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A central issue in school choice is the design of a student assignment mechanism.
Education literature provides guidance for the design of such mechanisms but does
not offer specific mechanisms. The flaws in the existing school choice plans result
in appeals by unsatisfied parents. We formulate the school choice problem as a
mechanism design problem and analyze some of the existing school choice plans
including those in Boston, Columbus, Minneapolis, and Seattle. We show that these
existing plans have serious shortcomings, and offer two alternative mechanisms
each of which may provide a practical solution to some critical school choice issues.
(JEL C78, D61, D78, I20)

School choice is one of the widely discussed
topics in education.1 It means giving parents the
opportunity to choose the school their child will
attend. Traditionally, children are assigned to
public schools according to where they live.
Wealthy parents already have school choice,
because they can afford to move to an area with

good schools, or they can enroll their child in a
private school. Parents without such means, un-
til recently, had no choice of school, and had to
send their children to schools assigned to them
by the district, regardless of the school qual-
ity or appropriateness for the children. As a
result of these concerns, intra-district and
inter-district choice programs have become in-
creasingly popular in the past ten years.2 Intra-
district choice allows parents to select schools
throughout the district where they live, and
inter-district choice allows them to send their
children to public schools in areas outside their
resident districts. In 1987, Minnesota became
the first state to oblige all its districts to estab-
lish an inter-district choice plan (Allyson M.
Tucker and William F. Lauber, 1995). Today,
several states offer inter-district and intra-
district choice programs.

Since it is not possible to assign each student
to her top choice school, a central issue in
school choice is the design of a student assign-
ment mechanism.3 While the education litera-
ture stresses the need for rigorous student
assignment mechanisms and provides guidance
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1 Milton Friedman (1955, 1962) initiates the school
choice literature.

2 For empirical investigation of various issues in school
choice see Mark Schneider et al. (2000). Another line of
discussion has been on private school vouchers. See Caro-
line M. Hoxby (1994), Dennis Epple and Richard E. Ro-
mano (1998), Cecilia E. Rouse (1998), Thomas J. Nechyba
(2000), and Raquel Fernández and Richard Rogerson
(2003).

3 Indeed, one of the key obstacles identified by the critics
of school choice concerns student selection to overde-
manded schools (see Donald Hirch, 1994, p. 14).
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for design (see, for example, Michael J. Alves
and Charles V. Willie, 1990; Office of Educa-
tional Research and Improvement, 1992; and
Timothy W. Young and Evans Clinchy, 1992,
Ch. 6), it does not offer specific mechanisms.4

Many of the real-life school choice plans have
protocols and guidelines for the student assign-
ment without explicit procedures. Saul Yanof-
sky (see Office of Educational Research and
Improvement, 1992, p. 19), the former superin-
tendent of the White Plains Public Schools,
states: “You need to have a set of procedures
that are very explicit, with rules.”

The lack of rigorous procedures invites selec-
tive interpretation and it often results in evasive
action by the students and their parents. Con-
sider the following statement by the Supreme
Court of Mississippi which affirms the judge-
ment of a circuit court against a school district
(Supreme Court of Mississippi, 2001)5:

We agree that the denial of Gentry’s
transfer cannot be based on the alleged
“middle-school” transfer policy since
there is no written record outlining its
substance. Such a denial based on this
vague policy would clearly be arbitrary
and capricious.

Along similar lines consider the following
summary of a court case concerning a school
choice plan in Wisconsin (Court of Appeals of
Wisconsin, 2000)6:

McMorrow v. State Superintendent of
Public Instruction

Respondent applied under open enroll-

ment, Wis. Stat. 118.51 (1997–98), to at-
tend high school in a district where he did
not live. His application was denied and
appellant affirmed, concluding that the
denial was supported by substantial evi-
dence based on lack of class space; thus, it
was not arbitrary or unreasonable. The
circuit court reversed. When three other
continuing students were accepted even
though space was not available, reliance
on class size guidelines to deny respon-
dent enrollment was arbitrary. The court
affirmed. There was no substantial evi-
dence to support appellant’s findings of
fact, and appellant erroneously inter-
preted statutory provisions which gave
preference to continuing students only
when spaces were available in the first
place. Under the statute, when there
were more applicants than spaces avail-
able, admission selection was to be on a
random basis. Thus, accepting three stu-
dents in spite of class size guidelines
and denying a fourth that same excep-
tion without any explanation was arbi-
trary and unreasonable.

Outcome: Judgement affirmed. State
Superintendent of Public Instructions
(SSPI) erred when it found that the open
enrollment statute supported preferential
treatment of three continuing students
when no class space was available; and
when based on that finding, SSPI errone-
ously concluded that denying respon-
dent’s application for class space reasons
was not arbitrary or unreasonable.

Other school choice programs, such as those
in Boston, Minneapolis, and Seattle, are accom-
panied by explicit procedures. However, each of
these procedures has serious shortcomings. Un-
der these procedures students with high priori-
ties at specific schools lose their priorities
unless they list these schools as their top
choices. Consequently, students and their par-
ents are forced to play very complicated admis-
sions games, and often, misrepresenting their
true preferences is in their best interest. This is
not only confusing to students and their parents,
but also results in inefficient allocation of
school seats.

In this paper we propose two competing stu-
dent assignment mechanisms, each of which
may be helpful in dealing with these critical
school choice issues. A natural starting point is

4 This is a major problem for school choice programs in
other countries as well. For example, Gulam-Husien Mayet
(1997), the former Chief Welfare Adviser for the Inner
London Education Authority, indicates that the lack of
synchronization and transparency in admissions to London
public schools is a major problem for parents and local
authorities.

5 Pascagoula Municipal Separate School District v. W.
Harvey Barton and Renee Barton, as Parents and Next
Friends of William Gentry Barton, A Minor. Supreme Court
of Mississippi, No. 2000-CC-00035-SCT, decided on Feb-
ruary 1, 2001.

6 Michael E. McMorrow, Petitioner-Respondent, v. State
Superintendent of Public Instructions, John T. Benson, Re-
spondent-Appellant. Court of Appeals of Wisconsin, No.
99-1288, decided on July 25, 2000.
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studying how similar allocation problems are
handled in real life as well as in the mechanism
design literature. A closely related problem is
the allocation of dormitory rooms (or on-
campus housing facilities) to students (Aanund
Hylland and Richard Zeckhauser, 1979).7 The
following mechanism, known as the random
serial dictatorship, is almost exclusively used in
real-life applications of these problems (Ab-
dulkadiroğlu and Sönmez, 1998, 1999): Order
the students with a lottery and assign the first
student her top choice, the next student her top
choice among the remaining slots, and so on.
This mechanism is not only Pareto efficient, but
also strategy-proof (i.e., it cannot be manipu-
lated by misrepresenting preferences), and it
can accommodate any hierarchy of seniorities.
So why not use the same mechanism to allocate
school seats to students? The key difficulty with
this approach is the following: Based on state
and local laws, the priority ordering of a student
can be different at different schools. For exam-
ple:

● students who live in the attendance area of a
school must be given priority for that school
over students who do not live in the school’s
attendance area;

● siblings of students already attending a
school must be given priority; and

● students requiring a bilingual program must
be given priority in schools that offer such
programs.

