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1 The Neoclassical Growth Model

1.1 An In�nite Horizon Social Planning Problem

Consider a model in which there is a large �xed number, H, of identical households. The total

population is Lt, so each household has Lt=H members. Each household has the following

utility function

U =
1X
t=0

�tu(ct)
Lt
H
; (1)

where 0 < � < 1, ct is the consumption of each member of the household at time t, and

u(c), the instantaneous utility function, has the following properties: u0(c) > 0, u00(c) < 0

and limc!0 u
0(c) =1.1 From now on I will assume that Lt = H for all t.

The economy�s total production of output, Yt, is given by

Yt = F (Kt; Lt) (2)

where Kt is the capital stock. Assuming that F is constant returns to scale (CRTS),

F (Kt; Lt) = Ltf(kt) where kt � Kt=Lt and f(kt) � F (kt; 1). We assume that f(0) = 0,

f 0(k) > 0, f 00(k) < 0, limk!0 f
0(k) =1 and limk!1 f

0(k) = 0.

Output can either been consumed or invested in the form of new capital. The aggregate

resource constraint is

Ct +Kt+1 � (1� �)Kt = Yt; for t � 0, (3)

where Ct = Ltct is total consumption and 0 < � < 1 is the rate of depreciation.

� c Craig Burnside, 2006.
yDepartment of Economics, Duke University.
1Sometimes I will refer to the parameter � = ��1 � 1 as the rate of time preference. I assume that the

household shares its consumption allocation equally among its members.
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Imagine that there is a social planner who maximizes the utility of a representative

household, (1), subject to the technology, (2) and the aggregate resource constraint, (3).

Because the population is constant and each household has one member, this problem is

equivalent to the social planner choosing fct; kt+1g1t=0 to maximize
1X
t=0

�tu(ct)

subject to kt+1 � 0, ct � 0, for t � 0, k0 > 0 given and

ct + kt+1 = f(kt) + (1� �)kt; for t � 0.

I will de�ne g(k) � f(k) + (1� �)k and rewrite the social planning problem as

max
fkt+1g1t=0

1X
t=0

�tu[g(kt)� kt+1] (4)

subject to 0 � kt+1 � g(kt), for t � 0, k0 > 0 given.2 Assuming an interior solution, the �rst
order condition for kt+1 is

��tu0[g(kt)� kt+1] + �t+1u0[g(kt+1)� kt+2]g0(kt+1) = 0:

Rearranged, this gives us the familiar Euler equation

u0[g(kt)� kt+1] = �u0[g(kt+1)� kt+2]g0(kt+1); t = 0; 1; 2 : : : (5)

Sometimes it�s helpful to substitute back in the fact that ct = g(kt)� kt+1 to write (5) as

u0 (ct) = �u
0 (ct+1) g

0(kt+1); t = 0; 1; 2 : : :

A special aspect of (4) is that the planner�s problem is in�nite dimensional. That is, he

chooses the optimal value of an in�nite sequence, fkt+1g1t=0. Dynamic programming turns
out to be an ideal tool for dealing with the theoretical issues this raises. But as we will see,

dynamic programming can also be useful in solving �nite dimensional problems, because of

its recursive structure.

1.2 A Finite Horizon Analog

Consider the analogous �nite horizon problem

max
fkt+1gTt=0

TX
t=0

�tu[g(kt)� kt+1] (6)

2Unfortunately, my notation is similar but di¤erent to that used by Stokey and Lucas who use the notation
f(k) to represent F (k; 1) + (1� �)k.
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subject to 0 � kt+1 � g(kt), for 0 � t � T , k0 > 0 given. It�s easy to characterize the solution
of this problem using the Kuhn-Tucker conditions because (i) it�s a standard optimization

problem with a �nite number of choice variables, (ii) the objective function for the problem

is concave in the vector of choice variables (k1; k2; : : : ; kT+1) and (iii) the constraints are

quasi-convex in that vector.

To see why it�s not immediately obvious how to extend the �nite horizon problem to

the in�nite horizon consider the optimality conditions that emerge from the �nite horizon

problem. Since kT+1 only appears in the [g(kT ) � kT+1] term, it is clear that the optimal
solution for kT+1 is kT+1 = 0. The remaining choice variables (k1; k2; : : : ; kT ) are determined

according to the familiar Euler equations:

u0[g(kt)� kt+1] = �u0[g(kt+1)� kt+2]g0(kt+1); t = 0; 1; : : : ; T � 1. (7)

(7) represents T equations in the T unknowns, k1, k2, : : : , kT . The variables k0 and kT+1
also appear in these equations but k0 is given and we have already shown that kT+1 = 0.

In the in�nite horizon problem we have the same Euler equations, but an in�nite number

of them. We lose the end condition kT+1 = 0, and it�s not obvious what it�s replaced by,

if anything. Dynamic programming is an approach to optimization that deals with these

issues. I will illustrate the approach using the �nite horizon problem. Then I will show how

it is used for in�nite horizon problems.

1.3 Solving the Finite Horizon Problem Recursively

Dynamic programming involves taking an entirely di¤erent approach to solving the planner�s

problem. Rather than getting the full set of Kuhn-Tucker conditions and trying to solve T

equations in T unknowns, we break the optimization problem up into a recursive sequence

of optimization problems.

