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Short-term memory refers to the ability to store small amounts of stimulus-specific information for a short period of time. It is supported
by both fading and hidden memory processes. Fading memory relies on recurrent activity patterns in a neuronal network, whereas
hidden memory is encoded using synaptic mechanisms, such as facilitation, which persist even when neurons fall silent. We have used a
novel computational and optogenetic approach to investigate whether these same memory processes hypothesized to support pattern
recognition and short-term memory in vivo, exist in vitro. Electrophysiological activity was recorded from primary cultures of dissoci-
ated rat cortical neurons plated on multielectrode arrays. Cultures were transfected with ChannelRhodopsin-2 and optically stimulated
using random dot stimuli. The pattern of neuronal activity resulting from this stimulation was analyzed using classification algorithms
that enabled the identification of stimulus-specific memories. Fading memories for different stimuli, encoded in ongoing neural activity,
persisted and could be distinguished from each other for as long as 1 s after stimulation was terminated. Hidden memories were detected
by altered responses of neurons to additional stimulation, and this effect persisted longer than 1 s. Interestingly, network bursts seem to
eliminate hidden memories. These results are similar to those that have been reported from similar experiments in vivo and demonstrate
that mechanisms of information processing and short-term memory can be studied using cultured neuronal networks, thereby setting
the stage for therapeutic applications using this platform.

Introduction
Short-term memory enables animals to preserve stimulus infor-
mation across brief delays (Baddeley, 1996). The mechanisms
underlying these stimulus-memory processes involve transient
changes in the active and hidden states of neurons in a neuronal
network (Buonomano and Maass, 2009). This raises the question
whether random networks formed by cultures of dissociated cor-
tical neurons also have the ability to store stimulus information
for short periods of time. To test whether the same mechanisms
that support short-term memory in vivo can encode stimulus-
specific memories in vitro, we employed a novel combination of
optogenetic and computational approaches.

Active or fading short-term memories are encoded in the ac-
tion potential activity reverberating in a neuronal network. These
signals preserve stimulus identity information until the activity
subsides (Wang, 2001). Hidden memory traces store information
as a spatial pattern of synaptic adaptation, which persists even

when neurons fall silent (Buonomano and Maass, 2009). These
hidden memories temporarily alter the timing or synaptic trans-
mission of action potentials, and the presence of these memories
can be revealed by the altered electrophysiological response of a
network to additional stimulation (Mongillo et al., 2008).

Previous investigations into the information processing capa-
bilities of neuronal networks formed from dissociated rat cortical
neurons plated on multielectrode arrays (MEAs) have utilized
electrical stimulation and shown that these networks can actively
represent stimulus information (Bakkum et al., 2008b). In these
studies, the response of the network to electrical stimulation is
characterized by two phases: an early phase of short latency action
potentials (3–20 ms) that are directly evoked by stimulation, fol-
lowed by a burst of firing activity across the network that peaks
between 20 and 200 ms (Eytan and Marom, 2006; Gal et al., 2010;
Kermany et al., 2010). These network bursts are characterized by
a simultaneous, highly correlated firing of neurons across the
culture, after which activity dissipates to baseline (Beggs and
Plenz, 2003; Wagenaar et al., 2006a). A strong relationship exists
between the distance of a neuron to the stimulating electrode and
the latency of its earliest response, enabling researchers to recon-
struct the location of the stimulating electrode, often using la-
tency information alone (Eytan et al., 2003; Dockendorf et al.,
2009; Kermany et al., 2010).

The capacity of cultured neuronal networks for storing stim-
ulus information or performing state-dependent computations
using active and hidden processes has not been studied in vitro.
We have therefore investigated the responses of cortical neurons
to complex stimuli in order to answer the following questions
regarding short-term memory mechanisms in randomly orga-
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nized cultured neuronal networks: 1) What are the response dy-
namics to the optical presentation of complex spatial stimuli? 2)
How long do short-term memories of stimuli persist? 3) Can
cultured neuronal networks store stimulus-specific information
using both active and hidden memory mechanisms? Clarifying
the mechanisms of short-term memory has implications for
treating memory disorders ranging from transient cognitive im-
pairment to Alzheimer’s disease.