Therefore a single lottery cannot be used to
allocate school seats to students. It is this
school-specific priority feature of the problem
that complicates the student assignment pro-
cess. A student assignment mechanism should
be flexible enough to give students different
priorities at different schools. This point directs
our attention to another closely related problem,
namely the college admissions problem (David
Gale and Lloyd S. Shapley, 1962).

College admissions problems have been ex-

tensively studied (see Alvin E. Roth and
Marilda A. O. Sotomayor, 1990, for a survey)
and successfully applied in British and Ameri-
can entry-level labor markets (see Roth, 1984,
1991). The central difference between the col-
lege admissions and school choice is that in
college admissions, schools themselves are
agents which have preferences over students,
whereas in school choice, schools are merely
“objects” to be consumed by the students. This
distinction is important because the education
of students is not and probably should not be
organized in a market-like institution. A student
should not be rejected by a school because of
her personality or ability level. Despite this im-
portant difference between the two models,
school preferences and school priorities are sim-
ilar mathematical objects and the college admis-
sions literature can still be very helpful in
designing an appealing student admissions
mechanism.

The central notion in the college admissions
literature is stability: There should be no un-
matched student-school pair (i, s) where stu-
dent i prefers school s to her assignment and
school s prefers student i to one or more of its
admitted students. This mathematical property
is equivalent to the following appealing prop-
erty in the context of school choice, where
schools do not have preferences but instead they
have priorities: There should be no unmatched
student-school pair (i, s) where student i pre-
fers school s to her assignment and she has
higher priority than some other student who is
assigned a seat at school s. Therefore a stable
matching in the context of college admissions
eliminates justified envy in the context of school
choice. Moreover it is well-known that there
exists a stable matching which is preferred to
any stable matching by every student in the
context of college admissions (Gale and Shap-
ley, 1962). Since only the welfare of students
matters in the context of school choice, this
matching Pareto-dominates any other matching
that eliminates justified envy. This series of
observations motivate the following student ad-
missions mechanism to the school choice prob-
lem: Interpret school priorities as preferences
and select the student optimal stable matching
of the induced college admissions problem. We
refer to this mechanism as the Gale-Shapley
student optimal stable mechanism. Since 1998,

7 See also Lin Zhou (1990), Lars-Gunnar Svensson
(1999), Haluk İ. Ergin (2000), Szilvia Pápai (2000), James
Schummer (2000), Anna Bogomolnaia and Hervé Moulin
(2001), Eiichi Miyagawa (2001, 2002), Lars Ehlers (2002),
Ehlers et al. (2002), Andrew McLennan (2002), and Ab-
dulkadiroğlu and Sönmez (forthcoming).
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a version of this mechanism has been used in
the United States hospital-intern market (Roth
and Elliot Peranson, 1997, 1999).

Gale-Shapley student optimal stable mecha-
nism has one additional very appealing feature:
It is strategy-proof. That is, truthful preference
revelation is a dominant strategy for the stu-
dents. In particular, students and their parents
do not need to worry about losing their priorities
as a consequence of reporting their truthful pref-
erences. Gale-Shapley student optimal stable
mechanism relieves students and their parents
of devising complicated admissions strategies.

However, Gale-Shapley student optimal sta-
ble mechanism is not “problem free” in the
context of school choice. While it Pareto-
dominates any other mechanism that eliminates
justified envy, its outcome may still be Pareto-
dominated. That is because there is a potential
conflict between complete elimination of justi-
fied envy and Pareto efficiency (see Example 1
in Section II, subsection A). This observation
motivates the following question: Could there
be a milder interpretation of the priorities which
in turn does not cause a conflict with Pareto
efficiency? The answer to this question is affir-
mative. Suppose that if student i1 has higher
priority than student i2 for school s, that does
not necessarily mean that she is entitled a seat at
school s before student i2. It rather represents
the opportunity to get in school s. If i1 has
higher priority than i2, then she has a better
opportunity to get in school s, other things
being equal. This milder requirement is compat-
ible with Pareto efficiency: Find all students,
each of whom has the highest priority at a
school. Among these individuals there is a
group of students, all of whom can be assigned
their top choices by trading their priorities. As-
sign all such students their top choices and once
they are removed, proceed in a similar way
starting with the students who have the highest
priorities among the remaining students. We
refer to this Pareto-efficient mechanism as the
top trading cycles mechanism. When all schools
have the same priority ordering (say an ordering
obtained from a common lottery draw), this
mechanism reduces to the random serial dicta-
torship which is commonly used in the alloca-
tion of on-campus housing facilities. The top
trading cycles mechanism is a natural extension
of this mechanism, an extension which allows

for different priorities at different schools: The
simple insight of assigning objects to agents one
at a time based on their priority can be simply
extended by assigning objects to top trading
cycles one cycle at a time based on priorities. As
in the case of the Gale-Shapley student optimal
stable mechanism, the top trading cycles mech-
anism is also strategy-proof. Therefore, the
choice between these two competing mecha-
nisms depends on the structure and interpreta-
tion of the priorities. In some applications
policy makers may rank complete elimination
of justified envy before full efficiency, then
Gale-Shapley student optimal stable mechanism
can be used in those cases. Efficiency may be
ranked higher by others, and the top trading
cycles mechanism can be used in such
applications.

One of the major concerns about the imple-
mentation of school choice plans is that they
may result in racial and ethnic segregation at
schools. Because of these concerns, choice
plans in some districts are limited by court-
ordered desegregation guidelines. This version
of school choice is known as controlled choice.
In many school districts (such as in Boston prior
to 1999, as well as in Columbus and Minneap-
olis) controlled choice constraints are imple-
mented by imposing racial quotas at public
schools. An important advantage of both mech-
anisms is that they can be easily modified to
accommodate controlled choice constraints by
imposing racial quotas. Moreover, the modified
mechanisms are still strategy-proof and the
modified top trading cycles mechanism is con-
strained efficient.

The mechanism design approach has recently
been very fruitful in many real-life resource
allocation problems. Important examples in-
clude the design of FCC spectrum auctions [see
John McMillan (1994); Peter Cramton (1995);
R. Preston McAfee and McMillan (1996); Paul
Milgrom (2000)] and the redesign of the Amer-
ican hospital-intern market [see Roth and Per-
anson (1999); Roth (2002)]. This paper, to the
best of our knowledge, is the first paper to
approach the school choice problem from a
mechanism-design perspective. We believe this
approach may be helpful in some critical school
choice issues.

The organization of the rest of the paper is as
follows: In Section I, we introduce the school
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choice model, give examples of real-life school
admissions mechanisms, and illustrate their
shortcomings. In Section II, we introduce the
two proposed mechanisms and analyze their
properties. In Section III, we introduce con-
trolled choice, modify the proposed mecha-
nisms, and analyze them. In Section IV, we
conclude. Finally, we present an example and
include the omitted proofs in the Appendix.