In the �nite horizon problem, (6), we are asked to solve the planner�s problem at date

0. Suppose, instead, we solve the planner�s problem at date T . This is easy to do, since the

planner�s objective at date T will just be

max
kT+1

u[g(kT )� kT+1]

subject to 0 � kT+1 � g(kT ), kT > 0 given. The solution is kT+1 = hT+1(kT ) = 0 for all

possible kT . The objective function at the optimum, whose value depends on kT , is

vT (kT ) = u[g(kT )� hT+1(kT )] = u[g(kT )]: (8)

Now consider the planner�s problem at date T � 1, which is

max
kT ;kT+1

u[g(kT�1)� kT ] + �u[g(kT )� kT+1] (9)
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subject to 0 � kT � g(kT�1), 0 � kT+1 � g(kT ), kT�1 > 0 given. The idea is to break this
problem of choosing two variables into two problems in which only one variable is chosen.

In particular, we will instead solve

max
kT

�
u[g(kT�1)� kT ] + �max

kT+1
u[g(kT )� kT+1]

�
: (10)

where the inner optimization is done subject to subject to 0 � kT+1 � g(kT ), kT > 0

given, and the outer optimization is done subject to 0 � kT � g(kT�1), kT�1 > 0 given.

The two optimization problems, (9) and (10), are clearly equivalent. Since vT (kT ) =

maxkT+1 u[g(kT )� kT+1], we can rewrite (10) as

vT�1(kT�1) = max
kT

u[g(kT�1)� kT ] + �vT (kT ); (11)

subject to 0 � kT � g(kT�1), kT�1 > 0 given.
Now consider the planner�s problem at date T � 2, which is

max
kT�1;kT ;kT+1

u[g(kT�2)� kT�1] + �u[g(kT�1)� kT ] + �2u[g(kT )� kT+1];

subject to 0 � kt � g(kt�1), t = T � 1, T , T +1, and kT�2 > 0 given. It is immediately clear
that this too can be written recursively as

vT�2(kT�2) = max
kT�1

u[g(kT�2)� kT�1] + �vT�1(kT�1): (12)

In fact, we can write the time s problem recursively in terms of the time s+ 1 problem as

vs(ks) = max
ks+1

u[g(ks)� ks+1] + �vs+1(ks+1): (13)

Proceeding in this fashion we would stop when we came to s = 0 because we would then

have solved the time 0 problem.

1.4 Solving the In�nite Horizon Problem Recursively

It would be useful if the optimization problem (4) could be characterized recursively using

an equation such as (13). Recall that the notation vs(ks) in the �nite horizon problem was

just

vs(ks) = max
fkt+1gTt=s

TX
t=s

�t�su[g(kt)� kt+1] (14)

subject to 0 � kt+1 � g(kt), for s � t � T , ks > 0 given. In the in�nite horizon problem this
suggests that we use the notation

v1s (ks) = max
fkt+1g1t=s

1X
t=s

�t�su[g(kt)� kt+1]: (15)
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Suppose that the equivalent of (13) holds for the in�nite horizon problem. Then

v1s (ks) = max
ks+1

u[g(ks)� ks+1] + �v1s+1(ks+1): (16)

Notice, however, that unlike in the �nite horizon problem the functions v1s and v1s+1 must

be the same.3

Dropping subscripts and the 1 notation, we have

v(k) = max
k0
u[g(k)� k0] + �v(k0) (17)

subject to 0 � k0 � g(k), with k given. (17) is the Bellman equation. There are two subtleties
we will deal with later:

(i) we have not shown that a v satisfying (17) exists,

(ii) we have not shown that such a v actually gives us the correct value of the planner�s

objective at the optimum.

1.5 Optimality Conditions in the Recursive Approach

To get the optimality conditions that coincide with (17) we will defer some details until

later. In particular we will not prove here that the value function is di¤erentiable, nor that

the solution k0 always lies in the interior of the set [0; g(k)]. For the moment we will simply

assume that these statements are true.

When there is an interior solution, and v is di¤erentiable the �rst-order condition for the

maximization problem in (17) is

u0[g(k)� k0] = �v0(k0): (18)

In and of itself this doesn�t look too useful because we don�t yet know the shape of the value

function. However, when there is an interior solution for k0 and v is di¤erentiable, we also

have the envelope condition:

v0(k) = u0[g(k)� k0]g0(k): (19)

3To see why notice that we would write

v1s+1(ks+1) = max
fkt+1g1t=s+1

1X
t=s+1

�t�s�1u[g(kt)� kt+1]

Now make a change of variables, de�ning j = s+ 1. Notice that we end up with

v1j (kj) = max
fkt+1g1t=j

1X
t=j

�t�ju[g(kt)� kt+1]:

But this is the same as (15) with di¤erent letters.
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A Digression on the Envelope Theorem. You should recall the envelope theorem from

standard 1st-year micro problems. The basic principle at work is as follows. Let k0 = h(k)

be the optimal policy function. Substituting this into (17) we see that

v(k) = u[g(k)� h(k)] + �v[h(k)]:

Hence

v0(k) = u0[g(k)� h(k)][g0(k)� h0(k)] + �v0[h(k)]h0(k)
= u0[g(k)� h(k)]g0(k) + f�v0[h(k)]� u0[g(k)� h(k)]gh0(k)

Notice however, that we can use (18) to reduce this to

v0(k) = u0[g(k)� h(k)]g0(k);

which is the same as (19).