Materials and Methods
Primary neuron cell culture. Cortical neurons obtained from rat E18 em-
bryonic brain of either sex were dissociated and plated as described pre-
viously (Van de Ven et al., 2005; Dranias et al., 2011) on MEA-containing
culture dishes (Multi-Channel Systems). Two different electrode config-
urations were used: a standard 60 electrode dish arranged in an 8 � 8 grid
and a 252 electrode dish with electrodes arranged in a 16 � 16 grid. Prior
to plating, MEAs were cleaned with detergent, rinsed, sterilized overnight
under UV lighting, and coated with poly-D-lysine and fibronectin (Invit-
rogen). Cortical tissue from E18 rats is dissociated using papain and 500
�l of DNase. The resulting cell suspension was rinsed, centrifuged, and
then the pellet was resuspended in NB-Active 4 cell medium (BrainBits),
in some experiments supplemented with 10% FBS. Neurons slated to be
transfected underwent electroporation at this point and then were plated
onto the poly-D-lysine and fibronectin-coated MEA dishes. Cell culture
was maintained in NB-Active 4 cell medium to suppress astrocyte
growth.

Optogenetic transfection. Plasmid DNA encoding Channel Rhodopsin-2
(ChR2) was a kind gift from Karl Deisseroth. ChR2 was fused to EYFP for
visualization, and mutations H134R and T159C were introduced to
boost current (Nagel et al., 2005; Berndt et al., 2011). The plasmid in-
cluded a cytomegalovirus promoter. Two transfection methods were
used: electroporation (Amaxa nucleofector II kit, Lonza) performed be-
fore plating, or lipofection (Lipofectamine 2000, Invitrogen) at least 24 h
before recordings on 7–14 days in vitro (DIV). ChR2-EYFP expression
was observed within 24 h after transfection.

MEA recordings. Extracellular electrophysiological recordings of neu-
rons were made from 60 and 252 electrode MEA dishes using the
MEA1060 and USB-MEA256 hardware systems, respectively (Multi
Channel Systems). Recordings were performed on an antivibration table
and in a Faraday cage. Signals were amplified and sent to a personal
computer using a PCI-based data acquisition card for the MEA1060
system or via high speed USB for the USB-MEA256. During experimen-
tal recordings, the cell culture medium of each MEA dish was replaced

with Dulbecco’s phosphate-buffered saline so-
lution containing glucose and pyruvate
(Sigma).

Data analysis. MC_Rack software (Multi-
channel Systems) was used to acquire electro-
physiological signals in real-time. Extracellular
signals were high pass filtered at 300 Hz and
low pass filtered at 3 kHz with second order
Butterworth filters. Action potentials were de-
tected using a voltage threshold rule whose
value was determined by the user for each dish
based on the amount of channel noise. When
an action potential was detected, the timing of
the spike was recorded together with a 2 ms
sample of the waveform, sampled at 120 kHz.

Optical stimulus presentation and imaging.
The MEA system was mounted on an inverted
microscope (Eclipse Ti, Nikon) during record-
ings. A 25 mW 488 nm laser (Spectra-Physics)
beam was projected through an acousto-optic
tunable filter (AA Opto-Electronic), which al-
lows the laser light to be controlled by a TTL
pulse generated by the personal computer. The
beam was optically expanded, polarized, and
projected at a 45° angle onto a reflective LCoS
Spatial Light Modulator microdisplay (SLM,

Holoeye Photonics AG) with a resolution of 1920 � 1200 pixels and a 60
Hz refresh rate. The status of the pixels is controlled using the DVI port of
a personal computer allowing images to be generated in MATLAB. Blue
light patterns reflecting off the SLM were passed through a second polar-
izing filter and projected onto the neuronal network growing on top of
the MEA. Fluorescent and bright-field images were captured from the
MEA dishes via a cooled CCD camera (Orca, Hamamatsu) and analyzed
using NIS Elements software (Nikon). This enabled verification of opti-
cal stimuli and visual inspection of electrophysiologically active chan-
nels. Figure 1 illustrates the optical path of the custom laser projection
system. Custom drivers and MATLAB software were used to generate the
stimulus patterns, control the onset and offset of optical stimuli, and
generate TTL pulses to synchronize electrophysiological recordings with
the presentation of laser stimuli.

Stimulus material. Two sets of stimuli were used in these experiments.
The first set of stimuli consisted of a sequence of lighted squares from a
2 � 2 grid or a 5 � 5 grid. These stimuli were presented to assess the
efficacy of transfection. The grid occupied a region of �1.5 mm 2, and the
individual squares in the grid were of variable size (0.3– 0.75 mm 2). In
the experiments testing short-term memory for complex stimuli, ran-
dom dot stimuli were presented. The random dot stimuli were con-
structed from 18 to 22 randomly positioned squares on a 10 � 10 grid.
When projected onto the MEA dish, the 10 � 10 grid occupied an area of
�1.25 mm 2. Effective light intensity was measured as 0.1 mW/mm 2. The
light was projected through a low-power objective (Fig. 1), which al-
lowed us to stimulate neurons located anywhere in a 1.5 mm 2 field of
view. A consequence of this approach is that relatively long (100 –200 ms)
optical stimuli are required to elicit light responses. At this intensity, the
mean latency to the first recorded neural action potential was 165 � 4.7
ms (N � 115 neurons).

