
 
 

  
 Page 1 of 44 

   
 

Arc Regulates Transcription of Genes for Plasticity, 

Excitability and Alzheimer’s Disease 

How-Wing Leung, Gabriel Wei Quan Foo, Antonius M.J. VanDongen 

Program for Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore 169857 

 

Correspondence: antonius.vandongen@duke-nus.edu.sg  

 

ABSTRACT 

The immediate-early gene Arc is a master regulator of synaptic function and a critical determinant of memory consol-

idation. Arc protein is localized to excitatory synapses, where it controls AMPA receptor endocytosis, and to the nucleus, 

where it associates with Tip60, a subunit of a chromatin modifying complex. Here we show that Arc interacts with 

dynamic chromatin loops and associates with histone markers for active enhancers and transcription in cultured hip-

pocampal neurons. When Arc induction by pharmacological network activation was prevented using a short hairpin 

RNA, the expression profile was altered for over 1900 genes. Many gene families were affected by the absence of Arc, 

most notably those associated with synaptic function, neuronal plasticity, intrinsic excitability (channels, receptors, 

transporters), and signaling pathways (transcription factors/regulators). Interestingly, about 100 genes whose activity-

dependent expression level depends on Arc are associated with the pathophysiology of Alzheimer’s disease, suggesting 

a critical role for Arc in the development of neurodegenerative disorders.  When endogenous Arc expression was in-

duced in a non-neuronal cell line (HEK293T), the transcription of many neuronal genes was increased, suggesting Arc 

can control expression in the absence of activated signaling pathways. Taken together, these data establish Arc as a 

master regulator of neuronal activity-dependent gene expression and a significant factor underlying the pathophysiol-

ogy Alzheimer’s disease. 

INTRODUCTION 

The neuronal immediate-early gene Arc1,2 plays a critical role 

in memory consolidation3-6. Arc expression is rapidly and tran-

siently induced by novel behavioural and sensory experiences7-

11, while its mRNA is enriched in dendrites and targeted to re-

cently activated synapses, where it is locally translated12,13. Arc 

protein resides in excitatory synapses, where it controls AMPA 

receptor endocytosis14, allowing it to act as a master regulator 

of synaptic function and plasticity15,16 that implements homeo-

static synaptic scaling at the neuronal network level17-19. While 

the synaptic role of Arc has been well documented, the ob-

served failure to convert early- to late-LTP in Arc knockout 

mice cannot be explained by an AMPA receptor endocytosis 

deficit4. This suggests that Arc may have additional functions. 

Interestingly, Arc protein can also be localized in the nucleus, 

where it binds to a beta-spectrin IV isoform and associates with 

PML bodies20-22, sites of epigenetic regulation of gene tran-

scription23. Nuclear Arc has been reported to regulate tran-

scription of the GluA1 AMPA receptor24. Recently, another 

nuclear function for Arc has been demonstrated: Arc interacts 

with the histone-acetyltransferase Tip6025, a subunit of a chro-

matin modifying complex26-28. Arc expression level correlates 

with the acetylation status of one of Tip60’s substrate: lysine 

12 of histone 4 (H4K12)25, a memory-associated histone mark 

which declines with age29. These newly discovered nuclear 

functions may point to an epigenetic role for Arc in memory 

consolidation. We have therefore investigated Arc’s interac-

tion with chromatin and its association with histone marks in 

cultured hippocampal and cortical neurons. Fluorescent mi-

croscopy experiments demonstrated a highly dynamic interac-

tion between chromatin and Arc, as well as a tight association 

between Arc and histone marks for active enhancers and active 

transcription. RNA-Sequencing (RNA-Seq) experiments in 

which activity-dependent Arc expression was prevented using 

a short hairpin RNA showed that Arc regulates the transcrip-

tion of over nineteen hundred genes controlling memory, cog-

nition, synaptic function, neuronal plasticity, intrinsic excita-

bility and intracellular signaling. Interestingly, Arc also con-

trols the expression of susceptibility genes for Alzheimer’s dis-

ease, as well as many genes implicated in the pathophysiology 

of this disorder. A Gene Ontology (GO) analysis identified 

downstream signaling pathways and diseases associated with 

the observed changes in mRNA levels, while an Ingenuity 

Pathway Analysis (IPA) revealed upstream regulators pre-

dicted by the change in gene expression profile caused by Arc 
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knockdown. Finally, we induced expression of Arc in human 

embryonic kidney 293T (HEK-293T) cells, using CRISPR-

Cas9, which resulted in the increased transcription of many 

neuronal genes.  Taken together, our data demonstrate that Arc 

controls neuronal activity-dependent expression of many 

genes underlying higher brain functions and may be involved 

in the development of Alzheimer’s disease (AD) and other 

neurodegenerative disorders.  

 

RESULTS 

Arc is a neuronal activity-dependent immediate-early gene1,2, 

whose expression is induced by exposure to a novel 

environment or a new sensory experience7,8,11. Knockdown of 

Arc expression abrogates long-term memory without affecting 

short-term memory, indicating a critical role for Arc in 

memory consolidation3-6. Arc protein localizes to dendritic 

spines, where it regulates AMPA receptor endocytosis14, and 

to the nucleus20,24,30,31, where its function is less understood. In 

this study we have used cultured hippocampal and cortical 

neurons to study the role of Arc in the nucleus.  Arc expression 

can be induced by increasing network activity in neuronal 

cultures, using a combination of 4-aminopyridine (4AP), 

bicuculline and forskolin (4BF), a form of pharmacological 

long-term potentiation (LTP)21,22,32,33. Figure 1 shows that this 

form of network activation strongly induces the expression of 

Arc in a subset of neurons. In this in vitro paradigm, Arc 

localizes predominantly to the nucleus four hours after 

network activity-dependent induction of its expression.  

Memory consolidation requires de novo gene expression34,35, 

which is induced by activation of signaling cascades that 

originate in the synaptic connections potentiated during 

learning36-40. This synapse-to-nucleus signaling results in post-

translational modifications of chromatin, including 

acetylation, methylation, phosphorylation, and sumoylation of 

histones and methylation of DNA41,42. Chromatin modification 

alters its nanostructure, which controls accessibility of gene 

promoters to the transcription machinery43,44. These synaptic 

activity-induced epigenetic processes can alter gene 

expression and have been shown to be critical for learning and 

memory45-52. We therefore characterized the structure and 

dynamics of chromatin in cultured hippocampal neurons, 

evaluated how pharmacological LTP (4BF treatment) affected 

chromatin structure, and compared chromatin properties of 

neurons expressing Arc protein with control neurons that do 

not. 

Chromatin reorganization in Arc-positive neurons. 

Induction of Arc protein expression by pharmacological 

network activation (Fig. 1) is relatively slow and reaches a 

maximum level between 4 and 8 hours and Arc is only 

expressed in a subset of neurons. As shown in Figure 2, 

chromatin organization is different between neurons that are 

positive and negative for Arc. Chromatin was visualized by 

labeling  DNA with the fluorescent dye 4′,6-diamidino-2-

phenylindole (DAPI). Whereas chromatin in Arc-negative 

neurons is relatively homogenous, the nuclei of Arc-positive 

neurons contain many bright puncta, representing 

chromocenters with densely packed chromatin, in which genes 

are likely silenced (Fig. 2A and 2B). The puncta are 

interpersed with domains of highly open chromatin, which is 

more supportive of efficient gene transcription. The number of 

puncta increased from 11.1±0.8 puncta in Arc-negative nuclei 

to 15.9±0.8 puncta in Arc-positive nuclei (Fig. 2C). However, 

the mean area of the puncta was not significantly different 

between Arc-positive and Arc-negative neurons  (Fig. 2D). 

 

Arc associates with dynamic chromatin.  The interaction be-

tween Arc and chromatin was studied in more detail using 

time-lapse fluorescence microscopy of hippocampal neurons 

expressing Arc and histone 2B (H2B) tagged with YFP and 

mCherry, respectively (Fig. 3). Arc was induced in 18 days in 

vitro (DIV) hippocampal neurons by a 4-hour treatment with 

4BF. The time-lapse movies of Arc-eYFP and H2B-mCherry 

revealed a highly dynamic chromatin that constantly reorgan-

izes on a time scale of seconds (Movie 1). Arc is concentrated 

in small puncta to which the chromatin can be seen to reach 

out with finger-like structures, which likely represent the dy-

namic chromatin loops described by others53-55. 

Arc associates with a marker of active enhancers.  Because 

Arc was shown to associate with the Tip60 substrate 

H4K12Ac25, we have examined interactions of Arc with other 

histone modifications, by comparing Arc-positive and -nega-

tive neurons following pharmacological network activation. 

The ‘histone code’56 is complex and still incompletely under-

stood. We have therefore focused on histone modifications 

whose function is best studied. In our survey we have found 

several histone modifications for which there was a difference 

in nuclear organization between Arc positive and negative neu-

rons, including H3K9Ac, H3K4me3, and H3K14Ac (data not 

shown). Figure 4 illustrates the close association between Arc 

and H3K27Ac, which marks active enhancers57,58. Arc and 

H3K27Ac form two separate lattice-like structures that are 

closely inter-connected and, in some locations, appear to over-

lap (yellow areas in Figure 4).  

Arc associates with a marker for active transcription. An-

other histone mark that showed a strong interaction with Arc 

was H3K9Ac-S10P, which requires the concurrent acetylation 

of lysine 9 of histone H3 (H3K9Ac) and phosphorylation of 

the neighboring serine 10 (S10P). This dual marker indicates 

genomic regions undergoing active transcription22,59,60. Figure 

5 illustrates the close interaction between Arc and this histone 

mark, using Stochastic Optical Reconstruction Microscopy 

(STORM), a form of super-resolution microscopy with a reso-

lution of ~30 nm61. Both Arc and H3K9Ac-S10P are enriched 

at the nuclear periphery, where reorganization of chromatin be-

tween active and inactive transcriptional states takes place62,63. 

With the increased resolution of STORM, Arc can be seen to 

localize to distinct puncta. H3K9Ac-S10P forms an elaborate 
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meshwork, as expected for chromatin, but also is enriched in 

puncta-like domains. Arrowheads in Figure 5A indicate the 

close apposition between these two sets of puncta. Close in-

spection of the interface between the two types of puncta re-

vealed invasions of H3K9Ac-S10P into the Arc puncta (arrows 

in Fig. 5B), resembling the finger-like chromatin loop struc-

tures seen in live cell imaging (Fig. 3,  Movie).  