Of course, if we combine (18) and (19) we get the familiar Euler equation

u0[g(k)� k0] = �u0[g(k0)� k00]g0(k0): (20)

Rewriting this with date subscripts you get back (5).

A Digression on the Ljungqvist-Sargent Approach Ljungqvist and Sargent and the

text I call �New Sargent�both use slightly di¤erent language� I�ll call it the language of

optimal control� in describing the Bellman equation and the optimality conditions. They

write the problem in terms of both the state variable, k, and the control variable, c. In

a sense, all this means is that they do not substitute out the resource constraint, which

happens to describe the law of motion of k. In particular for the growth model they would

write

v(k) = max
c
u (c) + �v(k0)

subject to k0 = g(k) � c.4 Using the resource constraint they would then substitute the

future state out of the Bellman equation to get

v(k) = max
c
u (c) + �v [g(k)� c] : (21)

The �rst order condition with respect to c is:

u0(c) = �v0 [g(k)� c] : (22)

4Ljungqvist and Sargent refer to the last equation as the transition law.

6



Notice that since c = g(k)� k0, (18) and (22) are equivalent.
In place of the envelope condition, Sargent and Ljungqvist refer to the Benveniste and

Scheinkman condition. These are e¤ectively the same thing. The Benveniste and Scheinkman

condition is obtained by imagining that you have solved for the optimal value of the control,

c, as a function of the state, k. Here I will denote this function as c = �(k). Substituting

this into (21) you get

v(k) = u [�(k)] + �v [g(k)� �(k)] :

Assuming v and � are di¤erentiable you get

v0(k) = u0 [�(k)] �0(k) + �v0 [g(k)� �(k)] [g0(k)� �0(k)] :

Notice that (22) implies that the terms attached to �0(k) drop out (this will be true in more

general problems), so that we are left with the Benveniste and Scheinkman condition:

v0(k) = �v0 [g(k)� c] g0(k): (23)

Notice that this condition can easily be derived using the �quick and dirty�method where

you di¤erentiate with respect to the state variable on the right-hand side of (21) without

subtituting in the policy function, �, to obtain v0.

Although the envelope condition, (19), and the Benveniste and Scheinkman condition,

(23), are not identical, notice that if we combine (22) and (23) we get

v0(k) = u0(c)g0(k);

which is equivalent to (19). So the two approaches yield equivalent optimality conditions.

1.6 Important Issues to Deal with Later

In considering (17), and in deriving conditions that characterize its solution, we have ignored

several important questions:

1. Can we be sure that a v that satis�es (17) exists?

2. Can we be sure that there is a single-valued, and di¤erentiable policy function, h(k),

that describes the optimal value of k0?

3. Does the solution to (17) correspond to the solution to (4)?

4. Since the optimality conditions, (20), are the same as the ones we obtained using the

Lagrangean method, how do we deal with the issue of the missing end condition?

To answer these questions the next section considers a general dynamic optimization

problem.
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2 A General Dynamic Optimization Problem

Stokey and Lucas write down a general dynamic optimization problem

max
fxt+1g1t=0

1X
t=0

�tF (xt; xt+1) (24)

subject to xt+1 2 �(xt), x0 given. In our optimal growth model, where the equivalent of xt+1
was kt+1, we had 0 � kt+1 � g(kt), so that �(kt) would have been given by the set [0; g(kt)].
In general, �(xt) is the set of feasible values of xt+1, given xt.

By analogy to what we previously saw with the growth model, we would expect the

following dynamic programming problem to be equivalent to (24):

v(x) = max
y2�(x)

F (x; y) + �v(y) (25)

with x given.

The Bellman equation, (25), is a functional equation. That is, it is an equation de�ned

over functions not over vectors. A standard equation solving problem is to �nd the value of

an unknown vector x. An example is x = f(x). On one side of the equation we have the

unknown vector x. On the other side of the equation we have a function, f , applied to that

vector. A functional equation will often be written in a similar (but not always identical

way). An example of a functional equation is f = T (f), where f is a function (it�s common

to drop its dependence on any arguments, such as x when writing the functional equation)

and T is an operator that is applied to f .5

To write the Bellman equation as a functional equation we formally de�ne a the operator

T :

(Tw)(x) � max
y2�(x)

F (x; y) + �w(y) (26)

with x 2 X given, and where, for the moment, w is some arbitrary function of the variable

x.6 T is an operator that multiplies a function, w, by �, then adds another function, F (x; y),

to it, and then maximizes the resulting function by choice of y subject to y 2 �(x) and x
given.

The Bellman equation is a functional equation because it can be written as v = T (v) or

even more compactly as

v = Tv: (27)

5A function maps vectors in some space, to vectors in some other space (often the same space). In our
example with x = f(x) we might imagine that f : Rn ! Rn. Similarly an operator maps a function in some
space to a function in some other space (often the same space). When the two spaces are the same we can
write T : F ! F , where F is some space of functions.

6X simply represents the set of all possible values x can take on. In our growth model example we could
think of it as [0; ~k], where ~k is the maximal value of k.
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2.1 Two Useful Theorems

There are two crucially useful theorems in Chapter 3 of Stokey and Lucas: Blackwell�s

Theorem and the Contraction Mapping Theorem.7

Blackwell�s Theorem gives su¢ cient conditions for an operator T to be a contraction

mapping. Knowing that T is a contraction mapping is very helpful because it lets you invoke

the Contraction Mapping Theorem. It establishes that if an operator T is a contraction

mapping then (i) it has a unique �xed point, i.e. there exists a unique function v such that

Tv = v, and (ii) T nv0 ! v, as n ! 1.8 The contraction mapping theorem is incredibly

powerful. It not only tells you that there is a unique solution, it tells you how to �nd it!