Preprocessing of network activity. Electrophysiological data were im-
ported from MC_Rack into MATLAB using the Neuroshare API library
(www.neuroshare.org). Data were grouped into single trial spike timing
vectors. Before analysis by machine classifiers, spike timing data were
counted and discretely resampled into individual spike times (liquid-
state machine [LSM]) or nonoverlapping 5, 50, or 500 ms bins, depend-
ing on whether the data were to be analyzed as a time series or a single
trial. Only spike timing data from electrodes reporting at least 1 spike per
minute were included for analysis.

Machine classification of unit responses. Biologically plausible classifi-
cation algorithms were implemented in MATLAB to analyze single trial
data. The simplest and most plausible anatomy for such a model is a
readout neuron with tunable weights that allow the neuron to make

Figure 1. Optical path for the custom laser projection system. The beam of a 25 mW 488 nm laser passes through an acousto-
optic tunable filter onto a reflective LCoS SLM. Blue light patterns reflecting off the SLM were projected onto the neuronal network
using the lenses as shown. Components enclosed by the dotted outline are located inside the inverted microscope.
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binary category membership decisions. Two algorithms were chosen to
tune these weights: a support vector machine (SVM) or LSM algorithm.
All algorithms have distinct training and testing phases (Haykin, 1999).
During the training phase, a sample of data is taken to tune the weights
using the appropriate algorithm. In the testing phase, no new learning
takes place and the trained neural network is used to classify the remain-
ing testing data. This assays the generalizability of the categories learned
during the training phase. Data were generally divided into 70 –30%
training and testing trials. Classifications were retrained and retested
5–50 times choosing random subsets. The accuracy of the classifier is
taken as the mean percentage correctly classified test trials. In multiclass
classification, each readout neuron is trained to make a “one versus all”
category membership decision. Multiclass classifications require multi-
ple readout neurons arranged in a winner-take-all competition to deter-
mine category membership.

The SVM was implemented using the online resource libsvm (Chang
and Lin, 2011; http://www.csie.ntu.edu.tw/�cjlin/libsvm). Data were in-
put as the mean activity in a 50, 100, or 250 ms time window. The
dimensionality of the inputs and weights is equal to the number of active
electrodes. As category membership decisions are binary outputs, the
readout neuron was simplified and represented by just its synaptic weight
matrix.

The LSM was used because living neural networks are known to use
temporal signals to encode stimulus information (Kermany et al., 2010)
and the LSM is sensitive to temporal patterns (Maass et al., 2002). The
LSM was simulated using CSIM software (Natschlager and Markram,
2003). The LSM is a form of filtered classifier that nonlinearly separates
patterns, increasing the probability that any two different inputs to the
LSM will be linearly separable (Maass et al., 2002). The LSM consists of
an input layer, a liquid filter or reservoir of randomly connected neurons,
and a linear classifier that separates the signals that propagate through the
neural reservoir. MEA data were used to drive the input layer to the liquid
filter. To preserve spatial information of each electrode, the input layer
consists of 8 � 8 neurons arranged equivalent to the MEA layout. Each
input neuron receives recorded spikes from one electrode and propagates
the input into the reservoir of simulated neurons that contains 8 � 8 � 8
neurons in a 3D space, with 80% of the neurons being excitatory and the
remaining 20% being inhibitory. The Multiple-timescale Adaptive
Threshold neuron model was used, with a firing threshold of 14 mV,
resting membrane potential 0 mV, 30 ms time constant, and a refractory

period of 2 ms (Kobayashi et al., 2009). Parameters for the threshold
adaptation are set to: �1 � 20 mV, �2 � 5 mV, �1 � 2 ms, and �2 � 40 ms.
Connection probability between two neurons was based on the Euclid-
ean distance:

P�D� � C*exp� � D2�a,b�

�2 �,

where D(a,b) represents the Euclidean distance between neurons a and b,
� � 5 and C � 0.5 for the input connections, and � � 7 and C � 0.6 for
connections in the reservoir. Values were chosen after parametric simu-
lations to optimize classification on a test set of data. All the synaptic
weights were randomly initialized following a � distribution. Input con-
nections are static, whereas the connections in the reservoir incorporate
short-term plasticity with CSIM default parameters. A readout neuron is
connected to all the neurons in the reservoir to make classification deci-
sions. Its synaptic weights are optimized by Fisher’s linear discriminant.
For multiclass classification, multiple readout neurons were created and