Arc regulates activity-dependent gene transcription. Be-

cause Arc was found to associate with histone marks involved 

in transcription activation, we wanted to investigate whether 

network activity-induced Arc expression alters the gene ex-

pression profile of the neurons. Four short hairpin RNAs 

(shRNAs) targeting the coding region of Arc were tested for 

their ability to suppress Arc induction following four hours of 

4BF treatment. We selected the most effective shRNA to gen-

erate an adeno-associated AAV9 virus. Because AAV9 infec-

tion itself may alter the gene expression profile, we also gen-

erated a negative control consisting of AAV9 virus encoding a 

scrambled version of the Arc shRNA. We performed an RNA-

Seq analysis of cortical neurons expressing either the Arc 

shRNA or its scrambled control. When 4BF-mediated Arc ex-

pression is prevented using the Arc shRNA (Fig. 6A), mRNA 

levels for more than 1900 genes were altered (Fig. 6B). Many 

gene families were affected, including those associated with 

plasticity genes (Jun, Fosb, Bdnf, Dlg4, Egr4, Npas4 and 

Nr4a1), synaptic proteins (syntaxin Stx12 and synaptotagmin 

Syt3), neurotransmitter receptors (NMDA, AMPA, GABA, 

glycine, serotonin and metabotropic glutamate receptors) (Fig. 

6B). Arc also regulated the expression of genes controlling in-

trinsic excitability: 62 genes encoding ion channels (20 K+, 4 

Na+, and 9 Ca2+ channel subunits, 7 transient receptor potential 

(Trp) channels, 14 ligand-gated ion channels, 7 regulatory sub-

units and 1 non-selective cation channel), and 139 genes en-

coding transporters/pumps (for glutamate, GABA, serotonin, 

ADP, ATP, phosphate, glucose, inositol, alanine, cysteine, glu-

tamine, glycine, proline, Na+, Ca2+, Cl-, H+ and Zn2+). These 

results suggest that Arc regulates activity-dependent gene ex-

pression relevant for synaptic function, neuronal plasticity and 

intrinsic excitability.  

Table 1 shows the 30 top-ranking genes sorted by absolute fold 

change (FC) caused by the shRNA-mediated knockdown of 

Arc expression. Gene names are shown together with a 

description of their function, their Fold Change, False 

Discovery Rate (FDR), and references to relevant papers. 

Many of the top-regulated genes are involved in synapse 

modulation, neurotransmission, neurogenesis and neurological 

disorders. Interestingly, 9 out of the top 30 genes have been 

implicated in the pathophysiology of AD (Fgf1, Slc30a4, 

Npas4, Cxcl1, Jdp2, Nts, Mmp10, Orai2 and Tomm34) while 

an additional 5 genes are linked to amyloid beta (Aβ) 

metabolism (Mmp13, Mmp12, Slc2a13, Igf1r and Apba1). 

GO analysis of differentially expressed genes. A Gene On-

tology (GO) analysis of the RNA-Seq data identified several 

biological processes and molecular functions that were 

affected when Arc expression was prevented during network 

activation (Fig. 7). Arc knockdown altered many genes in-

volved in the regulation of nervous system development and 

neuronal differentiation (Fig. 7A). In addition, many of the 

genes were enriched in biological processes involved in cogni-

tion, regulation of cell projection organization and axonogen-

esis (Fig. 7A), processes which could modulate structural plas-

ticity involved in neural development, learning and 

memory64,65. While the top ten regulated genes enriched for the 

regulation of plasma membrane bounded cell projection organ-

ization were both up- and down-regulated (Fig. 7Cii), genes 

enriched for cognition and the regulation of axonogenesis were 

mostly down-regulated due to the absence of Arc (Fig. 7Ci and 

iii). Many of the altered genes were also enriched in molecular 

functions such as ion channel regulator activity, glutamate re-

ceptor binding and ligand-gated ion channel activity (Fig. 7B), 

including Sgk1 (Fig. 7Di), Dlg4, which encodes PSD-95 (Fig. 

7Dii), and Grin2c, which encodes the NMDA receptor NR2C 

subunit(Fig. 7Diii). These molecular functions are well-estab-

lished to underlie synaptic plasticity processes crucial for for-

mation of memory66,67.  

 

Arc regulates expression of synaptic and plasticity genes. 

From the GO results in Figure 7, we observed that the knock-

down of Arc affected many genes involved in synaptic plastic-

ity, as well as genes implicated in processes underlying learn-

ing and memory. We have therefore investigated how Arc 

knockdown affected genes encoding synaptic proteins by man-

ually curating a list of differentially expressed genes whose 

protein products are located at the presynaptic or postsynaptic 

compartment. A total of 232 synaptic genes were differentially 

expressed. These genes are involved in the development and 

growth of axons and dendrites, including Ephb3, Lrfn2, 

Lama5, Neurod2, Sema4f, Caprin2, and Unc5c and the modu-

lation of the synapses and dendritic spines, including Npas4, 

Pcdh8, Ephb3, Lrfn2, Bdnf, Atxn1, Cbln2, Cadps2, Caprin2, 

C1ql1, C1ql3, and Unc5c (Table 2). Many of these synaptic 

genes are also involved in neuroplasticity, cognition, learning 

and memory, including Syt3, Pcdh8, Pdyn, Lrfn2, Dlg4, 

Kcna4, Bdnf and Mapki8ip2. Figure 8 lists neuroplasticity 

genes and genes that are involved in cognition, learning and 

memory whose activity-dependent expression is regulated by 

Arc. Most of these genes were down regulated when activity-

dependent Arc expression was prevented.  

 

Arc knockdown altered synaptogenesis, synaptic plasticity 

and neuroinflammation pathways. From the GO results and 

the list of manually curated synaptic genes, we were interested 

in investigating the signaling pathways and the possible down-

stream effects resulting from Arc knockdown. We have ana-

lyzed the differentially expressed genes and their respective 

fold changes using IPA. Figure 9A shows the top 15 pathways 

that were altered due to Arc knockdown. IPA made inferences 

on the activation or inhibition of the pathways based on the 

differential expression observed and canonical information 

stored in the Ingenuity Knowledge Base. The degree of 
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activation or inhibition of each identified pathway is indicated 

by the z-score. The ratio is calculated as the number of differ-

ential expressed genes for each pathway divided by the total 

number of genes involved in that pathway. Many identified 

pathways involved cellular signaling cascades, including those 

mediated by CDK5, PTEN, integrin and corticotropin releas-

ing hormone (Fig. 9A). Pathways predicted to be responsible 

for the observed differential expression profile include opioid 

and endocannabinoid signaling, synaptogenesis, synaptic 

long-term depression (LTD) and neuroinflammation (Fig. 9A 

and 9B). Kcnj5, Ptgs2, Grin2c, Cacng4 and Gnaq are members 

of at least two of the pathways shown and are synaptic genes 

or associated with cognition (Fig. 7, 8, 9A, Table 2). Except 

for the neuroinflammation signaling pathway, all these path-

ways are associated with synaptic plasticity. Knockdown of 

Arc modulated neurotransmission, synaptic plasticity, spine 

formation/maintenance and neurite outgrowth, processes that 

are crucial for learning and memory (Fig. 9B)68-70. Interest-

ingly, the two hallmarks of AD, the generation, clearance and 

accumulation of amyloid beta (Aβ) and the formation of neu-

rofibrillary tangles (NFTs), are both affected by downregula-

tion of the neuroinflammation signaling pathway resulting 

from Arc knockdown (Fig. 9B). These alterations in the gen-

eration and clearance of molecular markers and triggers of AD 

could indicate a possible role of Arc in the pathophysiology of 

AD71. 

 

Arc knockdown changes the expression of genes involved 

in the aetiology and pathophysiology of AD. Considering 

that the generation, clearance and accumulation of amyloid 

beta and neurofibrillary tangles was predicted to be altered due 

to the knockdown of Arc, we investigated whether any neuro-

logical diseases or psychological disorders were correlated 

with the profile of differentially expressed genes mediated by 

Arc knockdown. Table 3 summarized the disease annotation 

and predicted activation state for two disease/disorder classes 

whose associated genes were significantly altered by Arc 

knockdown. Absence of Arc was predicted to increase damage 

of the cerebral cortex and its neurons and cells. In addition, Arc 

knockdown was also associated with psychological disorders, 

including Huntington’s Disease, basal ganglia disorder, central 

nervous system (CNS) amyloidosis, tauopathy and Alzheimer 

disease. Of note, CNS amyloidosis and tauopathy are predic-

tors of AD. The activation states of the five psychological dis-

orders were not reported, possibly due to inconsistencies in the 

literature findings with respect to fold changes of the differen-

tially expressed genes. However, the p-values for all five dis-

orders were highly significant, suggesting that the progression 

of these disorders may be modulated by the Arc function.  

We next investigated how Arc knockdown could affect genes 

that were previously identified to increase susceptibility to AD. 

We have manually curated genes that were found to be genetic 

risk factors of AD and validated them by referencing the Ge-

nome Wide Associations Studies (GWAS) catalogue72. Nota-

bly, critical genetic risk factors of AD such as Picalm, Apoe, 

Slc24a4, and Clu were downregulated upon the knockdown of 

Arc73-77 (Fig. 10). Out of a total of 39 susceptibility genes iden-

tified, 26 were regulated by Arc (Fig. 10). 

Because Arc plays a role in the aetiology of AD by modulating 

its genetic risk factors, we investigated if Arc regulates genes 

that are more broadly involved in the pathophysiology of AD. 

Table 4 lists the results. While some differentially expressed 

genes control amyloid beta formation/accumulation through 

the regulation of cleavage and stabilization of amyloid precur-

sor protein (APP) (Mmp13, Slc2a13, Apba1, Casp8, Ptgs2, 

Gpr3, Pawr, Timp3, Kcnip3, Plk2, Aplp2, Bace2, Apoe and 

Apba2), others are involved in the hyperphosphorylation of tau 

and formation of neurofibrillary tangles (Npas4, Cxcl1, 

Dryrk2, Tril, Pltp, Plk2 and Selenop). Arc knockdown also al-

tered the expression of genes that are associated with the neu-

rodegeneration and neurotoxicity observed in AD (Casp8, 

Bcl2l11, Alg2, Tac1, Bdnf, Hmox1, Pawr, Ccl2, Selenop and 

Atf6). Finally, Arc regulated genes associated with altered cog-

nitive function, a characteristic of AD (Mmp13, Pdyn, Tac1, 

Bdnf, Nr4a2, Penk, Pltp and Ccl2). To date, presenilin 1 

(Psen1) and glycogen synthase kinase 3 beta (Gsk3b) are the 

only AD mediators which have been reported to physically as-

sociate and interact with Arc78-80. Arc also interacts with en-

dophilin 2/3 and dynamin and recruits them to early/recycling 

endosomes to traffic APP and beta secretase 1 (BACE1), cru-

cial determinants of AD progression80. However, the observa-

tion that knocking down Arc resulted in more than 100 differ-

entially expressed genes that are either AD susceptibility genes 

or genes implicated in the pathophysiology of AD (Fig. 10 and 

Table 4), indicated that Arc could be mediating the expression 

of these genes via transcriptional regulation and not simply 

physical interactions. Arc has previously been reported to re-

side in the nucleus20,24,30,31 and we have shown how Arc phys-

ically associates with chromatin and with markers of active 

transcription and enhancers (Fig. 3, 4 and 5). Therefore, we 

wanted to investigate how Arc downregulation affects tran-

scription regulation.                    