To understand Blackwell�s theorem you need to know a little about metric spaces, norms,

and contraction mappings.

De�nition of a Metric Space (Stokey and Lucas p. 44) A metric space is a set S and
a function � : S � S ! R, such that
1. �(f; g) � 0 for all f , g 2 S (positivity)
2. �(f; g) = 0 i¤ f = g (strict positivity)

3. �(f; g) = �(g; f) for all f , g 2 S (symmetry)
4. �(f; h) � �(f; g) + �(g; h) for all f , g, h 2 S (triangle inequality).�

You can see that the function �, which is called a metric, is a concept of distance which

shares some of the features of Euclidean distance. It�s often the case, in practice, that the

chosen metric is one for which �(f; g) = �(f � g; �), where � is a zero element of S. By a
zero element I mean that � 2 S is such that f + � = f , 0f = �, if 0 is the scalar zero.

De�nition of a Normed Vector Space (Stokey and Lucas p. 45, 46) Skipping a little

of the formality in Stokey and Lucas, I de�ne a normed vector space, to be a set S, and a
norm (a special form of metric), k�k : S ! R, such that
1. kfk � 0 for all f 2 S,
2. kfk = 0 i¤ f = �,
3. k�fk = j�j kfk, for all f 2 S, � 2 R,
4. kf + gk � kfk+ kgk, for all f; g 2 S.�
7Blackwell�s Theorem is described in section 3.3 (p. 54) of Stokey and Lucas. It also appears in section

A.1 (p. 1010) of Ljungqvist and Sargent. The Contraction Mapping Theorem is described in section 3.2
(p.50) of Stokey and Lucas, and is mentioned indirectly in section A.2 (p. 1012) of Ljungqvist and Sargent.

8We will be more precise about the convergence concept being used here, later.
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One useful metric space we will use is

S = C[a; b]

�(f; g) = d1(f; g) � sup
x2X=[a;b]

jf(x)� g(x)j:

Here, [a; b] � R is a closed interval on the real line, and S is the space of continuous functions
with domain X = [a; b]. The metric d1 is often called the sup norm. Another metric that

works with the same space of functions is

dp(x; y) =

�Z b

a

jf(x)� g(x)jpdx
�1=p

;

where p is an integer (often 2). Another useful metric space would be the set of continuously

di¤erentiable functions with domain [a; b] which is usually denoted C1[a; b]. We will see how

these metric spaces will be useful in a while.

De�nition of a Contraction Mapping Let (S; �) be a metric space and let T : S ! S.
T is a contraction mapping with modulus � if there exists a real number 0 � � < 1 such

that �(Tf; Tg) � ��(f; g) for all f , g 2 S.�

Basically this means that applying a contraction mapping to two elements of S, brings
them closer together.

In the following theorem we will assume that there is an operator T which maps from a

set of functions to the same set. You should keep in mind, for the moment, that we do not

yet know whether the operator T in Bellman�s equation has this property. So one thing we

will try to show later is that there is a set of functions, S, for which w 2 S implies Tw 2 S.
In the following theorem you will also see the notation � or � in comparisons of function.

What does this notation mean? Let f and g be any two functions with some common domain

X. If f(x) � g(x) for allx 2 X, then we write f � g. In other words f must lie everywhere
(nonstrictly) above g. Similarly for �.

Blackwell�s Theorem Let T : F ! F be an operator on a metric space (F ; d1), where
F is a set of bounded functions and d1 is the sup norm. Assume that T has the following

properties:

1) Monotonicity: For any f , g 2 F , f � g ) Tf � Tg.
2) Discounting: For any constant real number c > 0, and every f 2 F , T (f+c) � Tf+�c,

for some 0 � � < 1.
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Then T is a contraction mapping with modulus �.�

Proof: Consider any f , g 2 F . We need only consider f 6= g since if f = g, d1(Tf; Tg) =
�d1(f; g) = 0. Notice that

f = g + f � g
� g + jf � gj
� g + d1(f; g)

Property (1) implies that Tf � T [g+ d1(f; g)]. Property (2) implies that T [g+ d1(f; g)] �
Tg + �d1(f; g). Therefore, Tf � Tg + �d1(f; g), or Tf � Tg � �d1(f; g).
Similarly you can reverse the roles of f and g to show that Tg � Tf � �d1(f; g). So

d1(Tf; Tg) = sup
x2X

j(Tf)(x)� (Tg)(x)j � �d1(f; g):�

Blackwell�s theorem is useful because it is often easier to show that an operator is a con-

traction mapping by demonstrating that it has the monotonicity and discounting properties

than it is to use the de�nition of a contraction mapping. Our next step is to look at the

Contraction Mapping Theorem. Before doing so, however, we need a little more mathemat-

ical background. In particular, we need the de�nitions of Cauchy and convergent sequences

as well as the de�nition of a complete metric space, and a Banach space.