I. School Choice

In a school choice problem there are a num-
ber of students, each of whom should be as-
signed a seat at one of a number of schools.
Each school has a maximum capacity but there
is no shortage of the total seats. Each student
has strict preferences over all schools, and each
school has a strict priority ordering of all stu-
dents. Here, priorities do not represent school
preferences but they are imposed by state or
local laws. For example, in several states a
student who has a sibling already attending a
school is given priority for that school by the
education codes. Similarly, students who live
within walking proximity of a school are given
priority. For each school, the priority between
two students who are identical in each relevant
aspect is usually determined by a lottery.

The school choice problem is closely related
to the well-known college admissions problem
introduced by Gale and Shapley (1962). The
college admissions problem has been exten-
sively studied (see Roth and Sotomayor, 1990,
for a survey) and successfully applied in the
American and British entry-level labor markets
(see Roth, 1984, 1991). The key difference be-
tween the two problems is that in school choice,
schools are objects to be “consumed” by the
students, whereas in college admissions,
schools themselves are agents who have prefer-
ences over students.

The outcome of a school choice problem is an
assignment of schools to students such that each
student is assigned one school and no school is
assigned to more students than its capacity. We
refer each such outcome as a matching. A
matching is Pareto efficient if there is no other
matching which assigns each student a weakly
better school and at least one student a strictly
better school. A student assignment mechanism
is a systematic procedure that selects a matching

for each school choice problem. A student as-
signment mechanism is a direct mechanism if it
requires students to reveal their preferences
over schools and selects a matching based on
these submitted preferences and student priori-
ties. A student assignment mechanism is Pareto
efficient if it always selects a Pareto-efficient
matching. A direct mechanism is strategy-proof
if no student can ever benefit by unilaterally
misrepresenting her preferences.

Since it is not possible to assign each student
her top choice, a central issue in school choice
is the design of a student assignment mecha-
nism (Hirch, 1994). In this paper we propose
two direct student assignment mechanisms with
different strengths. Depending on the priorities
of policy makers, either mechanism can be
practically implemented in real-life applications
of school choice problems. Before we introduce
and analyze these mechanisms, we describe
and analyze some real-life student assignment
mechanisms.

A. Boston Student Assignment Mechanism

One of the common mechanisms is the direct
mechanism that is used by the city of Boston.
The mechanism that we next describe has been
in use in Boston since July, 1999. Prior to that
another version of the same mechanism that
imposed racial quotas was in use (United States
District Court for the District of Massachusetts,
2002).8 Variants of the same mechanism are
currently used in Lee County, Florida,9 Minne-
apolis (Steven Glazerman and Robert H. Meyer,
1994), and Seattle,10 among other school districts.

The Boston student assignment mechanism
works as follows:11

1. Each student submits a preference ranking of
the schools.

8 Boston’s Children First et al. v. Boston School Com-
mittee et al. United States District Court for the District of
Massachusetts, Civil Action Number: 99-11330-RGS, de-
cided on January 25, 2002.

9 See http://www.lee.k12.fl.us/dept/plan/Choice/faqs.
htm#13.

10 See page 12 of http://www.seattleschools.org/area/
eso/elementaryenrollmentguide20022003.pdf.

11 See http://boston.k12.ma.us/teach/assign.asp. See also
the case, Boston’s Children First et al. v. Boston School
Committee cited in footnote 8.
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2. For each school a priority ordering is deter-
mined according to the following hierarchy:

• First priority: sibling and walk zone.
• Second priority: sibling.
• Third priority: walk zone.
• Fourth priority: other students.

Students in the same priority group are or-
dered based on a previously announced
lottery.

3. The final phase is the student assignment
based on preferences and priorities:

Round 1: In Round 1 only the first choices of
the students are considered. For each school,
consider the students who have listed it as
their first choice and assign seats of the
school to these students one at a time fol-
lowing their priority order until either there
are no seats left or there is no student left
who has listed it as her first choice.

Round 2: Consider the remaining students.
In Round 2 only the second choices of these
students are considered. For each school
with still available seats, consider the stu-
dents who have listed it as their second
choice and assign the remaining seats to
these students one at a time following their
priority order until either there are no seats
left or there is no student left who has listed
it as her second choice.

In general at

Round k: Consider the remaining students.
In Round k only the kth choices of these
students are considered. For each school
with still available seats, consider the stu-
dents who have listed it as their kth choice
and assign the remaining seats to these stu-
dents one at a time following their priority
order until either there are no seats left or
there is no student left who has listed it as
her kth choice.

The major difficulty with the Boston student
assignment mechanism is that it is not strategy-
proof. Even if a student has very high priority at
school s, unless she lists it as her top choice she
loses her priority to students who have listed s

as their top choices. Hence the Boston student
assignment mechanism gives very strong incen-
tives to students and their parents to misrepre-
sent their preferences by improving ranks of
those schools for which they have high prior-
ity.12 This point is also observed by Glazerman
and Meyer (1994) for Minneapolis:

It may be optimal for some families to be
strategic in listing their school choices.
For example, if a parent thinks that their
favorite school is oversubscribed and they
have a close second favorite, they may try
to avoid “wasting” their first choice on a
very popular school and instead list their
number two school first.

Another difficulty with the Boston student
assignment mechanism concerns efficiency. If
students submit their true preferences, then the
outcome of the Boston student assignment
mechanism is Pareto efficient. But since many
families are likely to misrepresent their prefer-
ences, its outcome is unlikely to be Pareto
efficient.

B. Columbus Student Assignment Mechanism

The mechanism used by Columbus City
School District is not a direct mechanism and it
works as follows:13

1. Each student may apply to up to three dif-
ferent schools.

2. For some schools, seats are guaranteed for
students who live in the school’s regular
assignment area and the priority among re-
maining applicants is determined by a ran-
dom lottery. For the remaining schools, the
priority among all applicants is determined
by a random lottery.

12 If a mechanism is not strategy-proof, that does not
necessarily mean that it can be easily manipulated. For
example, Roth and Urial G. Rothblum (1999) show that
although the hospital optimal stable mechanism can be
manipulated by the interns, it is unlikely that such an
attempt will be successful and hence truthful preference
revelation is still in the best interest of the interns. In case of
the Boston student assignment mechanism, the situation is
quite different and the parents are warned to be careful how
they use their top choices.

13 See http://www.columbus.k12.oh.us/applications/
FAQ.nsf/(deadline)?openview#19.
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3. For each school, available seats are offered
to students with the highest priority by a
lottery office and the remaining applications
are put on a waiting list. After receiving an
offer a student has three days to accept or
decline an offer. If she accepts an offer, she
is assigned a seat; she then must decline
offers from other schools and she is removed
from the waiting list of other schools to
which she has applied. As soon as seats
become available at schools because of de-
clined offers, the lottery office makes offers
to students on the waiting lists.