Figure 2. Stimulus presentation protocol. A, Stimulus-specific memory trials. Thirty static
patterns of randomly generated dots were presented to the neuronal network for 100 –200 ms.
Neuronal activity is recorded for 500 ms before stimulus onset and for 1–2 s after stimulus onset.
B, Cue-Probe Short-term memory trials. Two stimuli were presented sequentially to the neu-
ronal network: a cue stimulus followed by a probe stimulus after a short delay. The cue stimulus
could be one of two (or four) random dot stimuli, whereas the probe stimulus was fixed across
trials. Each stimulus was presented for 100 –200 ms. Cue and probe stimuli are separated by a
variable delay, ranging from 200 ms to 2 s.

Figure 3. ChR2 transfection. A, Light microscopic image of primary neuronal culture at DIV9
on a 60 electrode MEA transfected with plasmid DNA encoding Channel Rhodopsin-2 fused to
Yellow Fluorescent Protein (ChR2-YFP). B, Image taken using a 4� objective and 510 nm
excitation light to visualize ChR2-YFP expression. Cell count indicates approximately 2% trans-
fection efficiency.
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a winner-take-all rule was applied using the average activity of the read-
out neuron over the trial. A new Liquid State Filter topology was gener-
ated each time the network was retrained and tested.

Classifier information time series. A time series was constructed to mea-
sure how stimulus information varies over time. The time series were
constructed using multiple, independent LSMs or SVMs. Each LSM or
SVM analyzed the spike times or mean firing rates from a small time
window. For the LSM and SVM network, spike times were segmented
into 100 or 50 ms bins. An independent LSM or SVM is dedicated to each
bin and trained to classify the neuronal response on this interval. Using
an array of independent classifiers allowed the neuronal response data to
be replaced with a time series of data points, whose value represents the
amount of information available at that moment for predicting which
stimulus was presented at the start of the trial. The amount of available
information was determined using the percentage of correctly classified
testing trials. The classifiers were implemented independently, and this
provides a lower limit on the amount of information (Nikolic et al.,
2009). Unless otherwise stated, the performance measure is the classifi-
cation accuracy on the testing set.

Sources of classification information. The SVM uses two basic sources of
information to perform classification: the spatial pattern of activity and
the magnitude of overall activity. The spatial pattern of activity consists
of an activity vector that is the combination of units that are activated by
stimulus presentation. The LSM performs classifications primarily rely-
ing on three sources of information: spatial pattern of activation (spatial
information), the magnitude of overall activity (network spike rate), and
the temporal pattern of spiking inputs (temporal information). The tem-
poral encoding of a stimulus relates to sequences of spikes, spike latencies
or variations in firing rate that are stimulus-specific; these properties are
extracted by the reservoir functionality of the liquid filter. The contribu-

tion of each of these sources of information to
classification accuracy was measured by filter-
ing out the spatial and/or temporal informa-
tion before training and testing. For the LSM,
the role temporal information plays can be un-
covered by comparing the rate of classification
before and after randomizing the spike times.
Spike times are randomly drawn from a uni-
form distribution over the same interval (50 or
100 ms bins). For both SVM and LSM, the role
of spatial information can be uncovered by
comparing the rate of classification before and
after the pooling of active units. Pooling of ac-
tive units eliminates all information around
the spatial pattern of activation. After filtering
out spatial information for the SVM and both
spatial and temporal information for the LSM,
the amount of information encoded by overall
mean firing rate can be assessed.

Transfection assessment. These experiments
were used to determine whether dishes had ef-
fective transfection. Four square stimuli from a
2 � 2 grid were presented sequentially, in a
clockwise order. Each square stimulus was typ-
ically presented for between 150 and 250 ms
and poststimulus response was monitored for
500 ms to 1.5 s. If a culture showed a reliable
response to one or more squares, it was used in
additional experiments. Dishes used in further
experiments ranged from DIV8 to DIV20.