Arc regulates the expression of transcription factors. From 

our GO analysis and a manual curation based on literature ci-

tations, we have identified 369 transcriptional regulators and 

transcription factors whose expression is controlled by Arc. 

Table 5 shows the top 40 transcriptional regulators or factors 

whose mRNA levels were altered when activity-dependent Arc 

expression was prevented. Some of the transcriptional regula-

tors are involved in neuronal development and differentiation 

(Fgf1, Tgfb1i1, Fezf2, Jun, Magel2, Neurod2, Atxn1, Gdf15, 

Prdm1, Mycn, Nr4a2 and Pou2f2), while others are involved 

in the development of neurological or neurodegenerative dis-

eases (Npas4, Igf1r, Txnip, Lgr4, Cebpd, Pim1, Magel2, Ireb2, 

Smad7, Sorbs1, Nfil3, Pknox2, Hdac9, Hmox1, Atxn1, Cbfb, 

Lrp2, Hipk3 and Nr4a2). Many of the transcriptional regula-

tors/factors have been implicated in memory formation and 

plasticity, such as such as Thbs1, Jun, Tet3, Fosb, Atxn1 and 

Cbfb. A GO analysis by DAVID81 was carried out to identify 

the biological processes that these transcription factors could 
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be modulating. Table 6 shows the top 20 biological processes 

that were regulated by altered transcription factor expression 

and that have neurological relevance. Corroborating the iden-

tified functions of the top 40 transcriptional regulators/factors 

(Table 5), differentially expressed transcriptional regula-

tors/factors were observed to be highly enriched in biological 

processes such as differentiation of neurons, nervous system 

development, learning, long-term memory and aging (Table 

6). Some of the transcriptional regulators were involved in 

multiple processes: Npas4, Jun, Bdnf, Nr4a2 and Elavl4 mod-

ulate learning, long-term memory, aging, neuron differentia-

tion and nervous system development (Table 6). 

Upstream regulators associated with Arc-dependent genes. 

Because Arc knock down resulted in the differential expres-

sion of 1945 genes (Fig. 6), altering downstream pathways 

(Fig. 9) possibly leading to disease states (Table 3), we iden-

tified the upstream modulators that could explain the vast dif-

ferential expression pattern observed. From the IPA analysis, 

11 upstream regulators were predicted to critically contribute 

to the differential expression profile (Table 7). Except for 

Sox2, none of these upstream regulators were transcriptionally 

affected by Arc knockdown, suggesting Arc controls their 

function through a different mechanism. SOX2 and HDAC4 

were both activated by the absence of Arc, while the function 

of the remaining 9 regulators was inhibited.  Of note, the pre-

dicted inhibition of CREB1 (z-score = -3.5) and APP (z-score 

= -2.8) explains the differential expression of 100 and 94 

genes, respectively (Table 7). The 11 upstream regulators pre-

dicted by IPA control the expression of Nr4a2, Slc6a1 and 

Igf1r, genes that are also involved in AD progression, neuroin-

flammation pathways and synaptic LTD (Fig. 9A and Table 

4). We have investigated the mechanisms by which Arc could 

alter the function of the identified upstream regulators result-

ing in the alteration of downstream pathways and AD progres-

sion. The downstream pathways investigated are (i) opioid sig-

naling, (ii) synaptogenesis signaling, (iii) the endocannabinoid 

neuronal synapse pathway, (iv) synaptic LTD and (v) neuroin-

flammation signaling (Fig 11). These are also the pathways 

whose downstream effects we focused on in Figure 9. APP, 

CREB1 and TNF are three upstream regulators identified by 

IPA that controlled the highest number of genes involved in 

the downstream pathways highlighted (Fig. 11). The top five 

genes regulated by APP were Igf1r (synaptic LTD)82, Ptgs2 

(endocannabinoid neuronal synapse pathway; neuroinflamma-

tion, AD progression)83-86, Jun (neuroinflammation, AD pro-

gression)87-90, Dlg4 (PSD95, synaptogenesis)91,92 and Syn2 

(synaptogenesis)93 (Fig. 11). In addition to Ptgs2 and Syn2, 

CREB1 regulated the differential expression of Slc6a1 (neu-

roinflammation)94, Pdyn (opioid signaling)95 and Fosb (opioid 

signaling)96 (Fig. 11). Interestingly, TNF, whose transcription 

was not altered upon knockdown of Arc, regulates 15 genes 

(Table 7), the top five of which are Casp8 (neuroinflamma-

tion)97, Ptgs2 (also regulated by APP and CREB1), Gabrg2 

(neuroinflammation)98,99, Bdnf (synaptogenesis; neuroinflam-

mation, AD progression)100-103 and Penk (opioid signaling, AD 

progression)104. While the top CREB1-regulated genes are 

mainly associated with the opioid signaling pathway, APP and 

TNF are implicated in neuroinflammation. Triggering of the 

neuroinflammation pathway leads to the altered expression of 

AD-associated genes such as Ptgs2, Jun, Bdnf, Hmox1 and 

Gabbr2. 

 

Arc over-expression alters gene expression in human em-

bryonic kidney cells. The results presented thus far suggest 

that preventing Arc expression during neuronal network acti-

vation results in an altered gene expression profile affecting 

synaptic plasticity and cellular excitability, as well as neuro-

degenerative disease state. We therefore tested whether Arc 

can alter gene transcription, outside the context of neuronal 

network activation and without viral infection. We induced the 

expression of the endogenous Arc gene in human embryonic 

kidney (HEK293T) cells using a CRISPR-Cas9 approach105 

(Fig. 12A). Whereas wildtype HEK293T cells expressed Arc 

at a very low level, targeting a transcription activator complex 

to its promoter increased Arc mRNA levels nearly 250-fold. 

This in turn altered the expression of 57 genes (absolute FC > 

2, p < 0.05), with 54 genes up-regulated and 3 genes down-

regulated. Many of the genes have neuronal functions (Fig. 

12B). We have performed a GO analysis to understand the cel-

lular components (Fig. 12C) and biological processes (Fig. 

12D) these differentially expressed genes were involved in. 

We observed many genes that are typically expressed in neu-

rons or are synaptic components, as indicated by the following 

GO terms: i) synapse part (p = 1.1E-04), ii) presynapse (p = 

1.0E-03), iii) neuron part (p = 1.5E-03) and iv) postsynaptic 

membrane (p = 2.3E-03) (Fig. 12C). Differentially expressed 

genes upon the induction of Arc in HEK293T cells are in-

volved in synaptic transmission processes or neuronal devel-

opment, including i) chemical synaptic transmission (p = 2.5E-

04), ii) signal release from synapse (p = 1.9E-03), iii) inter-

neuron precursor migration (p = 3.2E-03) and iv) axon guid-

ance (p = 3.2E-03) (Fig. 12D). Genes that are associated with 

these cellular components and processes were also highly al-

tered, including i) Chat (p=4.7E-85, choline acetyltransferase) 

located at presynaptic terminals, synthesizes acetylcholine, ii) 

Oprd1 (p=2.6E-62, δ-opioid receptor), activation reduces pain 

and improves negative emotional states, iii) Arx (p=1.1E-70, 

Aristaless Related Homeobox), a transcription factor involved 

in neuronal migration and development, iv) Scn1b (p=6.6E-22,  

Na channel β1 subunit), involved in axonal guidance, v) Foxa3 

(p=3.3E-24, Forkhead Box A3), a transcription factor involved 

in the determination of neuronal fate106,107, vi) Pllp (p=1.5e-25, 

Plasmolipin), involved in membrane organization and ion 

transport, vii) Slc18a3 (p=1.6E-16), a vesicular acetylcholine 

transporter at the presynapse, viii) Fndc11 (p=4.4E-14, Fibron-

ectin Type III Domain Containing 11), a vesicular gene, and 

ix) Adgrb1 (p=3.7E-12, Adhesion G Protein-Coupled Receptor 

B1), localized at the postsynapse, involved in synapse organi-

zation and cell projection morphogenesis (Fig. 12B). 
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Together with the results obtained with Arc knockdown in neu-

rons, this finding strongly implicates Arc as a transcriptional 

regulator of neuronal development, synaptic function, plastic-

ity and intrinsic excitability.  

 

 

DISCUSSION 

Activity-regulated cytoskeleton-associated protein (Arc) was 

discovered in 1995 as a neuronal activity-dependent immedi-

ate-early gene1,2, which is rapidly transcribed in response to 

network activation associated with novel experiences7-11. 

Knockdown of Arc expression interferes with stabilization of 

short-term memory, indicating that Arc plays a critical role in 

memory consolidation3,4. Arc’s function has been most widely 

studied in excitatory synapses, where it regulates endocytosis 

of AMPA receptors14,17. Interestingly, AMPA receptor re-

moval also underlies Aβ-induced synaptic depression and den-

dritic spine loss108, processes thought to be associated with 

cognitive dysfunction in Alzheimer’s disease (AD)109.  In Arc 

knockout mice, long-term potentiation (LTP) is not stable, and 

dissipates within a few hours, consistent with the impaired 

memory consolidation observed in these mice3-6. However, the 

absence of the late form of LTP in Arc knockout mice cannot 

be explained by an AMPA receptor endocytosis deficit4, indi-

cating that Arc must have additional functions. The data pre-

sented here identify a second function for Arc: regulation of 

neuronal activity-dependent transcription for genes associated 

with synaptic plasticity, intrinsic excitability and cellular sig-

naling. Analysis of the differentially expressed genes points to 

Arc’s involvement of several neurological disorders, including 

Autism, Huntington’s and Alzheimer’s disease. This newly 

proposed role for Arc is supported by its interaction with chro-

matin and histone markers reported here (Fig. 2-5, Movie). 

Arc and chromatin. Pharmacological network stimulation in-

duces Arc in a subset of cultured neurons (Fig. 1). Whereas 

chromatin in cultured hippocampal neurons is relatively uni-

form, Arc positive neurons are characterized by a larger num-

ber of densely packed heterochromatin puncta (chromocen-

ters), likely harbouring silent genes, interspersed with highly 

open euchromatin domains, which are capable of active tran-

scription (Fig. 2). This result is consistent with what has been 

observed in vivo, where Arc-deficient mice were found to have 

decreased heterochromatin domains31. These significant 

changes in chromatin structure observed in Arc-positive neu-

rons are likely associated with equally substantial alterations 

in gene expression profiles. The correlation between Arc ex-

pression and chromatin remodeling that we observed does not 

establish a causative relationship. It is possible that Arc expres-

sion requires an alteration in chromatin structure, or alterna-

tively, Arc expression may cause chromatin remodeling. Ad-

ditional experiments are needed to decide on the underlying 

mechanism. It is also not clear at this time what determines 

which neurons will express Arc following network activation, 

although it likely has to do with the degree of participation of 

individual neurons in the enhanced network activity, which in 

turn depends on their synaptic connectivity.  