The Columbus student assignment mecha-
nism is similar to the entry-level market for
clinical psychologists in the United States (see
Roth and Xiaolin Xing, 1997). The market for
clinical psychologists is more decentralized and
each employer makes its offers via telephone,
whereas a centralized lottery office makes all
offers on behalf of each school for student as-
signment at Columbus.

As in the case of the Boston student assign-
ment mechanism, the optimal application strat-
egy of students is unclear under the Columbus
student assignment mechanism. When a family
gets an offer from its second or third choice, it
is unclear whether the optimal strategy is
declining this offer or accepting it. Similarly,
the optimal list of schools to apply for is
unclear. Hence, in Columbus, families are
forced to play a very difficult game on a very
crucial issue.

Another major difficulty with the Columbus
student assignment mechanism concerns efficien-
cy: Consider two students, each of whom hold an
offer from the other’s first choice. Since they do
not know whether they will receive better offers,
they may as well accept these offers, and this in
turn yields an inefficient matching.

II. Two Competing Mechanisms

We are now ready to propose two alternative
mechanisms to the school choice problem.

A. Gale-Shapley Student Optimal Stable
Mechanism

As we have already emphasized, the school
choice problem is closely related to the college

admissions problem: In school choice, schools
are not agents and they have priorities over
students, whereas in college admissions,
schools are agents and they have preferences
over students. One promising idea is interpret-
ing school priorities as preferences and applying
the following version of the Gale-Shapley de-
ferred acceptance algorithm (Gale and Shapley,
1962):

Step 1: Each student proposes to her first
choice. Each school tentatively assigns its seats
to its proposers one at a time following their
priority order. Any remaining proposers are re-
jected.

In general, at

Step k: Each student who was rejected in the
previous step proposes to her next choice. Each
school considers the students it has been hold-
ing together with its new proposers and tenta-
tively assigns its seats to these students one at a
time following their priority order. Any remain-
ing proposers are rejected.

The algorithm terminates when no student
proposal is rejected and each student is assigned
her final tentative assignment. We refer to the
induced direct mechanism as Gale-Shapley stu-
dent optimal stable mechanism. (See the Ap-
pendix for a detailed example.)

Gale-Shapley student optimal stable mech-
anism is used in Hong Kong to assign college
seats to high school graduates, and since
1998, a version of it is used in the American
hospital-intern market (Roth and Peranson,
1997, 1999).

The central notion in the college admissions
literature is stability, which is equivalent to the
following natural requirement in the context of
school choice: There should be no unmatched
student-school pair (i, s) where student i pre-
fers school s to her assignment and she has
higher priority than some other student who is
assigned a seat at school s. Therefore, a stable
matching in the context of college admissions
eliminates justified envy in the context of school
choice.

As it is suggested by its name, Gale-Shapley
student optimal stable mechanism is stable in
the context of college admissions and therefore
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it eliminates justified envy in the context of
school choice. It also has a number of additional
very plausible properties.

PROPOSITION 1 (Gale and Shapley,
1962): Gale-Shapley student optimal stable
mechanism Pareto-dominates any other mech-
anism that eliminates justified envy.

PROPOSITION 2 (Lester E. Dubins and
David A. Freeman, 1981; Roth, 1982a): Gale-
Shapley student optimal stable mechanism is
strategy-proof.

Nevertheless, Gale-Shapley student optimal
stable mechanism is not “problem free.” The
following example due to Roth (1982a) shows
that there is a potential trade-off between sta-
bility and Pareto efficiency.

Example 1: There are three students i1, i2, i3,
and three schools s1, s2, s3, each of which has
only one seat. The priorities of schools and the
preferences of students are as follows:

s1 : i1 � i3 � i2 i1 : s2 s1 s3

s2 : i2 � i1 � i3 i2 : s1 s2 s3

s3 : i2 � i1 � i3 i3 : s1 s2 s3 .

Let us interpret the school priorities as school
preferences and consider the associated college
admissions problem. In this case there is only
one stable matching:

� i1 i2 i3

s1 s2 s3
� .

But this matching is Pareto-dominated by

� i1 i2 i3

s2 s1 s3
� .

Here agents i1 and i2 have the highest priorities
for schools s1 and s2, respectively. So there is
no way student i1 can be assigned a school that
is worse than school s1 and hence she shall be
assigned either s2 or s1. Similarly there is no
way student i2 can be assigned a school that is
worse than school s2 and hence she shall be
assigned either s1 or s2. Thus students i1 and i2
should share schools s1 and s2 among them-
selves. Stability forces them to share these

schools in a Pareto-inefficient way: This is be-
cause if students i1 and i2 are assigned schools
s2 and s1 respectively, then we have a situation
where student i3 prefers school s1 to her assign-
ment s3 and she has a higher priority for school
s2 than student i2 does.

As Example 1 shows, complete elimination
of justified envy may conflict with Pareto effi-
ciency.14 If policy makers rank complete elim-
ination of justified envy above Pareto
efficiency, then Gale-Shapley student optimal
stable mechanism is a very well-behaved
mechanism.15

B. Top Trading Cycles Mechanism

The stability notion strictly eliminates all jus-
tified envy. Next we consider a milder interpre-
tation of the priorities, which in turn does not
cause a conflict with Pareto efficiency. Suppose
that if student i1 has higher priority than student
i2 for school s, that does not necessarily mean
that she is entitled a seat at school s before
student i2. It rather represents the opportunity to
get into school s. If i1 has higher priority than
i2, then she has a better opportunity to get into
school s, other things being equal.

Next, we introduce a competing mechanism
which is Pareto efficient but which does not
completely eliminate justified envy. Loosely
speaking, the intuition for this mechanism is
that it starts with students who have the highest
priorities, and allows them to trade the schools
for which they have the highest priorities in case
a Pareto improvement is possible. Once these
students are removed, it proceeds in a similar

14 In many school districts, strict priorities are obtained
with the help of a single tie-breaking lottery in addition to
fundamental policy considerations. In others, strict priorities
are obtained with the help of several tie-breaking lotteries,
typically one for each school. Using a single tie-breaking
lottery might be a better idea in school districts that adopt
Gale-Shapley student optimal stable mechanism, since this
practice eliminates part of the inefficiency: In this case, any
inefficiency will be necessarily caused by a fundamental
policy consideration and not by an unlucky lottery draw. In
other words, the tie-breaking will not result in additional
efficiency loss if it is carried out through a single lottery
(while that is likely to happen if the tie-breaking is inde-
pendently carried out across different schools).