Experimental protocols. Two basic experi-
mental protocols were followed as illustrated in
Figure 2. Stimulus-specific memory trials
sought to determine the capacity and duration
of short-term memories in the MEA dish. Up
to 30 different single random dot stimuli were
presented for 100 –200 ms and the poststimu-
lus response was monitored for 1.5–2.5 s. The
stimuli were presented in pseudorandom or-
der, usually 800 –1200 trials per dish. During

experiments where all 30 stimuli are presented, each stimulus is repeated
�30 times; whereas during other experiments where only four stimuli
are presented, there were �200 repetitions each. Spike times from elec-
trophysiological recordings of single units were collected into 250 ms
bins. Multiclass classification was used to analyze the network response
to discover how many different stimuli can be discriminated using net-
work responses. To determine the duration of stimulus-specific short-
term memory, classification between 4 random dot stimuli was used. The
specificity and duration of the memory were determined by a time series
constructed using an array of LSMs or SVMs.

Short-term memory/delayed response trials sought to determine
whether the dish can support short-term memories that could be used to
solve a task. In these trials, two stimuli (a cue and a probe stimulus) are
presented sequentially, separated by a pause. If memories of the cue
stimulus influence the processing of the probe stimuli, then the network
could use this memory to select actions or responses. The cue stimulus
was either one of two or one of four random dot stimuli presented for
100 –200 ms (Fig. 2B). The probe random dot stimulus was presented
200 –2000 ms later for 100 –200 ms. The amount of cue-specific informa-
tion was measured using a time-series constructed by an array of LSMs or
SVMs.

Statistical methods. Random label shuffling was used to measure the
significance of the classification accuracies. Label shuffling was repeated
100 –200 times, and the best and worst classification rates (95th percen-
tile) were recorded for each classifier to establish the significance of the
correct classification rates. Bias relating to the unfair sampling of training
and testing vectors was controlled by retraining and testing the classifiers
50 times. For each repeated training and testing, a different set of training
and testing data were randomly selected from the experimental data. The

Figure 4. Unit responses encode spatial stimuli. A, Left, Square stimuli were projected onto a DIV14 network for 200 ms using
a 488 nm laser to excite ChR2 at different locations. Right, Images of the culture taken while illuminated by the two laser stimuli.
Graphs in Figure 4B are based on an analysis of data from a single electrode at position (6,2) shown circled. B, C, Raster plots of
action potentials recorded extracellularly from electrode position (6,2). Responses from 45 trials are shown. Stimulus onset and
offset are indicated by green and red vertical lines, respectively. C, D, For Stimulus 1 (C) and Stimulus 2 (D), the average latencies
were 92 and 156 ms.
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mean and its SE are reported from these 50
repeated training and testing episodes. The
false-positive rate was used in measuring the
stimulus representation capacity of the cul-
tured neuronal networks. The correlation be-
tween the distance of an electrode from the
stimulus and the latency of its action potentials
was computed. The distance of a neuron to the
stimulus was measured as the distance of the
recording electrode to the stimulus center. Dis-
tance was measured in electrode units. The la-
tency was taken as the mean latency from
stimulus onset until the first spike recorded
from that electrode. Neurons were included
in the analysis if they responded reliably to
two of the square stimuli (20% of presenta-
tions) inside a 300 ms window beginning at
stimulus onset. When comparing two condi-
tions, the change in classification accuracy
was calculated by recording the percentage
change after the chance rate of correct clas-
sification was subtracted out from the signals
under consideration.

Results
Primary cultures of dissociated E18 rat
cortical neurons were grown on an MEA
and transfected with a plasmid encoding
ChR2-EYFP. The MEAs were plated with
10 5 cells, and the percentage of cells ex-
pressing ChR2-EYFP averaged �2% (Fig.
3). Experiments were performed on cul-
tures 7–14 DIV, when on average 60% of
the electrodes revealed spontaneous neu-
ronal activity and 10 –15% of the elec-
trodes were recording signals that could
be reliably produced by presenting optical
stimuli. The method of transfection influ-
enced the neuronal response; and while 28 MEAs had reliable
responses to the presentation of monochrome square stimuli, the
longest duration responses were recorded from MEAs trans-
fected using electroporation (n � 8).

Representation of optically presented stimuli in living
neuronal networks
First, we investigated how single units responded to simple spatial
stimuli. Five MEA dishes were tested using square stimuli se-
quentially presented from a 5 � 5 grid. The square stimuli were
�0.6 � 0.6 mm. Ninety-five units responded to the presentation
of these squares; 13% of the units responded to only one stimu-
lus, while the remainder responded to more than one stimulus.
Only 49% of units responded when a stimulus was presented
directly over the recording electrode. The remaining units (51%)
could only be activated by illuminating regions more distal from
the recording site. Distances from which stimuli were able to
elicit responses ranged from directly overhead to as far as 2.5 mm
away.