 Arc appears to physically interact with DNA: time-

lapse movies show dynamic chromatin loops that appear to in-

vade Arc puncta (Fig. 3, Movie). The interaction is transient, 

lasting only a few seconds. Because these Arc puncta likely 

contain the histone acetylase Tip6025, it is conceivable that this 

interaction alters chromatin accessibility, thereby facilitating 

transcription. This idea is further strengthened by the associa-

tion of Arc puncta with a histone marker for active enhancers 

(Fig. 4), as well as the close apposition between Arc puncta 

and puncta for a dual histone marker (H3K9Ac-S10P) that la-

bels sites of active transcription (Fig. 5). A similar result has 

been obtained in vivo, where cocaine administration in rats re-

sults in an increase in nuclear Arc, which then associates with 

H3S10P31. Taken together, the data presented here on the in-

teraction of Arc and chromatin may provide a mechanism for 

epigenetic regulation of gene transcription as the basis for 

memory consolidation.   

How does Arc regulate transcription? Preventing Arc induc-

tion during neuronal network activation affects the transcrip-

tion of a very large number of genes (Fig. 6). The domain 

structure of Arc protein appears to rule out that it can function 

as a transcription factor78. This raises the question: how does 

Arc regulate transcription? One possible mechanism, dis-

cussed above, is that Arc epigenetically controls gene tran-

scription by regulating chromatin structure (through Tip60 or 

other chromatin remodelers) and modification of histones (e.g. 

H4K12Ac25). However, the differential gene expression asso-

ciated with Arc knockdown is mediated through eleven up-

stream regulators identified by IPA (Table 7, Fig. 11). This 

suggests that Arc has additional, less direct ways of regulating 

transcription. Interestingly, to date, none of the eleven up-

stream regulator proteins have been shown to either directly 

interact with or be modulated by Arc. They are also not tran-

scriptionally controlled by Arc (except for Sox2) (Table 7). 

How then does Arc regulate transcription by activating or in-

hibiting these upstream regulators? Using IPA and its Ingenu-

ity Knowledge Base, we were able to identify several known 

interactors of Arc that can modulate the action of the upstream 

regulators, which could then subsequentially alter gene tran-

scription (Fig. 13A). Next, we will discuss the mechanisms by 

which four identified Arc interactors, NOTCH1, TIP60/Kat5, 

APP and GSK3B, could modulate the upstream regulators.  

NOTCH1. NOTCH1 is a transmembrane receptor capable of 

signaling to the nucleus. Arc is required for the proteolytic 

cleavage of NOTCH1 to release its intracellular domain 

(NICD), which can translocate to the nucleus and alter tran-

scription110. NICD regulates the expression of the transcrip-

tional repressor BCL6111 and the activity of the calcium-de-

pendent kinase CAMK4112, which in turn alter the localization 

and the nuclear-cytoplasmic shuttling of the histone deacety-

lase HDAC4, thereby affecting its downstream interac-

tions/modulation113,114 (Fig. 13B). NOTCH1 could regulate the 

stability, nuclear localization and signaling of the transcription 
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factor SOX2 through regulation of the protein kinase  AKT1 

and cell-surface glycoprotein CD44115-118 (Fig. 13B). 

NOTCH1, through NICD, controls the expression of plasmin-

ogen activator inhibitor-1 (SERPINE1)119, an inhibitor of 

thrombin (F2)120 (Fig. 13B). NOTCH1 regulates the transcrip-

tional activity of T-cell factor 4 (TCF7L2)121, through its inter-

action with the DNA-repair protein Ku70 (XRCC6)122 (Fig. 

13B). NOTCH1 interacts with the nerve growth factor 

NR4A1/Nur77123, thereby modulating expression levels of the 

cytokine tumor necrosis factor alpha (TNF)124.  Finally, 

NOTCH1 regulates the expression level of the inhibitor of 

apoptosis protein cIAP1/Birc2125, which also affects TNF ex-

pression126 (Fig. 13B).  

TIP60/Kat5. The Kat5 gene encodes TIP60, a member of the 

MYST family of histone acetyl transferases, which plays im-

portant roles in chromatin remodeling and transcription regu-

lation127. In the fruit fly Drosophila, TIP60 has been implicated 

in epigenetic control of learning and memory128, while it me-

diates APP-induced apoptosis and lethality in a fly AD 

model129. Nuclear Arc interacts with TIP60 at perichromatin 

regions and recruits TIP60 to PML bodies, sites of epigenetic 

transcription regulation25. Arc levels correlate with acetylation 

status of H4K12, a substrate of TIP60 and a memory mark that 

declines with aging29, suggesting that Arc mediates activation 

of TIP60. TIP60/Kat5 facilitates the repressive action of 

HDAC4 through the formation of complexes with the zinc-fin-

ger transcription factor KLF4121,130, the cAMP-dependent tran-

scription factor ATF3131-133 and the neurodegenerative disease 

protein ataxin-1 (ATXN1)134,135 (Fig. 13B). Arc’s interaction 

with TIP60/Kat5 may result in a complex being formed at the 

cIAP1/Birc2 promoter region136 to mediate downstream sig-

naling of TNF126 (Fig. 13B). TIP60/Kat5 forms a complex with 

the Kaiso transcription factor ZBTB33137 resulting in the inhi-

bition of the TCF7L2 transcriptional complex138 (Fig. 13B). 

Complexing of TIP60 with ARID1B could affect SOX2 sig-

naling139-141. The regulation of SOX2 by TIP60/Kat5 could 

also have an implication on the transcriptional activity of 

Achaete-Scute homolog 1 (ASCL1), as SOX2 and ASCL1 reg-

ulate each other, possibly as a feedback loop142,143.  

APP. The functional interaction between APP and Arc is cru-

cial for Arc’s modulation of upstream regulators (Fig. 13A). 

Arc interacts with endophilin 2/3 (SH3GL3) and dynamin on 

early/recycling endosomes to alter the trafficking and localiza-

tion of APP. The association of Arc with presenilin 1 (PSEN1) 

promotes the trafficking of γ-secretase to endosomes and en-

zymatic cleavage of APP80 (Fig. 13B). The generation of am-

yloid beta through APP cleavage leads to an altered down-

stream signaling, activity and production of HDAC4, SOX2 

and F2 through changes of caspase-3 (CASP3)144,145, JUN146,147 

and thrombospondin-1 (THBS1)148,149, respectively (Fig. 

13B). Cleavage of APP generates a cytosolic fragment, AICD, 

which forms a transcriptionally active complex with TIP60 and 

the transcription factor FE65150. AICD also modulates the 

ubiquitin-proteasome system (UPS) via UBE2N151, to change 

downstream signaling induced by TNF152 (Fig. 13B). The 

modulation of the UPS via UBE2N, UBC and UBE3A153 could 

implicate the ubiquitination of serum- and glucocorticoid-reg-

ulated kinase-1 (SGK-1)154-156 and polyglutamine-expanded 

ataxin 3 (ATXN3)157 and their ability to regulate the transcrip-

tion factor cAMP responsive element binding protein 1 

(CREB1)158,159 (Fig. 13B). The modulation of CREB1 would 

further implicate changes in expression levels of cAMP re-

sponsive element modulator CREM160-162 (Fig. 13B). Finally, 

APP has a role in the regulation of TNF through indirect mod-

ulation of CREM163 and direct interactions with laminin could 

regulate the production of TNF164,165 (Fig. 13B).  

GSK3B. Although glycogen synthase kinase 3 beta (GSK3B) 

is not regulated by Arc, promotion of cleavage of APP to am-

yloid beta enhances the induction and activation of GSK3B166-

168. This could lead to modified downstream signaling of 

CREB1169 (Fig. 13B). GSK3B is also a downstream mediator 

of NOTCH1170, PSEN1171, and CAMK2B172, all of which are 

Arc interactors80,110,173. This creates an interesting situation as 

APP/amyloid beta is positively regulated by GSK3B174,175, cre-

ating a positive feedback loop for amyloid beta production and 

its downstream signaling166-168 (Fig. 13B).  

Interactions among TIP60, NOTCH1 and APP.  A delicate 

regulatory network exists among Arc’s interactors 

TIP60/Kat5, NOTCH1 and APP (Fig. 13B). Arc’s activation 

of the γ-secretase PSEN1 to promote cleavage of APP not only 

increases amyloid beta load, but also results in an increased 

level of the APP intracellular domain (AICD)80,176. AICD 

forms a complex with TIP60/Kat5 to alter transcriptional ac-

tivity crucial for AD progression150,177-182 (Fig. 13B). This 

AICD-TIP60 interaction is disrupted by NICD, formed when 

Arc activates NOTCH1110, thereby downregulating AICD sig-

naling while promoting NICD signaling183,184 (Fig. 13B). The 

formation of NICD and AICD is competitive, as NOTCH1 and 

APP are both substrates of γ-secretase185, whose activity is reg-

ulated by Arc80. In addition, the induction of TIP60 histone 

acetylation activity by Arc25 could also increase the negative 

regulation of NOTCH1183 (Fig. 13B). This highlights Arc as 

an important modulator of the relationship and downstream 

signaling mediated by NOTCH1, TIP60/Kat5 and APP. Of 

note, the mRNA levels of Notch1, Kat5 and App were not sig-

nificantly altered upon knockdown of Arc, indicating that the 

transcriptional changes brought about were due to protein in-

teraction and activation (Fig. 13B), which is upstream of tran-

scription (Fig. 13A).  However, the modulation of upstream 

regulators by Arc is also dependent on the its subcellular local-

ization. 

Arc’s subcellular localization determines its function.   

When Arc is localized outside the nucleus it tends to accumu-

late in dendrites and spines, small membrane protrusions that 

harbour excitatory synapses. Here, Arc controls the removal of 

AMPA receptors by endocytosis, allowing it to regulate syn-

aptic efficacy14,17. Synaptic Arc also associates with the synap-

tic scaffolding protein PSD-95/Dlg4, which complexes with 

the tyrosine kinase FYN186-188, allowing it to regulate brain-
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derived neurotrophic factor (BDNF) signalling through tyro-

sine receptor kinase B (TrkB), a major pathway for synapse 

maturation, plasticity and neurodevelopmental disorders189. 

Activation of FYN could also mediate the secretion of TNF190 

(Fig. 13B). A high-affinity interaction with calcium-calmodu-

lin kinase 2 beta (CAMK2B) targets Arc to inactive synapses, 

where it removes GluA1 AMPA receptors from the postsynap-

tic membrane surface173.  

Arc has been shown to possess both a nuclear locali-

zation signal (NLS) and a nuclear retention domain24, allowing 

it to translocate to the nucleus autonomously. Once in the nu-

cleus, Arc has access to several other potential binding part-

ners, including a nuclear spectrin isoform (βSpectrinIV∑5)20 

and TIP60, a subunit of a chromosome remodeling complex25. 