15 Recently, Ergin (2002) characterizes the conditions
under which there is no conflict between complete elimina-
tion of justified envy and Pareto efficiency.
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way starting with the students who have the
highest priorities among those who remain. The
top trading cycles mechanism is a direct mech-
anism and for any priorities and reported pref-
erences it finds a matching via the following the
top trading cycles algorithm.16

Step 1: Assign a counter for each school which
keeps track of how many seats are still available
at the school. Initially set the counters equal to
the capacities of the schools. Each student
points to her favorite school under her an-
nounced preferences. Each school points to the
student who has the highest priority for the
school. Since the number of students and
schools are finite, there is at least one cycle. (A
cycle is an ordered list of distinct schools and
distinct students (s1, i1, s2, ... , sk, ik) where s1
points to i1, i1 points to s2, ... , sk points to ik,
ik points to s1.) Moreover, each school can be
part of at most one cycle. Similarly, each stu-
dent can be part of at most one cycle. Every
student in a cycle is assigned a seat at the school
she points to and is removed. The counter of
each school in a cycle is reduced by one and if
it reduces to zero, the school is also removed.
Counters of all other schools stay put.

In general, at

Step k: Each remaining student points to her
favorite school among the remaining schools
and each remaining school points to the student
with highest priority among the remaining stu-
dents. There is at least one cycle. Every student
in a cycle is assigned a seat at the school that
she points to and is removed. The counter of
each school in a cycle is reduced by one and if
it reduces to zero the school is also removed.
Counters of all other schools stay put.

The algorithm terminates when all students
are assigned a seat. Note that there can be no
more steps than the cardinality of the set of
students. (See the Appendix for a detailed
example.)

The top trading cycles algorithm simply

trades priorities of students among themselves
starting with the students with highest priorities.
In the very special case where all schools have
the same priority ordering (for example, when
all schools use the same ordering from a single
lottery draw) this mechanism reduces to the
serial dictatorship induced by this priority or-
dering. That is, the first student is assigned her
top choice, the next student is assigned her top
choice among the remaining seats, and so on.
Therefore, the top trading cycles mechanism is
a generalization of this mechanism, extended in
a way that allows for different priorities at dif-
ferent schools.

A variant of the top trading cycles mecha-
nism is proposed by Abdulkadiroğlu and Sön-
mez (1999) in a model of house allocation with
existing tenants. In that model, there are exist-
ing tenants who have squatting rights over their
current houses, and there are newcomers and
vacant houses. The version proposed by Ab-
dulkadiroğlu and Sönmez (1999) is a special
case of the mechanism presented here: In that
version, there is a fixed priority ordering for all
houses but this ordering is slightly modified for
each occupied house by inserting its current
occupant at the top.

In a closely related paper, Pápai (2000) inde-
pendently introduces the hierarchical exchange
rules, which is a wider class of mechanisms.
She characterizes the members of this class to
be the only mechanisms that are Pareto effi-
cient, group strategy-proof, (i.e., immune to
preference manipulation by a group of agents)
and reallocation proof (i.e., immune to manip-
ulation by misrepresenting the preferences and
swapping the objects by a pair of agents).

The top trading cycles mechanism has a num-
ber of very plausible properties. First of all,
unlike the Gale-Shapley student optimal stable
mechanism, it is Pareto efficient.

PROPOSITION 3: The top trading cycles
mechanism is Pareto efficient.

Another key desirable feature of the top trad-
ing cycles mechanism is that, as in the case of
Gale-Shapley student optimal mechanism, it is
strategy-proof. Therefore truthful preference
revelation is a dominant strategy for all stu-
dents. In particular, unlike the Boston student
assignment mechanism, students do not need to

16 This algorithm is inspired by Gale’s top trading cycles
algorithm which is used to find the unique core allocation
(Roth and Andrew Postlewaite, 1977) in the context of
housing markets (Shapley and Herbert Scarf, 1974).
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hesitate on reporting their truthful preferences
in fear of losing their priorities. Therefore both
our proposed mechanisms release an important
burden of finding the optimal application strat-
egy over the shoulders of students and their
parents.

PROPOSITION 4: The top trading cycles
mechanism is strategy-proof.

The intuition for the strategy-proofness of the
top trading cycles mechanism is very simple.
Suppose that a student leaves the algorithm at
Step k when she reports her true preferences.
Since she points to the best available seat at
each step of the algorithm, all the seats that she
prefers leave the algorithm before Step k and by
misrepresenting her preferences she cannot alter
the cycles that have formed at any step before
Step k. So these better seats will leave the
algorithm before she does whether she reports
her true preferences or fake preferences. Thus
she can only hurt herself by a manipulation.
Strategy-proofness of the core mechanism for
housing markets (Roth, 1982b), the top trading
cycles mechanism for house allocation with ex-
isting tenants (Abdulkadiroğlu and Sönmez,
1999), and the hierarchical exchange functions
(Pápai, 2000) are all based on the same critical
observation.

C. Which Mechanism Shall Be Chosen?

As we have already indicated, both mecha-
nisms are strategy-proof, so the choice between
them depends on the structure and interpretation
of the priorities. In some applications, policy
makers may rank complete elimination of jus-
tified envy before full efficiency, and Gale-
Shapley student optimal stable mechanism can
be used in those cases. University admissions in
Turkey is one such application (Michel Balinski
and Sönmez, 1999). In Turkey, priorities for
university departments are obtained via a cen-
tralized exam and complete elimination of jus-
tified envy is imposed by law. Depending on the
application, Gale-Shapley student optimal sta-
ble mechanism may have additional advantages.
For example, consider a city which implements
separate intra-district choice programs with an
eventual target of eliminating the borders and

switching to an inter-district choice program.
Furthermore, suppose that cross-district priori-
ties will be lower than within-district priorities
in the eventual program. In such applications,
transition to an inter-district program is likely to
move smoother under the Gale-Shapley student
optimal stable mechanism: The outcome pro-
duced by the Gale-Shapley student optimal sta-
ble mechanism under the inter-district program
Pareto-dominates the outcome produced by sep-
arate intra-district choice programs (each of
which uses the Gale-Shapley student optimal
stable mechanism). That is because the outcome
produced by separate intra-district choice pro-
grams is still stable under the inter-district
choice program, provided that cross-district pri-
orities are lower than within-district priorities.
Hence, no student can possibly suffer from a
transition to the inter-district choice program
under the Gale-Shapley student optimal stable
mechanism. It is easy to construct an example
where the transition to an inter-district choice
program hurts some students under the top trad-
ing cycles mechanism.17

In other applications, the top trading cycles
mechanism may be more appealing. School
choice in Columbus is one such application.
Recall the school priorities in Columbus: For
some schools, students in the school’s regular
assignment area have high priority and they are
all guaranteed a seat and the priority among the
remaining low-priority students is determined
by a random lottery. For the remaining schools,
all students are in the same priority group and
the priority between them is determined by a
random lottery. Under the top trading cycles
mechanism, students who have high priorities
for their local schools are all guaranteed seats
that are at least as good, provided that they
truthfully report their preferences. Any instabil-
ity produced by the top trading cycles mecha-
nism is necessarily due to the randomly
obtained priorities and in that case a milder
interpretation of the priorities may be more ap-
pealing. In other cases the choice between the
two mechanisms may be less clear and it de-
pends on the policy priorities of the policy
makers.