The latency at which single neurons responded to spatial stim-
uli did not increase with stimulus distance. Figure 4 displays data
from experiments where single squares from a 2 � 2 grid were
projected onto 10 MEA dishes (squares were 0.9 � 0.9 mm). No
correlation was found between the latency to firing of a single
unit and the distance of the stimulus from the site of the record-
ing electrode (r � 0.10, p � 0.16, 119 neurons, 10 MEAs). When
single squares from a higher resolution 5 � 5 grid were used, the

latency of units was found to be weakly but inversely correlated to
the distance of the stimulus from the recording electrode (r �
�0.11, p � 0.05, 95 neurons, 5 MEAs). Even when neurons that
responded to multiple stimuli were examined individually, the
average correlation between latency and distance for each unit
was negligible (r � �0.01, 82 neurons, 5 MEAs). Although there
is no systematic relationship between response latency and elec-
trode distance, the latency of the responses of individual units was
fairly deterministic and predictable (average coefficient of varia-
tion, 0.265). The average overall latency for these square stimuli
was 137 � 63 ms.

Next, we investigated the dynamics of neuronal responses to
more complex spatial stimuli. Random dot stimuli were pro-
jected onto the ChR2-expressing neurons to test the ability of the
networks to discriminate complex stimuli. Optical stimulation
with random dot patterns or squares led to an initial network
response that is characterized by the selective activation of a few
units with an average latency of 165 ms after stimulus onset
(range, 53–239 ms; N � 115 neurons, 13 MEAs). The informa-
tion carried by this initial response decays by 50% after 122 � 36
ms (n � 7 MEAs). On some trials, this initial response is followed
by a synchronized burst of network activity. A typical network
burst lasts between 200 and 600 ms, after which there is a return
to baseline unit activity. If no burst occurs, the initial stimulus-
elicited response will continue to dissipate until baseline response
levels are achieved after 200 –300 ms. The occurrence of a net-
work burst is dependent on past network activity and the identity

Figure 5. Spike Raster plots recorded from single units in response to optical stimulation. Optical stimuli were presented
for 100 ms. Each row represents one trial. Spike times are represented as circles, which are color coded according to
electrode number. Trials are aligned to the first spike time from the cyan unit and then sorted by the spike time recorded
from the unit, which fired second on most trials. A, Stimulus 1 presented to a DIV14 MEA. An obvious alternating spiking
activity is observed. The average latency of the cyan unit is 114 ms after stimulus onset (14 ms after stimulus offset). x-axis
indicates time from earliest latency spike. B, Response of same network to a second random dot stimulus. Alternating
activation in response to optical presentation of a random dot stimulus is seen. The average latency of the cyan unit is 126
ms after stimulus onset (26 ms after stimulus offset).
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of the stimulus. Some stimuli elicit a network burst on 100% of
trials, whereas others seemingly never elicit a network burst. Dur-
ing the initial 200 ms after optical stimulation, the response of
single units does not follow a simple profile of activation followed
by passive decay. Figure 5 plots the responses of single units from
a DIV9 MEA. The units are color coded, and from Figure 5 it can
be seen that most units start responding after the optical stimulus
has terminated and the responses recorded at electrodes reveal a
complex interplay between units that is typical of the activation
observed in recurrent networks (Schrader et al., 2008).

Representational capacity for stimulus information
Network responses could reliably encode complex spatial stimuli
consisting of �20 randomly spaced dots. Thirty different ran-
dom dot stimuli were presented to 8 cultured neuronal networks
to measure how many stimuli can be reliably discriminated using
electrophysiological recordings of network activity. The stimuli
were presented in pseudorandom order using the protocol
shown in Figure 2A. For individual dishes, the mean rate of cor-
rect classification measured on the testing set ranged from 0.14 to
0.5. Classifications were performed on a 250 ms bin of network
activity that began at stimulus termination. Subsequent bins were
excluded from the analysis as classification accuracy fell precipi-
tously thereafter. Figure 6A shows that, on average, 28 of the 30
stimuli were classified at rates above chance when an SVM clas-
sifier was used, whereas 29 of 30 stimuli were classified at rates
above chance when the LSM was used (n � 8 MEAs).