Association with Amida, encoded by the Tfpt gene (Fig. 13B) 

facilitates Arc’s entry into the nucleus191. Amida is a subunit 

of the INO80 chromatin remodeling complex, which contains 

the transcriptional regulator MCRS1192,193. MCRS2, an iso-

form of MCRS1, is associated with the MLL chromatin remod-

eling complex, which also contains KMT2A (MLL1) (Fig. 

13B). Arc’s association with Amida and possibly the INO80 

and MLL complexes may provide Arc with yet another oppor-

tunity to control gene expression by altering chromatin struc-

ture.  

The ability of Arc to translocate between the synapse 

and the nucleus, with unique functions in each subcellular 

compartment, further strengthens its role in memory consoli-

dation, which requires both alterations of synaptic function and 

de novo gene transcription194. 

 

Arc controls synaptic plasticity and intrinsic excitability. 

Arc’s well-studied ability to alter synaptic efficacy by endocy-

tosis of AMPA receptors established it as a critical regulator of 

synaptic plasticity14,17,188,195. Whereas this mechanism of activ-

ity-dependent removal of glutamate receptors supports Arc’s 

role in mediating long-term depression (LTD)196-199, it does not 

explain the absence of stable long-term potentiation (LTP) ob-

served in Arc knock-out mice4. Because late-LTP is considered 

a critical cellular mechanism underlying memory consolida-

tion, the molecular and cellular mechanism by which Arc sup-

ports memory stabilization has remained elusive. The data pre-

sented here showing that Arc transcriptionally regulates the ex-

pression of a large number of synaptic proteins, with functions 

in both the pre- and post-synaptic compartment (Table 2), pro-

vides a new mechanism by which Arc can control long-lasting 

changes in synaptic structure and function required for 

memory consolidation.  

Formation of a memory trace not only requires long-

term changes in the strength of the synapses connecting the 

neurons that constitute the engram, but also stable changes in 

their intrinsic excitability200-202. Because Arc controls the ex-

pression of a large number of ion channels and pumps/trans-

porters, it appears that Arc is capable of supporting this func-

tional aspect of memory consolidation as well.  

Arc and Alzheimer’s disease. Alzheimer’s Disease (AD) is a 

devastating neurodegenerative disorder203,204 characterized by 

the progressive loss of both synaptic function205 and long-term 

memory formation206. There is currently no therapy that pre-

vents, stabilizes or reverses the progression of this disease, 

which is projected to take on epidemic proportions as the world 

population ages207,208. Several previous studies have revealed 

an association between Arc and AD. A landmark study pub-

lished in 2011 showed that Arc protein is required for the for-

mation of amyloid (Aβ) plaques80. Moreover, Arc protein lev-

els are aberrantly regulated in the hippocampus of AD pa-

tients209, and are locally upregulated around amyloid 

plaques210, whereas a polymorphism in the Arc gene confers a 

decreased likelihood of developing AD211. It has been shown 

that spatial memory impairment is associated with dysfunc-

tional Arc expression in the hippocampus of an AD mouse 

model212. These published results together with the data pre-

sented here, suggests that aberrant expression or dysfunction 

of Arc contributes to the pathophysiology of AD205,213. 

Arc and AD therapy. Arc’s ability to transcriptionally regu-

late AD susceptibility and AD pathophysiology related genes 

indicates a possibility for modifying expression and activity of 

Arc as a therapy for AD. Current treatments are symptomatic,  

not effective disease-modifying cures214. Many hypotheses 

have been proposed to underlie the development of AD, in-

cluding  i) amyloid beta aggregation, ii) tau hyperphosphory-

lation, iii) neuroinflammation, iv) neurotransmitter dysfunc-

tion, v) mitochondria dysfunction, vi) glucose metabolism, vii) 

vascular dysfunction and viii) viral infection214-217. These hy-

potheses have generated many new compounds, none of which 

showed efficacy in slowing cognitive decline or improving 

global functioning214,216. Arc appears a good therapeutic can-

didate for AD, because of its involvement in amyloid beta pro-

duction, tau phosphorylation, neuroinflammation and neuro-

transmission. Moreover, we have shown that Arc can modulate 

the expression of many AD genetic risk factors and genes as-

sociated with the pathophysiology of AD (Fig. 9, Fig. 10, Fig. 

12 and Table 4). Currently, known drugs that could increase 

mRNA or protein expression of Arc include antidepressant 

drugs218, phencyclidine219 and corticosterone, a memory en-

hancing drug220. Arc expression could be altered by targeting 

TIP60 and PHF8, two histone modifiers that together control 

Arc transcription22.  Drugs could also modulate Arc’s effect 

via its interactors such as TIP60 and NOTCH1. Natural and 

synthetic drug molecules targeting TIP60 exist, but they are 

currently used for cancer treatment221. Modulation of 

NOTCH1 function often involves inhibitors of γ-secretase, 

which would also affect APP cleavage185,222. These pharma-

ceutical modifications of Arc expression and activity could 

present a promising starting point for development of a more 

effective AD therapy.  
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METHODS 

Animals and chemicals. All work involving the use of ani-

mals were performed according to the guidelines of the Insti-

tutional Animal Care and Use Committee (IACUC) and were 

approved by the IACUC at the SingHealth in Singapore. Time-

mated E18 Sprague Dawley rats were purchased through the 

SingHealth Experimental Medicine Centre (SEMC). They 

were sacrificed immediately after delivery to the vivarium. All 

chemicals were purchased from Sigma-Aldrich unless other-

wise stated.  

Culturing hippocampal and cortical neurons. Hippocampal 

and cortices were dissected from the E18 embryos of Sprague 

Dawley rats. Hippocampi or cortices underwent papain disso-

ciation based on the protocol from the Papain Dissociation 

System (Worthington Biochemical Corporation). Gentle me-

chanical trituration was performed to ensure complete dissoci-

ation of tissues. Dissociated cells were plated on poly-D-lysine 

(Sigma) coated dishes at a plating density of 1.5 x 105/cm2 in 

Neurobasal medium (Gibco) supplemented with 10% (v/v) 

foetal-bovine serum (FBS, Sigma), 1% (v/v), penicillin-strep-

tomycin (P/S, Gibco) and 2% (v/v) B27 supplement (Gibco) 

for 2 hours. FBS-containing medium was then removed and 

replaced with FBS-free medium and cells were cultured FBS-

free subsequently to prevent astrocytic over-growth. Medium 

was changed on Days In Vitro (DIV) 5. Subsequently, medium 

was changed every three to four days. Experiments were car-

ried out on DIV 18-22.  

 

Inhibition of Arc expression by an shRNA. Four Arc shRNA 

plasmids (SureSilencing, Qiagen) were transfected into neu-

ronal cultures using Lipofectamine 2000 (Qiagen). Pharmaco-

logical LTP was induced in neuronal cell cultures using a 4-hr 

treatment with 4BF. Cells were fixed and stained for Arc pro-

tein. Immunofluorescence images were obtained using wide-

field microscopy. Effectiveness of inhibition of Arc expression 

was based on co-occurrence of expression of the plasmids and 

the absence of Arc immunofluorescence. The most effective 

shRNA plasmid was chosen and adeno-associated virus AAV9 

constructs harbouring an Arc shRNA and a scrambled version 

of this shRNA were synthesized using the annealed oligo clon-

ing method. The oligos for the Arc shRNA were: i) 5’-GAT 

CCG GAG GAG ATC ATT CAG T-3’, ii) 5’-ATG TCT TCC 
TGT CAA CAT ACT GAA TGA TCT CCT CCT TTT TG-3’, 

iii) 5’-AAT TCA AAA AGG AGG AGA TCA TTC AGT-3’ 

and iv) 5’-ATG TTG ACA GGA AGA CAT ACT GAA TGA 

TCT CCT CCG-3’. The oligos for Arc scrambled shRNA were 

i) 5’-GAT CCG GTA ATT TCG GAG GAT C-3’, ii) 5’-
AAG TCT TCC TGT CAA CTT GAT CCT CCG AAA TTA CCT 

TTT TG-3’, iii) 5’-AAT TCA AAA AGG TAA TTT CGG 

AGG ATC-3’ and iv) 5’-AAG TTG ACA GGA AGA CTT 

GAT CCT CCG AAA TTA CCG-3’. The ends of the annealed 

oligos harbor overhangs of the restriction sites for BamH1 and 

EcoR1. Oligos for the Arc shRNA were annealed in buffer A 

(mM) 100 NaCl and 50 HEPES, pH 7.4 while oligos for Arc 

scrambled shRNA were annealed in buffer B (mM) 10 Tris, 

pH 7.5-8.0, 50 NaCl and 1 EDTA at equimolar concentration 

by heating to a temperature of 95°C for 5 min then cooling it 

down to room temperature (rtp). The annealed oligos were li-

gated using T4 ligase (New England Biolabs) into the 

BamH1/EcoR1-cut vector 

pENN.AAV.U6.shRLuc.CMV.eGFP.SV40, generously pro-

vided by the University of Pennsylvania, Vector Core. Ligated 

products were transformed into Stbl3 competent cells (Thermo 

Fisher Scientific). Successful constructs were identified by re-

striction enzymes digestion and verified by sequencing. AAV9 

virus harbouring the transgenes (concentrations at 1 x 1013 – 1 

x 1014 GC/ml range) were synthesized by University of Penn-

sylvania, Vector Core. Arc expression was prevented by treat-

ing neuronal cultures with 3 x 106 multiplicity of infection 

(MOI) AAV9 Arc shRNA virus on DIV14. Induction of Arc 

expression by pharmacological LTP (see below) was per-

formed between DIV19-22. 

 

Pharmacological LTP and immunofluorescence. Hippo-

campal or cortical neuronal cultures were treated with a com-

bination of 100 µM 4-aminopyridine (4AP), 50 µM bicuculline 

(Bic) and 50 µM forskolin for the respective time stated to in-

duce pharmacological LTP21,32,33. This drug combination will 

be referred to as 4BF henceforth. At the end of the treatment, 

cells were fixed with 100 % ice-cold methanol at -20°C for 10 

min. Cells were washed three times with 1x Phosphate Buff-

ered Saline (PBS, in mM: 137 NaCl, 2.7 KCl and 12 phosphate 

buffer) containing 0.1% (v/v) Triton X-100 (PBS-Tx). De-

pending on the antibodies used, some cells were fixed again 

with 4% (w/v) paraformaldehyde (PFA) in 1x PBS containing 

4% (w/v) sucrose. Cells were washed three times in 1x PBS-

Tx and blocked in 2% (w/v) Bovine Serum Albumin (BSA) in 

1x PBS for 1 h at rtp. Depending on the species the secondary 

antibodies were raised in, 10% (v/v) serum of the correspond-

ing species was added to the blocking buffer. Cells were 

probed with primary antibodies as indicated for the experi-

ments: i) anti-Arc (1:300, Santa Cruz, sc-17839), ii) anti-Arc 

(1:300, Synaptic Systems, 156 003), iii) anti-MAP2 (1:300, 

Millipore, AB5622), iv) anti-H3K27Ac (1:300, Wako, 306-

34849) and v) anti-H3K9Ac-S10P (1:300, Abcam, ab12181) 

in antibody dilution buffer (1x PBS containing 1% (w/v) BSA, 

5% (v/v) serum and 0.05% (v/v) Triton X-100) for 1 h at rtp. 