De�nition of a Cauchy Sequence Let (S; �) be a metric space. A sequence ffng1n=0,
with fn 2 S for all n, is a Cauchy sequence if for each � > 0, there exists an N(�) such that
�(fn; fm) < � for all n, m � N(�).�

De�nition of a Convergent Sequence Let (S; �) be a metric space. A sequence ffng1n=0,
with fn 2 S for all n, converges to f 2 S if for each � > 0, there exists an N(�) such that
�(fn; f) < � for all n � N(�). I.e. limn!1 �(fn; f) = 0.�

De�nition of a Complete Metric Space A metric space (S; �) is complete if every
Cauchy sequence in S is a convergent sequence in S.�

De�nition of a Banach Space A complete normed vector space is called a Banach

space.�
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Contraction Mapping Theorem Let (S; �) be a complete metric space and let T : S !
S be a contraction mapping with modulus �. Then:
1) there is a unique point f 2 S such that Tf = f ,
2) for any f0 2 S, the sequence ffng1n=0 de�ned by fn = Tfn�1, n = 1, 2, : : : , satis�es

�(fn; f) � �n(f0; f) for all n.�

Proof: Preliminaries. Choose any f0 2 S, and de�ne fn = Tfn�1, n = 1, 2, : : : . It is clear,
by induction, that fn 2 S. From the fact that T is a contraction

�(fn+1; fn) � ��(fn; fn�1) � �2�(fn�1; fn�2) � � � � � �n�(f1; f0): (28)

We have not yet established convergence of the sequence fn.9

Now take any n and any m > n. It follows from the triangle inequality that

�(fm; fn) � �(fm; fm�1) + �(fm�1; fn)

� � � � �(fm; fm�1) + �(fm�1; fm�2) + � � �+ �(fn+1; fn):

Using (28) this means

�(fm; fn) �
�
�m�1 + �m�2 + � � �+ �n

�
�(f1; f0)

= �n
�
1 + � + � � �+ �m�n�1

�
�(f1; f0)

= �n
1� �m�n

1� � �(f1; f0)

<
�n

1� ��(f1; f0):

From this last result it is clear that fn is a Cauchy sequence. Since (S; �) is a complete
metric space this means 9f 2 S such that fn ! f , i.e. limn!1 �(fn; f) = 0.

Proof of Part (1): For all n and all f0 2 S we have

0 � �(Tf; f) � �(Tf; T nf0) + �(T nf0; f)
9If, at this stage, we took the limit as n!1, we would not have a proof that the sequence fn converges.

Rather, we would have a proof that consecutive terms in the sequence become closer and closer to one
another. The classic example where the latter does not imply the former is

xn = 1 +
1

2
+
1

3
+ � � �+ 1

n

which has no limit, whereas

xn+1 � xn =
1

n+ 1

does become arbitrarily small.
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from the triangle inequality. But then, from the de�nition of a contraction, we have

�(Tf; T nf0) � �(f; T n�1f0):

Hence

0 � �(Tf; f) � �(f; T n�1f0) + �(T nf0; f) = �(f; fn�1) + �(fn; f): (29)

Since limn!1 �(fn; f) = 0, and (29) holds for all n, including n arbitrarily large, it must be

the case that �(Tf; f) = 0. Hence Tf = f .

Next we need to show that f is the unique �xed point. Suppose, to the contrary, that

there is some other function, f̂ 2 S, f̂ 6= f , such that T f̂ = f̂ . Let a = �(f; f̂). Clearly

a > 0 since f̂ 6= f . Notice that since f = Tf and f̂ = T f̂ , we have

a = �(f; f̂) = �(Tf; T f̂) � ��(f; f̂) = �a;

where the inequality follows from the de�nition of a contraction. Since � < 1, this immedi-

ately implies a contradiction.

Proof of Part (2): �(fn; f) = �(Tfn�1; T f) � ��(fn�1; f) � �2�(fn�2; f) � � � � �
�n�(f0; f).�

2.2 The Theorem of the Maximum

Blackwell�s theorem is obviously powerful, but in order to use it we will need to show that

the assumptions made by the theorem hold for the T that appears in Bellman�s equation. A

�rst step towards this goal is to study the Theorem of the Maximum.

De�ne

v(x) = max
y2�(x)

f(x; y) given x 2 X: (30)

Also let

H(x) = fy 2 �(x)jf(x; y) = v(x)g: (31)

Notice that v is a type of value function because it gives the maximized value of f for any

x. H(x) is the set of all optimal values of y given x, because it�s the set of y�s for which f is

as high as v. Here, a capital letter is used simply to warn you of the possibility that H is

not single-valued. If there were not a unique maximizer of f , H would be a correspondence.

Theorem of the Maximum LetX � Rl and Y � Rm, let f : X�Y ! R be a continuous
function, and let � : X ! Y be a compact-valued and continuous correspondence. Then

the function v, de�ned in (30), is continuous, and the correspondence H, de�ned in (31), is

nonempty, compact-valued, and upper-hemi continuous.�

13



Here compact-valued simply means that for each x, �(x) is a compact set. A continu-

ous correspondence is one that is both lower hemi-continuous and upper-hemi continuous.

Without going into quite the detail Stokey and Lucas do, this means that any point y 2 �(x)
can be reached as the limit of a sequence yn 2 �(xn) with xn ! x, and that every sequence

yn 2 �(xn), with xn ! x, has a limit point in �(x). To take an example, if x 2 R and y 2 R,
and �(x) is de�ned in terms of inequalities, continuity of the boundaries de�ned by those

inequalities is su¢ cient for lower- and upper-hemi continuity.