Machine classifiers can address the question of how stimulus
identity information is encoded by the network. Stimuli can be
encoded in the temporal patterns of spiking activity, overall spike
counts, or the spatial patterns of active channels (Kermany et al.,
2010). How stimulus identity information is encoded can be an-
alyzed by filtering out temporal and/or spatial information prior
to classification. We have employed a liquid state machine (LSM)
classifier for this purpose (see Materials and Methods). Figure 6B
shows that both temporal and spatial information plays a signif-
icant role in stimulus encoding. Eliminating temporal structure
by randomizing the spike times reduces classification accuracy by
30%. When the spatial pattern of channel activation is eliminated
by pooling the data, there is a 69% reduction in classification
accuracy. When both spatial and temporal information is elimi-
nated, only the overall spike count can be used for classification.
This results in a 94% drop in classification accuracy (almost to
chance levels). In this case, only 5 stimuli are discriminated at
rates above chance. These results indicate that the spatial pattern
of active units is the most important source of information for
discriminating these spatial stimuli, although temporal informa-
tion still makes a significant contribution.

Fading memory processes
To measure the duration of active stimulus memories, four ran-
dom dot patterns were presented in pseudorandom order onto
18 networks, using the protocol shown in Figure 2A. The dura-
tion of active or fading memories was defined as the time that
elapsed between the end of the optical stimulus and the time
when stimulus-specific information was no longer detectable in
the spiking activity of the cultured neuronal networks. When an
SVM was used to classify these stimuli, the average stimulus
memory persisted for 354 � 70 ms (range, 14 –1480 ms) after the
optical stimulus was terminated. Analyzing the data from four
dishes using the multiclass LSM revealed that stimulus-specific
information persisted in these networks for an average of 675 ms
after stimulus (range, 150 –1200 ms). Figure 7 shows how classi-

fication accuracy varies over time, for one of the networks ana-
lyzed using a multiclass LSM.

Synchronized network bursting is a universal property of cul-
tured neuronal networks (Maheswaranathan et al., 2012). We
therefore investigated whether the duration of active stimulus
memories differs during trials with bursting and nonbursting
network responses. The responses of the neuronal network to the
same stimulus were not simple and homogeneous: some presen-
tations of a stimulus would elicit a network burst, whereas others
would not. Figure 8 displays data from the same neuronal net-
work as shown in Figure 7, except that the trials are sorted into
bursting and nonbursting trials. When these bursting and non-
bursting trials are analyzed separately using a multiclass LSM,
stimulus information is observed to persist for different dura-
tions. On nonbursting trials, the mean rate of correct classifica-
tion was 28% above chance, but the duration of the signal was

Figure 6. Representational capacity and encoding of stimulus information. Classifiers were
trained on MEA data to discriminate neuronal responses to 30 different random dot stimuli. A,
Comparison of different methods for classifying stimulus-elicited responses: multiclass SVM
classifier (hyphenated lines) versus multiclass LSM classifier (solid lines). Data from eight net-
works were analyzed using eight separate SVM and LSM classifiers. Stimuli are ranked in order
of classification accuracy. Classifiers were trained using a 250 ms window. Blue lines indicate the
mean correct classification rate across all 8 networks; and red lines indicate the rate of false-
positive classification associated with each stimulus. When the red line is above chance, this can
indicate that the classifier has a measurable lack of specificity. Shaded areas represent the SEM.
The chance rate of correct classification was 3.3% (hyphenated black line). Data points for
individual networks were obtained by dividing the data into 70%/30% training/testing sets
and then taking the mean of 50 epochs of retraining and retesting. B, Temporal and spatial
information were filtered out to determine how much stimulus information is encoded by the
spatial pattern of active units or by temporal variations in firing rate. A solid blue line indicates
the control rate of correct classification of the LSM for 30 different random dot stimuli. When
temporal information is eliminated by replacing actual spike times with an equal number of
randomized spike times, a slight drop in classification accuracy is seen (hyphenated blue lines).
When information about electrode position is eliminated by pooling the data across electrodes
into a single channel, there is a very large drop in classification accuracy (dotted blue lines).
Other conventions as in Figure 6A.
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only 120 ms (n � 7 MEAs). On bursting trials, the mean rate of
correct classification was 14% above chance, whereas stimulus-
related information could be correctly classified for 400 ms (n �
7 MEAs). The multiclass LSM indicates that the initial network
response to the optical stimuli contains the highest amount of
stimulus-specific information for both trial types (Fig. 8B,C).
However, network bursts contain a small but significant amount
of stimulus-specific information. This indicates that network
bursts are capable of encoding information about stimulus
identity.