Cells were washed three times in 1x PBS-Tx. Cells were then 

probed with 1:1000 Alexa-Fluor 647, Alexa Fluor 568 or Alex-

Fluor 488 (Molecular Probes) for 1 h at rtp. Cells were washed 

three times, followed by staining of DNA with 50 µM DAPI 

for 20 min at rtp. Cells were mounted in FluorSave (Calbio-

chem). For immunofluorescence staining for STORM imag-

ing, cells were fixed with 3% paraformaldehyde and quenched 

with 0.1% NaBH4 as described in Oey et al. (2015)22. Block-

ing, primary and secondary antibody staining were carried out 

as above. A post-fixation, as described in Oey et al. (2015)22, 

was also carried out after secondary antibody binding. 

 

Transfection of neuronal cultures. The Arc-eYFP construct 

was generated as described in Bloomer et al. (2007)20. 
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Neuronal cultures (DIV16) were transfected with Arc-eYFP 

and H2B-mCherry (Addgene, 20972) with Lipofectamine 

2000 (Invitrogen) according to manufacturer’s protocol with 

some adjustment. Arc-eYFP:H2B-mCherry DNA was added 

to Lipofectamine at a ratio of 1:1. The Lipofectamine:DNA 

complex was incubated at rtp for 20 min before been added to 

the cells. The complex was added dropwise such that it was 

evenly distributed on the cell culture. Culture medium was 

added after 20 min and experiments were performed on 

DIV19.  

 

Widefield microscopy. Fluorescence images were obtained 

using widefield microscopy as detailed in Oey et al. (2015)22. 

Images obtained were analyzed using NIS Elements AR ver-

sion 4.1 (Nikon) to perform background subtraction. Out-of-

focus fluorescence was removed using 3D deconvolution (Au-

toQuant, Media Cybernetics). The Region-Of-Interest (ROI) 

analysis tool was used to mark nuclei based on DAPI intensity. 

Corresponding mean Arc intensity of each nucleus was also 

measured using the automated measurement module. The av-

erage of mean Arc intensity for all neurons from non-4BF 

stimulated controls were obtained for each set of experiments. 

This would be used as a cut-off threshold between Arc-positive 

and Arc-negative neurons for each set of experiments since 

Arc expression was only observed upon stimulation223,224. Nu-

clei images were cropped individually and analyzed using a 

custom MATLAB (Mathworks) program. Size and intensity 

thresholds were applied to identify and quantitate puncta in 

each nucleus. Batch processing using the same size and inten-

sity threshold was performed. Mean size of the puncta and 

number of puncta were recorded. ROI ID for each nucleus was 

used to correlate the mean Arc intensity with the mean area or 

number of puncta. Statistical analysis was performed using 

GraphPad Prism Version 6.01. Statistical data shown are mean 

± S.E.M. (standard error of the mean) across experiments. 

 

Spinning Disc confocal microscopy. Fluorescence images 

and time-lapse movies were obtained using a motorized Ti-E 

inverted microscope (Nikon) with a 60X oil Plan-Apo objec-

tive (1.49 NA) and a 100X Apo-TIRF objective (1.49 NA). 

Spinning disk confocal microscopy was achieved using the 

CSU-W1 Nipkow spinning disk confocal unit (Yokogawa 

Electric). A sCMOS camera (Zyla, Andor) was used to capture 

the confocal images. Laser lines used were 488 nm (100 mW) 

for GFP, 515 nm (100 mW) for eYFP and 561 nm (150 mW) 

for mCherry (Cube lasers, Coherent). Fast excitation/emission 

switching was obtained using a dichroic beam splitter (Di01-

T405/488/568/647-13 x 15 x 0.5, Semrock) and filter wheels 

controlled by a MAC6000DC (Ludl). The Perfect Focus Sys-

tem (Nikon) was applied to ensure minimal focus drift during 

image acquisition. Z stacks were obtained using step sizes rec-

ommended for objectives used, which were processed using 

3D blind deconvolution (AutoQuant) to remove out-of-focus 

fluorescence.  

 

Stochastic Optical Reconstruction Microscopy (STORM). 

Dual color STORM image sequences were obtained using a 

Zeiss ELYRA PS.1 platform. Endogenous Arc and the dual 

histone marker H3K9Ac-S10P were labeled with primary an-

tibodies and visualized using Alexa 488 and Alexa 647 sec-

ondary antibodies. Time-lapse movies of 10,000 frames were 

obtained of neuronal nuclei expressing Arc capturing the 

blinking of individual Alexa 488 and 647 molecules brought 

into the dark state by intense laser illumination. Fitting of a 2D 

Gaussian to each blinking dot allowed their XY localization to 

be determined with high precision (typically 30 nm). Super 

resolution images are generated from the localizations by su-

perimposing a 2D Gaussian (green for 488 nm, red for 647 nm) 

for each localized position. Molecule localization and image 

rendering were performed by Zen software (Zeiss).  

 

Cell lysate preparation and Western blotting. Following 

4BF stimulation, neuronal cultures were washed gently with 

1x PBS. Cells were gently scraped off and harvested in an Ep-

pendorf tube. Cells were spun down at 10000 g for 5 min at 

4°C to obtain the cell pellet. Total protein was isolated using 

an RNA-protein extraction kit (Macherey-Nagel), as specified 

by the manufacturer. A BCA kit (Pierce) was used to measure 

the concentration of proteins. 30 µg of each protein sample was 

denatured and reduced by boiling at 95°C for 5 min in 10% 

(v/v) 2-mercaptoethanol-containing Laemmli sample buffer 

(Bio-Rad). Samples were resolved by SDS-PAGE with a pre-

cast Tris-glycine gel (Bio-Rad) and transferred onto PVDF 

membranes using the Trans-Blot Turbo transfer System (Bio-

Rad) as indicated by manufacturer. Membranes were blocked 

for 1 h at rtp with 5% (w/v) non-fat milk block (Bio-Rad) in 1x 

TBS (in mM) (140 NaCl, 3 KCl, 25 Tris base) (First Base) 

containing 0.1% (v/v) Tween-20 (TBST), followed by primary 

antibodies incubation for 1 h (anti-Arc, 1:1000, Santa Cruz, sc-

17839) in 1x TBST at rtp. Membranes were washed three 

times, each for 5 min in 1x TBST at rtp. Secondary antibodies 

binding was performed using the corresponding HRP-conju-

gated secondary (1:10000, Invitrogen) for 1 h in 1x TBST at 

rtp. Protein bands were detected with chemiluminescence sub-

strate (Pierce) visualized with a Gel Doc XRS imaging system 

(Bio-RAD) or developed on scientific imaging film (Kodak).  

 

RNA sample preparation, library construction, RNA-Seq 

and analysis. 4BF treated neuronal cells were washed, scraped 

and spun down as above. RNA samples were obtained from 

the cell pellet using the RNA-protein extraction kit as specified 

by manufacturer (Macherey-Nagel). Library construction and 

RNA sequencing were performed by the Duke-NUS Genome 

Biology Facility. 2.2 µg of RNA was used for library construc-

tion. Prior to library construction, quality of the RNA was an-

alyzed with an Agilent Bioanalyzer. Following poly-A enrich-

ment, recovered RNA was processed using the Illumina 

TruSeq stranded mRNA kit to generate the adaptor-ligated li-

braries. A total of 9 samples were analyzed. These samples 

came from 3 different sets of experiments (n = 3). Each set 

contained samples treated with i) 8 h 4BF, ii) Arc shRNA + 8 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2019. ; https://doi.org/10.1101/833988doi: bioRxiv preprint 

https://doi.org/10.1101/833988
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Leung et al 2019 

Page 11 of 44 
 

h 4BF and iii) Arc scrambled shRNA + 8 h 4BF. Six samples 

were sequenced per lane on the HiSeq 3000 sequencer using 

150 pair-end reads. For the HEK293T cells, RNA was obtained 

similarly. Three samples were analyzed, with two Arc induced 

samples and one control sample. The samples were processed 

as described above and sequenced on 1 lane on the HiSeq 3000 

sequencer. 

 

Computational analyses of RNA-Seq data. FASTQ files ob-

tained from the RNA-sequencing were mapped to the rat ge-

nome using Partek Flow (version 7.0.18.1210). Adapter se-

quences were trimmed. Contaminant reads contributed from 

rDNA, tRNA and mtDNA were filtered out using Bowtie2 

(version 2.2.5). Filtered, trimmed reads of high quality (Phred 

score > 30) were then mapped onto the Rattus norvegicus ge-

nome (rn6) for the rat samples or Homo sapiens genome (hg38) 

for the HEK293T samples with Star (version 2.5.3a)225. Post 

alignment QA/QC were performed after the alignment step to 

determine if alignment had a good average coverage and were 

uniquely aligned. The unique, paired reads were used for gene 

expression quantification. Reads were assigned to genes using 

the Expectation/ Maximization (E/M) algorithm in Partek 

Flow226 based on the annotation model rn6 (Ensembl tran-

scripts release 93) for the rat samples and the annotation model 

hg38 (Ensembl transcripts release 94) for the HEK293 sam-

ples. To ensure only informative genes were included in the 

downstream analysis, noise (maximum feature counts ≤ 30) 

was filtered out. Read counts between samples were normal-

ized with the Upper quantile method227. As genes with very 

low expression might be inadequately represented and incor-

rectly identified as differentially expressed, a constant of 1 was 

added to normalized counts for rectification. Statistical analy-

sis was performed using the Gene Specific Analysis (GSA) 

module in Partek Flow to identify differential gene expression. 

P-value and fold changes of differentially expressed genes 

were calculated based on the lognormal with shrinkage distri-

bution. Average coverage of less than 3 were also filtered out 

prior to statistical analysis. Differential gene expression with a 

cut-off value of false discovery rate (FDR) step-up < 0.05228 

and an absolute fold change ≥ 2 were considered for further 

gene ontology analysis in Partek Flow that is based on the GO 

Consortium (version 2018_08_01)229,230. GO analysis was also 

performed on the transcriptional regulators/factors that were 

observed to be altered upon Arc knockdown using DAVID 

(version 6.8)81,231. The EASE score obtained from the DAVID 

analysis is a modified Fisher Exact P-value to indicate gene 

enrichment in the annotation terms. Functional analysis on the 

statistically significant differential gene expression (FDR step-

up < 0.05; absolute fold change ≥ 2) was performed by Inge-

nuity Pathway Analysis (IPA) ( https://tinyurl.com/y6672c22 , 

Qiagen). Pathways and their associated downstream effects, 

diseases, regulator networks and upstream regulators were 

identified by IPA. Predictions on the possible activation and 

inhibition of pathways, downstream effects and upstream reg-

ulators were inferred from the degree of consistency in the ex-

pression of the target genes compared to the fold changes in 

the differentially expressed gene list. This activation or inhibi-

tion status was expressed as a z-score, with z ≥ 2 indicating 

activation and z ≤ 2 indicating inhibition. Inferences made 

were based on at least one publication or from canonical infor-

mation stored in the Ingenuity Knowledge Base. Fisher’s exact 

test was used to calculate the P-value for all analyses in IPA.  