Basically what this theorem says is that if the function being maximized is continuous,

so is the value function. Plus we get some nice properties for the policy function. If you

make some more assumptions you get even more results.

Continuity of the Policy Function This makes two additional assumptions relative to

the above theorem. Let � also be convex-valued and let f be strictly concave as a function

of y for each x 2 X. Then

h(x) = fy 2 �(x)jf(x; y) = v(x)g

is single-valued, continuous function. An equivalent way of de�ning h is to state that

h(x) = arg max
y2�(x)

f(x; y) given x 2 X:�

Limiting Policy Function is the Policy Function of the Limiting Problem Let

ffng be a sequence of functions, and f a function, which all have the properties assumed in
the previous two theorems. Let fn ! f uniformly (in sup norm). Then de�ne

hn(x) = arg max
y2�(x)

fn(x; y) given x 2 X;

h(x) = arg max
y2�(x)

f(x; y) given x 2 X:

If follows that hn ! h, pointwise, or uniformly if X is a compact set.�

2.3 Applying the Theorems to T

The main results are established in section 4.2 of Stokey and Lucas. Theorem 4.6 establishes

that the theorem of the maximum applies to the problem on the right-hand side of T . This

result allows the theorem to also establish that the conditions of Blackwell�s Theorem are
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satis�ed and that, therefore, T is a contraction mapping. Using the Contraction Mapping

Theorem this delivers a very powerful result: there is a unique solution to (25).

The theorems subsequent to 4.6 establish other properties of the value and policy func-

tions under additional assumptions. These assumptions are easily veri�ed for the neoclassical

growth model.

De�ne A = f(x; y) 2 X � Xjy 2 �(x)g. Notice the requirement that X be de�ned in
such a way that it encompasses at least all the possible values of y, given all the possible

values of x 2 X. In our optimal growth model, we know that k and k0 both must lie within
the set [0; ~k], where f(~k) = �~k so A is f(k; k0) 2 [0; ~k]� [0; ~k]j0 � k0 � g(k)g.
In what follows I will use the same numbering of assumptions and theorems as Stokey

and Lucas.

Assumption 4.3 . X is a convex subset of Rl and the correspondence � : X ! X is nonempty,

compact-valued and continuous.�
Assumption 4.4. The function F : A! R is bounded and continuous, and 0 < � < 1.�

It�s easy to show that assumptions 4.3 and 4.4 hold for our growth model. You should do so

as an exercise.

Theorem 4.6 (Existence and Uniqueness of the Value Function). Let assumptions

4.3 and 4.4 hold. Let C(X) be the space of bounded continuous functions on X, with the

sup norm. Then T [de�ned in (26)] is such that T : C(X) ! C(X), T has a unique �xed

point v 2 C(X), and for all v0 2 C(X),

jjT nv0 � vjj � �njjv0 � vjj, n = 0; 1; : : : :

Moreover, the optimal policy correspondence

H(x) = fy 2 �(x)jv(x) = F (x; y) + �v(y)g

is compact-valued and upper hemi-continuous.�

Sketch of the proof: Assumptions 4.3 and 4.4 imply that a maximum exists if you solve

the problem on the right-hand side of (26). If the function w on the right-hand side of (26)

is continuous and bounded over X, i.e. it is an element of C(X), it then follows from the

theorem of the maximum that Tw is also continuous and bounded. Hence T maps from

C(X) to C(X). This is crucial because it means T we can try to apply Blackwell�s theorem.

Conditions (a) and (b) of Blackwell�s theorem are easy to establishfor T . This means that
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T is a contraction, and that the remaining results stated in Theorem 4.6 follow from the

Contraction Mapping Theorem.�

The next 4 theorems establish further properties of the value and policy functions. Some

of these properties require us to make additional assumptions.

Assumption 4.5. For each y, Fx(x; y) > 0 (recall that x is a vector in Rl so this is a statement
about the sign of l derivatives).�
Assumption 4.6. � is monotone in the sense that x � x0 implies �(x) � �(x0).�

These are both assumptions that our growth model example satis�es.

Theorem 4.7. (The Value Function is Increasing) Let assumptions 4.3�4.6 hold.

Then, v, the unique solution to (25), is strictly increasing in x.�

Assumption 4.7. F is strictly concave.�
Assumption 4.8 . If y 2 �(x) and y0 2 �(x0), then �y + (1� �)y0 2 �[�x + (1� �)x0] for all
x, x0 2 X and any 0 � � � 1.�

Theorem 4.8. (The Value Function is Concave and the Policy Function is Con-
tinuous and Single Valued) Under assumptions 4.3, 4.4, 4.7 and 4.8, v, the solution to

(25) is strictly concave and

h(x) = fy 2 �(x)jv(x) = F (x; y) + �v(y)g = arg max
y2�(x)

F (x; y) + �v(y) (32)

is a continuous and single-valued function.�

Theorem 4.9 (Convergence of the Policy Functions when you use Value Function
Iteration) Let assumptions 4.3, 4.4, 4.7 and 4.8 hold. Let v satisfy (25) and h satisfy (32).