17 We are grateful to an anonymous referee who brought
this observation to our attention.
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III. Controlled Choice

Controlled choice in the United States at-
tempts to provide choice to parents while main-
taining the racial and ethnic balance at schools.
In some states, choice is limited by court-
ordered desegregation guidelines. In Missouri,
for example, St. Louis and Kansas City must
observe strict racial guidelines for the place-
ment of students in city schools. There are sim-
ilar constraints in other countries as well. For
example, in England, City Technology Colleges
are required to admit a group of students from
across the ability range and their student body
should be representative of the community in
the catchment area (Hirch, 1994, p. 120).

In many school districts, controlled choice
constraints are implemented by imposing racial
quotas at public schools. For example, prior to
July 1999, a version of the Boston student as-
signment mechanism which uses racial quotas
was in use in the city of Boston. Similarly, in
Columbus and Minneapolis, controlled choice
constraints are implemented by imposing racial
quotas. These quotas may be perfectly rigid or
they may be flexible. For example, in Minneap-
olis, the district is allowed to go above or below
the district-wide average enrollment rates by up
to 15 percent points in determining the racial
quotas. So consider a school district in Minne-
apolis, where the average enrollment rates of
majority students versus minority students are
60 percent and 40 percent, respectively, and
consider a school with 100 seats. Racial quotas
for this school are 75 for majority students, and
55 for minority students.

Both Gale-Shapley student optimal stable
mechanism and the top trading cycles mecha-
nism can be easily modified to accommodate
controlled choice constraints by imposing type-
specific quotas.

A. Gale-Shapley Student Optimal Stable
Mechanism with Type-Specific Quotas

Suppose that there are different types of stu-
dents and each student belongs to one type. If
the controlled choice constraints are perfectly
rigid then there is no need to modify the Gale-
Shapley student optimal stable mechanism. For
each type of students, one can separately imple-
ment the mechanism in order to allocate the

seats that are reserved exclusively for that type.
When the controlled choice constraints are flex-
ible, consider the following modification of the
Gale-Shapley student optimal stable mechanism
that is studied by Abdulkadiroğlu (2002) in the
context of college admissions with affirmative
action:18

Step 1: Each student proposes to her first
choice. Each school tentatively assigns its seats
to its proposers one at a time following their
priority order. If the quota of a type fills, the
remaining proposers of that type are rejected
and the tentative assignment proceeds with the
students of the other types. Any remaining pro-
posers are rejected.

In general, at

Step k: Each student who was rejected in the
previous step proposes to her next choice. Each
school considers the students it has been hold-
ing together with its new proposers and tenta-
tively assigns its seats to these students one at a
time following their priority order. If the quota
of a type fills, the remaining proposers of that
type are rejected and the tentative assignment
proceeds with the students of the other types.
Any remaining proposers are rejected.

This modified mechanism satisfies the fol-
lowing version of the fairness requirement: If
there is an unmatched student-school pair (i, s)
where student i prefers school s to her assign-
ment and she has higher priority than some
other student j who is assigned a seat at school
s, then

1. students i and j are of different types, and
2. the quota for the type of student i is full at

school s.

18 Abdulkadiroğlu (2002) shows that flexible con-
trolled choice constraints induce substitutable prefer-
ences (Alexander S. Kelso, Jr. and Vincent P. Crawford,
1982) in the context of college admissions. That is be-
cause the role played by the flexible controlled choice
constraints in the present context is analogous to the role
of discriminatory quotas (see Roth and Sotomayor, 1990,
Proposition 5.22) in the context of college admissions
problems. Gale-Shapley student optimal stable mecha-
nism for the general case of substitutable preferences is
due to Roth (1991).
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As an implication, the modified mechanism
eliminates all justified envy between students
of the same type. The above fairness require-
ment is equivalent to stability in the context
of college admissions with affirmative action.
Moreover, truthful preference revelation is a
dominant strategy for the students under the
modified Gale-Shapley student optimal stable
mechanism as well (Abdulkadiroğlu, 2002).

PROPOSITION 5: Gale-Shapley student opti-
mal mechanism with type-specific quotas is
strategy-proof.

In many real-life applications of controlled
choice, there are only two types of students (for
example, majority students and minority stu-
dents). In such applications, the modified mech-
anism is essentially a direct application of the
original mechanism with the following twist:
Consider a school s with q seats and which has
quotas of q1, q2 for type 1, type 2 students,
respectively. Clearly q � q1, q � q2, and q1 �
q2 � q. In school s,

● q � q2 seats are reserved exclusively for type
1 students,

● q � q1 seats are reserved exclusively for type
2 students,

● and the remaining q1 � q2 � q seats are
reserved for either type of students.

So it is as if there are three different schools
s1, s2, s3 where

● school s1 has q � q2 seats and student pri-
orities are obtained from the original priori-
ties by removing type 2 students and making
them unacceptable at school s1,

● school s2 has q � q1 seats and student pri-
orities are obtained from the original priori-
ties by removing type 1 students and making
them unacceptable at school s2, and

● school s3 has q1 � q2 � q seats and student
priorities are the same as the original priori-
ties.

Whenever there are two types of students, our
modified mechanism

● divides each school into three schools as ex-
plained above,

● extends each student’s preferences as follows:
— for any school s, s1 is preferred to s2,

which is preferred to s3,
— for any pair of schools s, t, if s is

preferred to t then each of s1, s2, s3 is
preferred to each of t1, t2, t3,

and

● selects the student optimal stable matching of
the induced college admissions problem.

B. Top Trading Cycles Mechanism
with Type-Specific Quotas

As in the case of Gale-Shapley student opti-
mal stable mechanism, there is no need to mod-
ify the top trading cycles mechanism when
controlled choice constraints are perfectly rigid.
One can implement the top trading cycles mech-
anism separately for each type of students.
When the controlled choice constraints are flex-
ible, the top trading cycles mechanism can be
modified as follows: For each school, in addi-
tion to the original counter which keeps track of
how many seats are available, include a type-
specific counter for each type of students.

Step 1: For each school, set the counter equal to
the capacity of the school and set each type-
specific counter equal to the quota of the asso-
ciated type of students. Each student points to
her favorite school among those which have
room for her type (i.e., with a positive counter
reading for her type). Each school points to the
student with highest priority for that school.
There is at least one cycle. Every student in a
cycle is assigned a seat at the school she points
to and is removed. The counter of each school
in a cycle is reduced by one. Depending on the
student it is assigned to, the associated type-
specific counter is reduced by one as well. All
other counters stay put. In case the counter of a
school (not the type-specific ones) reduces to
zero, the school is removed as well. If there is at
least one remaining student, then we proceed
with the next step.

In general, at

Step k: Each remaining student points to her
favorite remaining school among those which
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have room for her type, and each remaining
school points to the student with the highest
priority among remaining students. There is at
least one cycle. Every student in a cycle is
assigned a seat at the school that she points to
and is removed. The counter of each school in a
cycle is reduced by one and depending on the
student it is assigned to, the associated type-
specific counter is reduced by one as well. All
other counters stay put. In case the counter of a
school reduces to zero, the school is removed. If
there is at least one remaining student, then we
proceed with the next step.