 

Plasmid construction for Arc expression in HEK293T cells. 

The following plasmids were used: pSBbi-Hyg (Addgene 

#60524) and pSBbi-Pur (Addgene #60523) were a gift from 

Eric Kowarz. pCMV(CAT)T7-SB100 (Addgene #34879) was 

a gift from Zsuzsanna Izsvak. sgRNA(MS2) cloning backbone 

plasmid, (Addgene #61424), MS2-P65-HSF1_GFP, (Addgene 

#61423), and dCAS9-VP64_GFP (Addgene #61422) were a 

gift from Feng Zhang. The psBbi-Hyg-dCAS9-VP64 and the 

pSBbi-MS2-P65-HSF1-Pur plasmids were constructed by iso-

lating the dCAS9-VP64 and MS2-P65-HSF1 sequences via 

PCR from the MS2-P65-HSF1_GFP and dCAS9-VP64_GFP 

plasmids and annealed into the SfiI-linearised pSBbi-Hyg and 

pSBbi-Pur plasmids. psBbi-Hyg-dCAS9-VP64 and pSBbi-

MS2-P65-HSF1-Pur were then co-transfected with 

pCMV(CAT)T7-SB100 into HEK293T using JetPrime (Poly-

plus-Transfection) according to manufacturer’s instructions. 

HEK293T cells with successful transposition of both genes 

were selected with a combination of 0.75ug/ml puromycin 

(Gibco) and 200ug/ml hygromycin B (Nacalai) in DMEM + 

10% FBS (Gibco) over several passages for a month.  

 

Transfection for endogenous Arc overexpression and puri-

fication of mRNA. sgRNA(MS2) backbone plasmids contain-

ing guide RNAs complementary to human Arc promoters were 

transfected into the mutated HEK293T cells. A separate con-

trol well was transfected with sgRNA(MS2) backbone contain-

ing LacZ promoter sgRNAs. After 48 hours, mRNA was puri-

fied using the NucleoSpin RNA kit (Macherey-Nagel) and 

submitted for RNA-sequencing by the Duke-NUS Genomics 

Core Facility. The table below lists the guide RNAs (sgRNAs) 

used: 

 

Promoter SgRNA sequence 

Human Arc (1) GGGCGCTGGCGGG-

GAGCCTG 

Human Arc (2) CCTCCCGTCCCTTGCCGCCC 

LacZ (1) TTCCGGCTCGTATGTTGTGT 

LacZ (2) GCTTTACACTTTATGCTTCC 
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Figure 1. Induction of Arc expression in hippocampal neurons by pharmacological network activation. Hippocampal 

neurons (DIV19-21) were treated with 4BF, which pharmacologically stimulates network activity and induces long-term 

potentiation of excitatory synapses. After 4 hours of enhanced network activity, neurons were fixed and stained for Arc (red) 

and the neuronal marker Map2 (green). Under vehicle (DMSO) treatment, very little Arc staining could be detected (left panel, 

Vehicle), whereas the increase in network activity induced strong nuclear Arc expression in approximately half of the neurons: 

49 ± 8 % (n=3) (right panel, 4BF). 
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Figure 2. Chromatin reorganization in Arc-positive neurons. Arc expression was induced in a subset of cultured hippocampal neurons 

by a 4-hour treatment with 4BF. Cells were fixed and stained for Arc (C7 antibody, Santa Cruz). DNA was labeled using DAPI. Z-stacks 

of DAPI images were obtained for neuronal nuclei that were positive and negative for Arc expression. Out-of-focus fluorescence was 

removed using 3D deconvolution (AutoQuant). (A) Max-projection images of a representative nucleus from an Arc-negative (top) and 

Arc-positive neuron (bottom). The white bar indicates a scale bar of 1 µm. DNA, labeled by DAPI, is shown in white while Arc expression 

is shown in red. Yellow arrowheads indicate DNA puncta. Heat maps of the relative DAPI intensity of the nucleus is shown in the rightmost 

panels. Relative DAPI intensity is shown using the color scale shown at the bottom. (B) DAPI heat maps for nuclei of 8 Arc-positive and 

8 Arc-negative neurons. Relative DAPI intensity is shown by the color scale on the left, which was the same for both panels. Whereas 

chromatin of Arc-negative neurons (right panel) was relative homogenous (turquoise, green yellow), Arc-positive neurons (left panel) was 

characterized by several areas of high DAPI intensity (red), indication condensed heterochromatin (chromocenters) separating domains 

with decondensed euchromatin (blue). (C) and (D) Puncta were quantified based on their size and intensity. Arc expression, measured as 

mean Arc intensity, was used to correlate with the properties of the puncta, generating the boxplots. Boxplots of number of puncta (C) and 

area of puncta (D) for Arc-negative and Arc-positive neurons. Each ● represents the (C) number or (D) mean area of puncta in a nucleus. 

A total of 167 nuclei were analyzed from three sets of independent experiments. (C) Nuclei of Arc-positive neurons have significantly 

higher number of puncta with 11.1 ± 0.8 puncta in Arc-negative nuclei and 15.9 ± 0.8 puncta in Arc-positive nuclei. **** indicates P-

value < 0.0001, unpaired t test. (D) No significant change in area of puncta was observed: Arc-positive had an area of 488 ± 25 pixels, 

while the area of Arc-negative neurons was 431 ± 30 pixels (p = 0.15, unpaired t test).  N.S. indicates not significant. 
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Figure 3. Arc associates with dynamic chromatin. Time-lapse movies of Arc-eYFP and H2B-mCherry expressed in hippocampal neu-

rons (18 DIV) were obtained using a spinning disc confocal microscope (100x, 1.49 NA Apo TIRF objective). Z-stacks (5 images) were 

acquired for both YFP and mCherry channels. 3D blind deconvolution (AutoQuant) was used to remove out-of-focus fluorescence. The 

movie is 5 minutes long, 3.2 seconds between frames, which was the time required to acquire Z-stacks from both channels. The image on 

the left shows a single frame of the movie in the centre of the Z-stack of a neuronal nucleus (scale bar= 1 µm). Arc (green) is seen to form 

puncta, while H2B (red) labels the lattice-like chromatin structure. The panels on the right show six frames of a zoomed-in section illus-

trating small chromatin structures transiently interact with the two Arc puncta (scale bar = 500 nm). White arrowheads indicate points of 

contact between Arc and chromatin. The highly dynamic interaction of chromatin with Arc puncta is most clearly seen in the Movie. 
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Figure 5. Arc associates with H3K9Ac-S10P. Image of a neuronal nucleus obtained using STORM. Cultured hippocampal neurons 

were treated with 4BF for 4 hours, fixed and stained for Arc and H3K9Ac-S10P, which marks sites undergoing active transcription. 

(A) Arrowheads point to close appositions between Arc and the histone mark (scale bar = 1µm). (B) Enlarged sections showing the 

association in greater detail. Arrows point to what appear to be invasions of H3K9Ac-S10P into Arc puncta (scale bar 200 nm).  

Figure 4. Arc associates with H3K27Ac.  Hippocampal neurons were treated with 4BF for 4 hours, fixed with methanol and stained for 

Arc and H3K27Ac, which marks sites containing active enhancers. Z-stacks of images were acquired of neuronal nuclei using a spinning 

disc confocal microscope (60X, 1.49 NA objective). Resolution was increased using 3D blind deconvolution (Autoquant). The enlarged 

section shows the close interaction between Arc and H3K27Ac.  

A B 
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Figure 6. Arc regulates gene transcription. (A) Western Blot showing the time course of Arc protein expression in cultured hippo-

campal neurons following 4BF treatment (time in hours indicated on top).  Lane 7 (8sh) shows that Arc fails to express at 8 hours of 

4BF when the cultures are transduced with an AAV9 virus encoding a short-hairpin RNA (shRNA) targeting the coding region of Arc. 

Lane 1 has purified Arc protein. (B) Volcano plot of RNA-Seq results comparing mRNA isolated from neurons after 8 hours of 4BF 

that were transduced with AAV9 virus encoding either the Arc shRNA or a scrambled version of this shRNA, done in triplicate. Pre-

venting activity-dependent Arc expression resulted in the upregulation of 817 genes (red), and down-regulation of 1128 genes (green). 

Genes that are below the cut-off (FDR > 0.05 or absolute fold change < 2) are marked in gray. Some of the highly regulated genes 

involved in learning and memory are indicated in the plot. Genes are color coded as stated in the legend. Both axes are log scaled. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2019. ; https://doi.org/10.1101/833988doi: bioRxiv preprint 

https://doi.org/10.1101/833988
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Leung et al 2019 

Page 17 of 44 
 

  

Figure 7. GO analysis of Arc knock-down. (A) and (B) Gene set enrichment analysis was performed to investigate the Biological 

Processes (A) and Molecular Functions (B) that the altered genes were involved in. The enrichment score is plotted against the category 

names. The enrichment score is the negative natural logarithm of the enrichment P-value derived from Fisher’s exact test and reflects the 

degree to which the gene sets are overrepresented at the top or bottom of the entire ranked list of genes. Bars indicate the enrichment score 

while the line graph indicates the percentage of genes that are altered under the respective GO term. The top 25 biological processes (B) 

and molecular functions (C) are shown. Many of the categories are related to synaptic plasticity (underlined blue and orange). (C) and (D) 

Bar-charts showing genes involved in the stated category from Biological Processes (Ci)-(Ciii) and Molecular Functions (Di)-(Diii) and 

their respective fold changes. The top 10 regulated genes are shown. Dotted blue line indicates an absolute Fold Change of 2.  
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Figure 8. Neuronal plasticity genes regulated by Arc. Neuronal plasticity genes were manually curated in addition to reference to GO 

terminology from the Gene Ontology Consortium. Neuronal plasticity genes with absolute FC ≥ 2.5 are shown. Genes that are involved 

in cognition or learning and memory are marked by orange boxes.  
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Figure 9. Pathways altered by Arc knockdown and predicted effects. (A) Bar-chart showing altered pathways identified after analysis 

with IPA. The orange line graph indicates the ratio of genes in our dataset that were involved in the specified pathway. The gray line indicates 

threshold at P-value 0.05. The orange and blue bars indicate predicted activation and inhibition of pathways respectively (determined by z-

score). Top 15 significantly altered pathways are shown. Pathways with predicted activation or inhibition of downstream effects are in red, 

further elaborated in panel B. The top 5 genes altered in the respective pathways are shown on the right and bottom of the altered pathway 

bar-chart. (B) Diagram describing the predicted effects of the altered pathways. Five pathways are highlighted, and its downstream effects 

as predicted by IPA are listed.  
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Figure 10. Alzheimer’s susceptibility genes affected by Arc knockdown. The expression levels of 26 AD susceptibility genes were af-

fected when activity-dependent Arc expression was prevented by an shRNA. Green bars indicated that the mRNA level was downregulated, 

while red bars indicate upregulation. The blue line indicates an absolute fold change of 1.5.  
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Figure 11. Upstream regulators of differential gene expression caused by Arc knockdown. The map shows 11 upstream regulators (blue 

and orange boxes) predicted by IPA to mediate altered gene expression upon Arc knockdown. Genes are positioned in the extracellular space, 

the plasma membrane, the cytosol or the nucleus, depending on where their associated proteins are located. Arc was positioned at the interface 

of nucleus and cytoplasm because it can be in either compartment. Only genes that were involved in the following pathways and disease 

annotations are shown: (i) opioid signaling, (ii) synaptogenesis, (iii) endocannabinoid neuronal synapse pathway, (iv) synaptic LTD, (v) 

neuroinflammation, (vi) CNS amyloidosis, (vii) tauopathy and (viii) AD. Genes associated with disease annotations are boxed in magenta. 