Let C 0(X) be the space of bounded, continuous, concave functions, f : X ! R, and let
v0 2 C 0(X). Then de�ne vn and hn according to vn+1 = Tvn, and

hn(x) = arg max
y2�(x)

[F (x; y) + �vn(y)]; 8x 2 X:

Then hn ! h, pointwise. If X is compact, the convergence is uniform.�

Assumption 4.9 . F is continuously di¤erentiable on int(A).�

Theorem 4.11 (The Envelope Theorem). Let assumptions 4.3, 4.4, and 4.7�4.9 hold,

and let v and hbe the solutions to (25) and (32). If x0 2 int(X) and h(x0) 2 int(X), then v
is continuously di¤erentiable at x0 with derivatives given by vx(x0) = Fx[x0; h(x0)].�
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2.4 Are the Planner�s Problem and Bellman�s Equation Equiva-
lent?

Section 4.1 of Stokey and Lucas establishes that, indeed, (25) and (24) are equivalent. The-

orems 4.2 and 4.3 work with modi�ed versions of the Bellman equation and the planner�s

problem with �sup� replacing �max�. For each x0 the modi�ed planner�s problem has a

unique supremum (by the de�nition of supremum), which is denoted v�(x0). Theorem 4.2

establishes that v� also satis�es the modi�ed Bellman equation. Theorem 4.3 establishes

that while there may be more than one v that satis�es the modi�ed Bellman equation, the

only one that satis�es a particular boundedness condition on the objective function is v�.

To summarize these two theorems, they say that v� is the value associated with both the

planner�s problem and Bellman�s equation.

Theorems 4.4 and 4.5 make similar statements, but about the policy functions rather

than the value functions. Theorem 4.4 states that any plan (i.e. a chosen path for fxtg1t=1)
that achieves the sup of the modi�ed planner�s problem (in other words is the argmax) can

be generated from the policy correspondence of Bellman�s equation. Theorem 4.5 states

that any plan that can be generated from the policy correspondence of Bellman�s equation,

maximizes the planner�s objective, as long as it satis�es a particular boundedness condition.

Assumption 4.1. The correspondence �(x) is nonempty for all x 2 X.�

De�ne the set of feasible plans given x0: �(x0) = ffxtg1t=0jxt+1 2 �(xt) 8tg. Let any
element of this set be denoted x 2 �(x0).

Assumption 4.2. For all x0 2 X, and x 2 �(x0), limn!1
Pn

t=0 �
tF (xt; xt+1) exists although

it could be plus or minus in�nity.�

De�ne u(x) � limn!1
Pn

t=0 �
tF (xt; xt+1).

Lemma 4.1. Let X, �, F and � be such that assumption 4.2 is satis�ed. Then for any

x0 2 X and any plan x 2 �(x0),

u(x) = F (x0; x1) + �u(x
0)

where x0 = fxtg1t=1.�

It�s sort of a trivial lemma (it basically says what I said before when I asserted that v1s
had ot be the same function as v1s+1). Now de�ne

v�(x0) � sup
x2�(x0)

u(x) = sup
x2�(x0)

lim
n!1

nX
t=0

�tF (xt; xt+1) (33)
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for each x0 2 X. Notice that (33) is a modi�ed version of the social planner�s problem with

�sup�replacing �max�, and v� is its unique solution (this is a property of �sup�). The next

theorem, similarly, works with a modi�ed version of Bellman�s equation with �sup�replacing

�max�.

Theorem 4.2. Let X, �, F and � be such that assumptions 4.1 and 4.2 are satis�ed. Then
v�(x) satis�es the Bellman equation with �max�replaced by �sup�, i.e. v� is one solution

to:

v(x) = sup
y2�(x)

F (x; y) + �v(y); 8x 2 X:� (34)

At this point we know that v� de�ned in (33) is a solution to the modi�ed version of the

Bellman equation, (34), but we don�t know if it�s the unique solution. The next theorem

shows that v� is the only solution that leads to a particular kind of boundedness in utility.

Theorem 4.3. Under assumptions 4.1 and 4.2, if v satis�es the modi�ed Bellman equation
and if limn!1 �

nv(xn) = 0 for all x 2�(x0) and x0, then v = v�.�

So if we found a solution to the modi�ed Bellman equation, we�d know it was the solution

to modi�ed planner�s problem as long as we checked that the boundedness condition held.

The problem with �sups�is that there may not be feasible plans that reach them. The-

orem 4.4 states that if there is an optimal plan x that reaches the sup in (33) (in other

words, the max exists), it is also consistent with the optimal policy correspondence of (34).

Theorem 4.5 states an approximate converse.

Theorem 4.4. Make assumptions 4.1 and 4.2. Suppose there exists a plan x�2�(x0)
that obtains the sup in (33) [in other words a solution to (24) exists]. Then v�(x�t ) =

F (x�t ; x
�
t+1) + �v

�(x�t+1) 8t, with x�0 = x0. This means any plan x� that is optimal for the

social planner, can be generated from the optimal policy correspondence H� associated with

Bellman�s equation where

H�(x) = fy 2 �(x)jv�(x) = F (x; y) + �v�(y)g:�

Theorem 4.5. Let x�2�(x0) be any feasible plan such that v�(x�t ) = F (x�t ; x�t+1)+�v(x�t+1)
8t, with x�0 = x0, and such that limt!1 sup �

tv�(x�t ) � 0 [in other words let x� be in the

optimal policy correspondence associated with Bellman�s equation]. Then x� obtains the

sup in (33) [in other words it is an optimal plan for the social planner].�
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You should note that although Theorems 4.2�4.5 seem to leave open the possibility of

multiple solutions to Bellman�s equation and that the �max�of either problem might not

be achievable, these loose ends are tied up in the later sections of the text, which we have

already covered. Remember that Theorem 4.6 proves that a unique solution to the �max�

version of Bellman�s equation exists, but under more stringent conditions than those imposed

in Section 4.1 of Stokey and Lucas.