There can be efficiency losses in both mech-
anisms due to the controlled choice constraints.
A matching is constrained efficient if there is no
other matching that satisfies the controlled
choice constraints, and which assigns all stu-
dents a weakly better school and at least one
student a strictly better school. The outcome of
the modified top trading cycles mechanism is
constrained efficient.

PROPOSITION 6: The top trading cycles
mechanism with type-specific quotas is con-
strained efficient.

Moreover, truthful preference revelation is
still a dominant strategy under the modified
mechanism.

PROPOSITION 7: The top trading cycles
mechanism with type-specific quotas is
strategy-proof.

IV. Conclusion

The Office of Educational Research and Im-
provement (1992, pp. 19–20) emphasizes the
following seven factors on which student as-
signment decisions should be based:

1. Racial Balance: Student assignment policies
should respect the racial and ethnic propor-
tions of the district.

2. Instructional Capacity: Student assignment
policies must take into consideration the
danger of creating an imbalance in the in-
structional capacity of a school.

3. Replication Efforts: Popular programs
should be replicated and undersubscribed

schools be closed and then reopened as dis-
tinctive schools created by collective efforts.

4. Space Availability: Schools must outline
classroom use needs long before the school
year begins.

5. Neighborhood School Priority: A percentage
of slots in a school should be reserved for
neighborhood families, as long as racial bal-
ance is maintained, to allow continuity for
the students and a connection for the school
to the neighborhood.

6. Preference for Siblings: As a convenience
for parents and to promote the sharing of
school experience between brothers and sis-
ters, preference for sibling requests should
be given some priority.

7. Gender Balance Considerations for Certain
Schools.

Among these, items 1, 2, 5, 6, and 7 concern
the design of a student assignment mechanism.
Both mechanisms that we propose respect each
of these factors: Racial balance and gender bal-
ance can be achieved through type-specific quo-
tas, instructional capacity overload is achieved
through regular capacities, neighborhood school
priority and preference for siblings can be
achieved through school-specific priorities.

In addition to these factors, Alves and Willie
(1990), engineers of the Boston Controlled
Choice Plan, emphasize the following objec-
tives as essential elements of an effective con-
trolled choice plan:

1. Eliminating, to the extent practical, all indi-
vidual school attendance boundaries and/or
geocodes.

2. Allowing parents and students to make mul-
tiple school selections but with no guarantee
that they will obtain their first-choice schools
or programs of choice.

3. Ensuring complete honesty and integrity in
the disposition of all final assignment deci-
sions.

Both mechanisms conform with these objec-
tives as well: Students rank all schools (of course
without any guarantee of getting their top choices)
and once the policies concerning school priorities
are announced and these priorities determined, the
final outcome is deterministic and does not
leave any room for manipulation.
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School choice is becoming increasingly com-
mon in the United States. Cities having adopted
school choice plans include Boston, Cambridge,
Champaign, Columbus, Hartford, Little Rock,
Minneapolis, Rockville, Seattle, White Plains,
and parts of New York. Recent laws in several
states require each school district to establish an
intra-district school choice plan. Similarly, re-
cent laws in Florida require each school district
to design a school choice plan, even if they do
not implement it. An important difficulty in
designing such plans is the choice of an appeal-
ing student assignment mechanism. Many of the
school choice plans that we find have protocols
and guidelines for the assignment of students
without explicit procedures. This gap offers op-
portunities to manipulate these controlled
choice programs and results in appeals by un-
satisfied parents. Jeffrey R. Henig (1994, p.
212) states

The first step that districts must take to
ensure fair implementation of choice
within and among schools is to make the
criteria for accepting and rejecting trans-
fer requests clear and public. Vaguely
worded references to “maintaining racial
balance,” “avoiding overcrowding,” and
meeting children’s “individualized needs”
invite selective interpretation unless they
are accompanied by practical definitions.

Other school choice programs, such as those
in Boston, Columbus, Minneapolis, and Seattle
are accompanied by deterministic student as-
signment mechanisms but these mechanisms
are all vulnerable to preference manipulation.
As a result, students and their families face a
difficult task of finding optimal admissions
strategies. Adopting either the Gale-Shapley
student optimal stable mechanism or the top
trading cycles mechanism may provide a prac-
tical solution to some of these critical school
choice issues.

APPENDIX

Example 2: This example illustrates the dy-
namics of the Gale-Shapley student optimal sta-
ble mechanism and the top trading cycles
mechanism. There are eight students i1, ... , i8
and four schools s1, ... , s4. Schools s1, s2
have two seats each and schools s3, s4 have

three seats each. The priorities of the schools
and the preferences of the students are as
follows:

s1 : i1 � i2 � i3 � i4 � i5 � i6 � i7 � i8

s2 : i3 � i5 � i4 � i8 � i7 � i2 � i1 � i6

s3 : i5 � i3 � i1 � i7 � i2 � i8 � i6 � i4

s4 : i6 � i8 � i7 � i4 � i2 � i3 � i5 � i1

i1 i2 i3 i4 i5 i6 i7 i8

s2 s1 s3 s3 s1 s4 s1 s1

s1 s2 s2 s4 s3 s1 s2 s2

s3 s3 s1 s1 s4 s2 s3 s4

s4 s4 s4 s2 s2 s3 s4 s3

GALE-SHAPLEY STUDENT OPTIMAL
STABLE MECHANISM:

Step 1: Students i2, i5, i7, i8 propose to school
s1, student i1 proposes to school s2, students i3,
i4 propose to school s3 and student i6 proposes
to school s4.

School s1 tentatively assigns its seats to stu-
dents i2, i5, and rejects students i7, i8. Since
school s1 is the only school with excess propos-
als, all other students are tentatively assigned
seats at schools that they propose.

Step 2: Having been rejected at Step 1, each of
students i7, i8 proposes to school s2 which is
their next choice. School s2 considers student i1
whom it has been holding together with its new
proposers i7, i8. School s2 tentatively assigns
its seats to students i8, i7, and rejects student i1.

Step 3: Having been rejected at Step 2, student
i1 proposes to school s1 which is her next
choice. School s1 considers students i2, i5
whom it has been holding together with its new
proposer i1. School s1 tentatively assigns its
seats to students i1, i2, and rejects student i5.

Step 4: Having been rejected at Step 3, stu-
dent i5 proposes to school s3 which is her next
choice. School s3 considers students i3, i4
whom it has been holding together with its
new proposer i5. Since school s3 has three
seats, it tentatively assigns its seats to these
students.
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Since no student proposal is rejected at Step
4, the algorithm terminates. Each student is
assigned her final tentative assignment:

� i1 i2 i3 i4 i5 i6 i7 i8

s1 s1 s3 s3 s3 s4 s2 s2
� .