The respective fold changes are indicated below each gene.  
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Figure 12. HEK293T cells exhibit neuronal properties upon induced expression of Arc. (A) Endogenous Arc expression was enhanced 

in HEK293T cells by targeting two single guide RNAs (sgRNAs) containing MS2 aptamers to the Arc promoter with the CRISPR/Cas9 

Synergistic Activation Mediator system (see Methods for details). As a negative control, we used two sgRNAs targeting the promoter of the 

lac operon. Control cells (top) and Arc-induced cells (bottom) stained for Arc (green) and DNA was labeled with DAPI (blue). About 90% of 

the cells expressed Arc. (B) Graph showing the top 20 differentially expressed genes upon the induction of endogenous Arc in HEK293T cells. 

RNA-Seq was used to compare the mRNA levels between the Arc-induced and control HEK293T cells. Neuronal genes are bolded and high-

lighted in red. (C) and (D) GO analysis of the differential expressed genes upon overexpression of Arc. The top 20 cellular components (C) 

and biological processes (D) are presented. Neuronal features were bolded and highlighted in red. Na+: sodium; V-gated: voltage-gated; 

Postsynapt: postsynaptic; Memb: membrane; Synapt: synaptic; Clath: clathrin; Ach: acetylcholine; Presynapt: presynaptic; Musc: muscle; 

Develop: development; Neg: negative; Reg: regulation; Prolif: proliferation; Skelet: skeletal; Contract: contraction and Mech: mechanical; 

Conv: conversion.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2019. ; https://doi.org/10.1101/833988doi: bioRxiv preprint 

https://doi.org/10.1101/833988
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Leung et al 2019 

Page 23 of 44 
 

Figure 13. Regulation of upstream regulators by Arc interactors. (A) Schematic diagram illustrating how interactors of Arc could bring 

about changes in activity of upstream regulators identified by IPA, which in turn results in alteration of gene transcription. The dotted line 

indicates an indirect effect on transcription through the regulation of a transduction cascade. (B) Diagram showing the functional connectivity 

between Arc interactors (KAT5, NOTCH1, GSK3B and APP), upstream regulators highlighted in orange (activated) or blue (inhibited) and 

genes that mediate their interaction. Connections of Arc interactors with other genes are highlighted are highlighted in cyan. Connections 

between KAT5, NOTCH1, GSK3B and APP are highlighted in blue.   
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Table 1. Top ranking genes with neuronal functions. APOE: apolipoprotein E; p-tau: phosphorylated tau; Aβ: Amyloid beta; PI3K/Akt: 

phosphatidylinositol 3-kinase/protein kinase B; CSCR2: C-X-C motif chemokine receptor 2; HDAC3: histone deacetylase 3; AP-1: activator 

protein 1; APP: amyloid precursor protein; CSF: cerebrospinal fluid; STIM: stromal interaction molecule; LTP: long term potentiation; GABA: 

γ-aminobutyric acid; KO: knockout; 5HT: 5-hydroxytryptamine; ER: endoplasmic reticulum; Cav2: neuronal voltage-gated calcium channels. 

References: [1-3]232-234, [4]235, [5]236, [6-8]237-239, [9, 10]240,241, [11-13]242-244, [14]245, [15]246, [9, 16]240,247, [17]248, [18-20]249-251, [21, 22]252,253, 

[23, 24]254,255, [25-27]256-258, [28]259, [29, 30]260,261, [31, 32]262,263, [33-36]264-267, [37, 38]268,269, [39, 40]270,271, [41]272, [42, 43]273,274, [44, 

45]275,276, [46, 47]277,278, [48]279, [49-51]280-282, [52, 53]283,284, [54, 55]285,286, [56-58]287-289 and [59-61]290-292. 
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Table 2. Synaptic genes whose expression is regulated by Arc. This table shows the top 40 synaptic genes (out of a total of 323) ranked by 

absolute fold change. Comments list relevant information about the function and disease association of the genes. An asterisk (*) indicates 

genes involved in neuroplasticity. A hashtag (#) indicates genes involved in cognition, learning and memory. APP: amyloid precursor protein; 

LTP: long-term potentiation; CRH: corticotropin-releasing hormone; V-gated: voltage-gated; NMDAR: N-methyl-D-aspartate receptor; 

TARP-γ4: transmembrane AMPR regulator protein γ4; Aβ: amyloid beta; GPCR: G-protein-coupled receptor. References: [1, 2]293,294, [3]295; 

[4, 5]264,265, [6]292, [7]296, [8]297, [9]298, [10]299, [11, 12]300,301, [13]302, [14]303, [15]304, [16, 17]305,306, [18, 19]307,308, [20]309, [21]310, [22]311, 

[23]312, [24]313, [25, 26]314,315, [27]316, [28]317, [29]318, [30]319, [31]320, [32, 33]321,322, [34, 35]323,324, [36, 37]325,326, [38]327, [39, 40]328,329, [41, 

42]330,331, [43, 44]332,333, [45]334, [46]335, [47]336, [48-50]337-339, [51, 52]340,341, [53]342, [54, 55]343,344 and [56-58]345-347. 
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Table 3. Prevention of activity-dependent expression of Arc resulted in gene expression profile changes that are associated with 

neurological diseases and psychological disorders, including Alzheimer’s disease.  
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Table 4. Alzheimer’s genes regulated by Arc. Only genes with more than one citation or citations that included mechanisms of regulating 

AD are presented. BACE1: β-secretase 1; Aβ: amyloid beta; APP: amyloid precursor protein; FoxO3a: forkhead box O3; KO: knock-out; CO: 

carbon monoxide; ApoER2: apolipoprotein E receptor 2; PSEN2: presenilin 2; Zn2+: zinc; MAPK: mitogen-activated protein kinase; ER: 

endoplasmic reticulum. References: [1]238, [2]241, [3]248, [4, 5]250,251, [6, 7]292,348, [8]349, [9, 10]350,351, [11]352, [12]353, [13-15]354-356, [16-

19]85,357-359, [20]304, [21]360, [22-24]361-363, [25, 26]364,365, [1]238, [27-29]366-368, [30]264, [31, 32]321,322, [33, 34]369,370, [35, 36]371,372, [37]373, 

[38]374, [39, 40]375,376, [41, 42]377,378, [43]379, [44]380, [45-47]381-383, [48-53]384-389, [54, 55]390,391, [56-58]392-394, [59-61]395-397, [62-65]398-401, 

[66-69]402-405, [70-72]406-408, [73, 74]409,410, [75]411, [76]412, [77-79]413-415, [80, 81]416,417, [82]418, [83, 84]419,420, [85]421, [86]422 and [87]423. 
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Table 5. Genes involved in transcriptional regulation. This table shows the top 40 genes with neuronal relevance. * indicates transcription 

factors. ATF3: activating transcription factor 3; LEF1: lymphoid enhancer binding factor 1; FoxA2: forkhead box A2; APP: amyloid precursor 

protein; CREB: cAMP response element-binding protein; NMDAR: N-methyl-D-aspartate receptor; SOX2: SRY-box 2; PITX2: paired like 

homeodomain 2; bZIP: basic leucine zipper domain; C-MYC: MYC proto-oncogene, BHLH transcription factor; NFATc1: nuclear factor of 

activated T cells 1; FOXP3: forkhead box P3; HIF: hypoxia inducible factor; TGFβ: transforming growth factor beta; PD: Parkinson’s disease; 

NLS: nuclear localization signal; SMAD: transcription factors forming the core of the TGFβ signaling pathway; AP-1: activator protein 1; 

ALS: amyotrophic lateral sclerosis; MEF2: monocyte enhancer factor; GABAA: γ-aminobutyric acid type A ; JAK/STAT: Janus kinases/ 

signal transducer and activator of transcription; SCA1: spinocerebellar ataxia type 1; MAPK: mitogen-activated protein kinase; ZNF683: zinc 

finger protein 683; HTT: huntingtin. References: : [1]424, [2]425, [3]426, [4, 5]264,427, [6]282, [7]428, [8]429, [9]430, [10]431, [11, 12]432,433, [13]434, 

[14, 15]435,436, [16-19]437-440, [20]441, [21, 22]442,443, [23]444, [24]445, [25, 26]446,447, [27, 28]448,449, [29]450, [30, 31]451,452, [32]453, [33]454, [34, 

35]455,456, [36]457, [37]458, [38] 459, [39-43]323,324,460-462, [44-47]463-466, [48, 49]467,468, [50]469, [51]470, [52-54]471-473, [55]474, [56]475, [57, 58]476,477, 

[59]478, [60, 61]479,480, [62-64]481-483 and  [65, 66]484,485.  
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Table 6. Biological processes that the transcriptional regulators/factors control. The top 20 biological processes of neurological rel-

evance are listed. EASE score is a modified fisher exact p-value measuring the gene-enrichment in the annotated terms. Genes are arranged 

in order of highest to lowest absolute fold change. Genes highlighted in red are up-regulated while those highlighted in green are down-

regulated.  

 

Table 7. Upstream regulators associated with differential gene expression observed upon knockdown 

of Arc. Activation z-score indicates the predicted activity of upstream regulators by IPA analysis. Upstream 

regulators that were predicted to be inhibited are highlighted in blue while those activated are highlighted 

in orange. Regulated genes were highlighted in green (down-regulated) and red (up-regulated).  
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