Lemma 5. Let Qs be a simple misrepresentation such that mðsÞRslðsÞ: Then,
mðcÞj j ¼ lðcÞj j for every c 2 C:

Proof: By Lemma 4, if a student does not apply to a college c in
DASðPs; P�sÞ; she does not apply to c in DASðQs; P�sÞ either. That is, every
c 2 C receives at least as many applications in DASðPs; P�sÞ as it does in
DASðQs; P�sÞ: So, mðcÞj j � lðcÞj j for every c 2 C: Again, by Lemma 4, the
number of unmatched students under m is less than or equal to the number of
unmatched students under l: This implies

P

c2C
mðcÞj j �

P

c2C
lðcÞj j. So, for every

c 2 C; mðcÞj j ¼ lðcÞj j. j

Proof of Theorem 2. Given a preference profile P , suppose that s 2 S is not
acceptable for c 2 C: Obtain P 0s from Ps by deleting c from Ps; i.e. by making c
unacceptable for s: Then DASðPs; P�sÞ ¼ DASðP 0s ; P�sÞ; so that we can assume
without loss of generality that a college c is acceptable for a student s only if s
is acceptable for c under P : Consequently, a student that is not acceptable for
a college c does not apply to c in DAS :

We do not need to check unsuccessful misrepresentations. Fix s 2 S: Let
Qs be a simple misrepresentation. Suppose that either mðsÞPslðsÞ or
mðsÞ ¼ lðsÞ: We will show that mðsÞPslðsÞ is not possible.

For any s0, we say that s0 makes a match (with lðs0Þ) at step k of
DASðPs; P�sÞ if s0 applies to lðs0Þ at step k.

Let t be the final step of DASðPs; P�sÞ: Consider a student s0 who makes a
match with c ¼ lðs0Þ at step t: We will show that lðs0Þ ¼ mðs0Þ:

First, note the following: (i) No student is rejected by c at step t: Other-
wise, the rejected student would be matched after step t; so that t would not be
the final step of DASðPs; P�sÞ; a contradiction. (ii) There is always an empty
slot at c before step t: Otherwise, in order to match s0 to c; some other student
would be rejected at step t; a contradiction with (i). By (ii) and a similar logic,
(iii) the quota limit for type�sðs0Þ is not met at any step r < t. Then by (ii) and
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(iii), (iv) no type sðs0Þ student is rejected by c in DASðPs; P�sÞ: Therefore, by (ii)
and (iv), (v) if a student s00 is rejected by c at some step in DASðPs; P�sÞ; then
sðs00Þ 6¼ sðs0Þ and the quota limit for type sðs00Þ is met at c at the time of the
rejection of s00:

Now, suppose to the contrary that c 6¼ mðs0Þ: By Lemma 4, mðs0ÞPs0c so that
s0 does not apply to c in DASðQs; P�sÞ: By Lemma 5, mðcÞj j ¼ lðcÞj j: So there
exists some s00 2 S � s0 such that lðs00Þ 6¼ c and mðs00Þ ¼ c: Then by Lemma 4,
cPs00lðs00Þ: If sðs00Þ ¼ sðs0Þ; then by (iv), s00 would apply to and not be rejected
by c in DASðPs; P�sÞ; a contradiction. So, sðs00Þ 6¼ sðs0Þ: Also, cPs00lðs00Þ and
lðs00Þ 6¼ c imply that s00 is rejected by c at some step r < t of DASðPs; P�sÞ:
Then by (v), s00 is rejected by c in DASðPs; P�sÞ because of the quota limit for
type sðs00Þ: Therefore, in m ¼ DASðQs; P�sÞ; s00 fills in the slot of another ŝ at c
such that sðŝÞ ¼ sðs00Þ 6¼ sðs0Þ; c ¼ lðŝÞ 6¼ mðŝÞ: So, the slot that is not filled by
s0 at c under m remains unfilled, which implies mðcÞj j < lðcÞj j; a contradiction.
So lðs0Þ ¼ mðs0Þ for every s0 who makes a match at step t:

The rest of the proof is by induction: For r < t; suppose that lðs0Þ ¼ mðs0Þ
for any s0 who makes her match at step r þ 1 or at a later step of DASðPs; P�sÞ.
We have just showed that this is true for r ¼ t � 1: We will show that
lðs0Þ ¼ mðs0Þ for any s0 who makes her match at step r as well.

Now, suppose to the contrary that s0 makes her match at step r of
DASðPs; P�sÞ and c ¼ lðs0Þ 6¼ mðs0Þ. By Lemma 4, mðs0ÞPs0c; so that s0 does not
apply to c in DASðQs; P�sÞ: Define S00 ¼ f s00 : mðs00Þ ¼ c 6¼ lðs00Þ g: By Lemma
5, mðcÞj j ¼ lðcÞj j: So S00 6¼ [: Then by Lemma 4, cPs00lðs00Þ for every s00 2 S00:
So there exists ŝ 2 S00 who is rejected by c in favor of s0 at step r of
DASðPs; P�sÞ. Since s0 makes her match with c at step r of DASðPs; P�sÞ, ŝ
makes her match at a later step r0 > r of DASðPs; P�sÞ: Then by the induc-
tion hypothesis, lðŝÞ ¼ mðŝÞ; a contradiction with ŝ 2 S00. Therefore,
lðs0Þ ¼ mðs0Þ:

Then, the induction on r proves that lðs0Þ ¼ mðs0Þ for every s0 2 S, in
particular for s: Thus, s cannot successfully manipulate DAS by misrepre-
senting her preferences. j
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