2.5 Transversality Conditions

The main result of section 4.5 in Stokey and Lucas is Theorem 4.15. It establishes su¢ cient

conditions for the optimality of a plan x. In particular, it shows that if a plan, x, satis�es

the Euler equations and a transversality condition then it is an optimal plan.

Theorem 4.15. Let X � Rl+ and assumptions 4.3�4.5, 4.7 and 4.9 hold. Then the plan x�

with x�t+1 2 int�(x�t ), t = 0, 1, : : : , is optimal for (33) given x0 if it satis�es

Fy(x
�
t ; x

�
t+1) + �Fx(x

�
t+1; x

�
t+2) = 0; t = 0; 1; : : :

and

lim
t!1

�tFx(x
�
t ; x

�
t+1) � x�t = 0:�

Of course, the Euler equation can be derived from the �rst-order and envelope conditions

associated with (25). It�s easy to see that those are

Fy(x; y) + �v
0(y) = 0

v0(x) = Fx(x; y)

The Euler equation follows immediately from substituting the expression for v0 in the enve-

lope condition into the �rst-order condition.

In our example of the neoclassical growth model, the analog to F (x; y) is u[g(kt)� kt+1]
where kt plays the role of x and kt+1 plays the role of y. Therefore, for the neoclassical growth

model we should write the transversality condition as limt!1 �
tu0[g(kt) � kt+1]g0(kt)kt = 0,

or equivalently as limt!1 �
tu0(ct)[f

0(kt) + (1� �)]kt = 0.
It is very important to be aware that the transversality condition is not something that

needs to be imposed so that a solution to the planning problem exists. Remember, we

already know that a solution exists from the theory described prior to this section. As we

will see later in more detail, however, the Euler equations are not su¢ cient to uniquely pin
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down the solution to the planner�s problem. Rather, the transversality condition can be a

handy tool for �nding the optimal plan. Theorem 4.15 says that if you have a plan that

satis�es the Euler equations and satis�es the transversality condition, then it is an optimal

plan. The converse need not be true.

3 Stochastic Dynamic Programming

We will not explore stochastic dynamic programming in great detail, as the theoretical

machinery required to do this formally is more complex than for deterministic dynamic

programming. Instead, we will examine the basic approach.

A simple stochastic extension of the neoclassical model used by Stokey and Lucas involves

making the production technology subject to random shocks. For example we can replace

the problem (4) with

max
fkt+1g1t=0

E0

1X
t=0

�tu[ztf(kt) + (1� �)kt � kt+1]

subject to 0 � kt+1 � ztf(kt) + (1� �)kt, for t � 0, and k0 > 0 given.
Here zt is a sequence of exogenous random variables with some probability distribution

(Stokey and Lucas assume that it is an iid sequence in Section 2.2). Here Et represents the

expectation taken with respect to all information known at the beginning of time t.

Of course, at time t the planner cannot literally choose fkt+1g1t=0 because the planner
does not know the future realizations of zt. But there are two perfectly coherent ways in

which we can think of the social planner making his choices.

1. The planner chooses k1 at date 0 given the values of k0, z0, and all other information

available to the planner that might be useful in forecasting future outcomes. Then at date

1 the planner chooses k2 given the realizations of k1, z1, and all other relevant information,

and so on. In this way the planner�s problem is treated explicitly as being recursive in nature.

2. The planner chooses k1 at date 0 given k0, z0 and all other information, and chooses

contingency plans for the entire future sequence of fkt+1g1t=1. These contingency plans

determine each kt+1 as a function of kt, zt, and any other variables that would be useful for

forecasting the future from date t forward.

By setting the planner�s problem up in a dynamic programming framework we will cap-

ture the �avor of both of these interpretations. The recursive structure of the optimization

problem as described in (1) sounds very much like the recursive aspect of using dynamic

programming. On the other hand, the dynamic programming approach delivers contingency

plans (optimal policy rules) that express the next period�s capital stock as optimally chosen
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functions of the current capital stock, the current value of the shock, z, and any other infor-

mation relevant for forecasting the future. In this way, the dynamic programming approach

aslo captures the essence of the description in (2).

De�ne

g(k; z) = zf(k) + (1� �)k:

The recursive version of the planning problem is

V (k; z) = max
k0
u[g(k; z)� k0] + �E[V (k0 ; z0)jz]

subject to 0 � k0 � g(k; z), with k, z given. Here I have implicitly assumed that z is a Markov
process, i.e. F (zt+1jzt; zt�1; � � � ) = F (zt+1jzt) for all (zt+1; zt; : : : ). This is what allows me
to stop talking about �all other relevant information.� If the conditional distribution of zt
depended on more of the history of z than just zt�1, I would need to rede�ne the vector of

state variables to include that extra history.

Under the same assumptions as we used previously (which would be much more di¢ cult

to establish) the optimality condition is

u0[g(k; z)� k0] = �E[Vk(k
0
; z0)jz]:

The envelope condition is

Vk(k; z) = u
0[g(k; z)� k0]gk(k; z):

Hence the Euler equation is

u0[g(k; z)� k0] = �E fu0[g(k0; z0)� k00]gk(k0; z0)jzg :

The policy function will be of the form k0 = h(k; z).
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