TOP TRADING CYCLES MECHANISM:
Let cs1

, cs2
, cs3

, and cs4
indicate the counters

of the schools.

Step 1: [see Figure A1].

There are two cycles in Step 1: (s1, i1, s2, i3,
s3, i5) and (s4, i6). Therefore students i1, i3, i5,
i6 are assigned one slot at schools s2, s3, s1, s4,
respectively, and removed. Since every school
participates in a cycle, all counters are reduced
by one for the next step.

Step 2: [see Figure A2].

There is only one cycle in Step 2: (s1, i2).
Therefore student i2 is assigned one slot at
school s1 and removed. The counter of school
s1 is reduced by one to zero and it is removed.
All other counters stay put.

Step 3: [see Figure A3].

There is only one cycle in Step 3: (s3, i7, s2,
i4). Therefore students i7, i4 are assigned one
slot at schools s2, s3, respectively, and removed.

FIGURE A3. TOP TRADING CYCLES ALGORITHM: STEP 3

FIGURE A1. TOP TRADING CYCLES ALGORITHM: STEP 1 FIGURE A2. TOP TRADING CYCLES ALGORITHM: STEP 2
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The counters of schools s2 and s3 are reduced by
one. Since there are no slots left at school s2 it is
removed. Counters of schools s3 and s4 stay put.

Step 4: [see Figure A4].

There is only one cycle in Step 4: (s4, i8).
Therefore student i8 is assigned one slot at
school s4 and removed. There are no remaining
students so the algorithm terminates. Altogether
the matching it induces is

� i1 i2 i3 i4 i5 i6 i7 i8

s2 s1 s3 s3 s1 s4 s2 s4
� .

PROOF OF PROPOSITION 3:
Consider the top trading cycles algorithm.

Any student who leaves at Step 1 is assigned her
top choice and cannot be made better off. Any
student who leaves at Step 2 is assigned her top
choice among those seats remaining at Step 2
and since preferences are strict she cannot be
made better off without hurting someone who
left at Step 1. Proceeding in a similar way, no
student can be made better off without hurting
someone who left at an earlier step. Therefore
the top trading cycles mechanism is Pareto
efficient.

The proof of Proposition 4 is similar to the
proof of a parallel result in Abdulkadiroğlu and
Sönmez (1999).19 The following lemma is the
key to the proof.

LEMMA: Fix the announced preferences of all
students except i at Q�i � (Qj)j�I �{i}. Suppose
that in the algorithm student i is removed at
Step T under Qi and at Step T* under Q*i.
Suppose T � T*. Then the remaining students
and schools at the beginning of Step T are the
same whether student i announces Qi or Q*i.

PROOF OF LEMMA:
Since student i fails to participate in a cycle

prior to Step T in either case, the same cycles
form and therefore the same students and
schools are removed before Step T.

PROOF OF PROPOSITION 4:
Consider a student i with true preferences Pi.

Fix an announced preference profile Q�i �
(Qj)j�I �{i} for every student except i. We want
to show that revealing her true preferences Pi is
at least as good as announcing any other pref-
erences Qi. Let T be the step at which student i
leaves under Qi , (s, i1, s1, ... , sk, i) be the
cycle she joins, and thus school s be her assign-
ment. Let T* be the step at which she leaves
under her true preferences Pi. We want to show
that her assignment under Pi is at least as good
as school s. We have two cases to consider:

Case 1: T* � T.

Suppose student i announces her true prefer-
ences Pi. Consider Step T. By the Lemma, the
same students and schools remain in the market
at the beginning of this step whether student i
announces Qi or Pi. Therefore at Step T, school
s points to student i1, student i1 points to school
s1, ... , school sk points to student i. Moreover,
they keep doing so as long as student i remains.
Since student i truthfully points to her best
remaining choice at each step, she either re-
ceives an assignment that is at least as good as
school s or eventually joins the cycle (s, i1,
s1, ... , sk, i) and is assigned a slot at school s.

Step 2: T* � T.

By the Lemma the same schools remain in
the algorithm at the beginning of Step T*
whether student i announces Qi or Pi. More-
over, student i is assigned a seat at her best
choice school remaining at Step T* under Pi.
Therefore, in this case too her assignment under

19 Pápai (2000) independently proves a similar result for
a wider class of mechanisms.

FIGURE A4. TOP TRADING CYCLES ALGORITHM: STEP 4
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the true preferences Pi is at least as good as
school s.

PROOF OF PROPOSITION 5:
Immediately follows from Abdulkadiroğlu

(2002) and a self-contained proof is available
upon request. The original strategy-proofness
result by Dubins and Freeman (1981) and Roth
(1982a) directly carries over to the case with
two types of students since the modified mech-
anism is a direct application of the original
mechanism as explained in Section III, subsec-
tion A.

PROOF OF PROPOSITION 6:
Consider the modified top trading cycles al-

gorithm. Any student who leaves at Step 1 is
assigned her top choice and cannot be made
better off. Any student who leaves at Step 2 is
assigned her top choice among those schools
which has room for her type at Step 2 and since
preferences are strict she cannot be made better
off without hurting someone who left at Step 1.
Proceeding in a similar way, no student can be
made better off without hurting someone who
left at an earlier step. Therefore the top trading
cycles mechanism with type-specific quotas is
constrained efficient.

PROOF OF PROPOSITION 7:
The Lemma preceding the proof of Proposi-

tion 4 as well as its proof are valid for the
modified mechanism. Moreover the basic ele-
ments of the proof of Proposition 4 carry over as
well.

Consider a student i with true preferences Pi.
Fix an announced preference profile Q�i �
(Qj)j�I�{i} for every student except i. We want
to show that revealing her true preferences Pi is
at least as good as announcing any other pref-
erences Qi. Let T be the step at which student i
leaves under Qi , (s, i1, s1, ... , sk, i) be the
cycle she joins, and thus school s be her assign-
ment. Let T* be the step at which she leaves
under her true preferences Pi. We want to show
that her assignment under Pi is at least as good
as school s. We have two cases to consider:

Case 1: T* � T.

Suppose student i announces her true prefer-

ences Pi. Consider Step T. By the Lemma, the
same students and schools remain in the market
at the beginning of this step whether student i
announces Qi or Pi. Therefore at Step T, school
s points to student i1, student i1 points to school
s1, ... , school sk points to student i. Moreover,
they keep doing so as long as student i remains.
But at each step student i truthfully points to her
best choice among schools with an available
seat for her type. Therefore she either receives
an assignment that is at least as good as school
s or eventually joins the cycle (s, i1, s1, ... , sk,
i) and is assigned a slot at school s.

Case 2: T* � T.

By the Lemma the same schools remain in
the algorithm at the beginning of Step T*
whether student i announces Qi or Pi. More-
over, student i is assigned a seat at her best
choice among schools with an available seat for
her type remaining at Step T* under Pi. There-
fore, in this case too her assignment under the
true preferences Pi is at least as good as school s.
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