The mechanisms for encoding stimulus information vary dur-
ing bursting and nonbursting trials. Filtering out spatiotemporal
features of the data before classification reveals that temporal
spike patterns play a more important role representing stimulus
information on bursting trials than on nonbursting trials. In con-
trast, the spatial pattern of active channels is more important for
discriminating stimuli during nonbursting than bursting trials.
Although significant, overall spike count was the least informa-
tive source of information on stimulus identity. When spatial
information was eliminated by pooling, the accuracy of classifi-
cation was reduced by 45% during nonbursting trials and 24.8%
during bursting trials. When temporal information was elimi-
nated by randomizing spike times, the accuracy of classification

was reduced by 9.7% during nonbursting trials and 19.7% during
bursting trials (n � 7 MEAs). This sensitivity to temporal infor-
mation on bursting trials seems to correspond to stimulus-
related differences in the time at which a network burst is
initiated. Finally, when both spatial and temporal information
was eliminated and only overall spike counts were available for
classification, classification accuracy was reduced by similar de-
gree for both nonbursting (66%) and bursting trials (62.5%).
Although the spatial pattern of active units is important for both
bursting and nonbursting trials, it is not static (e.g., Figure 5). To
measure whether the subset of active units that is activated by a
stimulus is preserved across the fading memory, an SVM was
trained on a 50 ms window of network activity that began just
after stimulus offset. This SVM was then used to classify network
responses recorded from successive 50 ms time bins. Generaliza-
tion was extremely weak and limited to adjacent bins (n � 7
MEAs).

Hidden memory processes
We have investigated the presence of hidden memory pro-
cesses using sequentially presented stimuli according to the
cue-probe protocol shown in Figure 2B. In the cue-probe task,
two stimuli are presented sequentially and a classifier is used

Figure 7. Multiclass classification of neuronal responses to four random dot stimuli. A, Time series indicates the duration of stimulus-specific memories by charting how stimulus classification
information varies in time. Data are from a DIV11 neuronal network. Time series is composed of points constructed from an array of independent multiclass LSM classifiers that analyze nonover-
lapping 50 ms time windows of the spike timing data. The multiclass LSM classifiers were trained to discriminate 4 stimuli; 70% of the data was used for training and the remaining 30% for testing.
The mean rate of correct classification during training and testing trials is plotted in red and blue, respectively. Shaded regions indicate the SEM across 50 epochs of retraining and retesting. Chance
rate of classification for 4 stimuli is 25% (hyphenated black line). Dotted lines indicate the 95% confidence intervals for random label reassignment. y-axis indicates the proportion of correctly
classified trials; and x-axis, time in seconds. B, Average spike rate per trial (Hz) across all channels in the network. A network burst tends to occur in the vicinity of 300 ms after stimulus presentation.
C, The four random dot stimuli used in these experiments. D, Heatmap of average spike rates per electrode channel generated in response to presenting the four experimental stimuli. Spike rates
were calculated in 20 ms bins; color values range from 0 to 2 Hz. Data are from 45 electrodes.
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to analyze the response of the network to the probe stimulus
and determine whether probe-evoked activity is the same on
every trial or whether it changes based on the cue stimulus that
preceded it. If the classifier can discriminate which cue pre-

ceded the probe at a rate above chance,
this constitutes a “one-back” memory
(Nikolić et al., 2009). Ten in vitro net-
works were tested using this protocol;
and in 6 of 10 networks, such a one-back
memory was seen: the response of the
network to the probe stimulus varies ac-
cording to the cue stimulus that pre-
cedes it. For the dishes with such one-
back memory, analysis of a 200 ms time
window after probe presentation shows
that there was a recovery of cue-related
information relative to control. On tri-
als where the probe was presented, the
identity of the cue could be correctly
discriminated at a rate of 22 � 6% above
chance. In comparison, on trials where
no probe stimulus was presented, the
identity of the cue was correctly classi-
fied at a rate of 4 � 2% above chance.
Presentation of a probe stimulus unre-
lated to the cue therefore increased clas-
sification accuracy in each case. Figure 9
shows several cases where cue related in-
formation peaks during cue presenta-
tion, dissipates, and then recovers when

a second, unrelated, probe stimulus is presented. The delay
between cue and probe stimuli varied between 200 and 1500
ms in these experiments.

Figure 9. Response to probe stimulus is modulated by the identity of previous cue stimuli. A–D, Four time series are shown,
revealing the amount of cue-related information in the network responses. For each experiment, one of two different random dot
cue stimuli (“X/Y”) was presented. On experimental trials (red), the cue stimulus was followed by a probe stimulus (“Z”). On control
trials (blue), the probe stimulus was not presented. Independent binary LSM classifiers analyzed nonoverlapping 50 ms time
windows of the spike timing data; 70% of the data was used for training and the remaining 30% for testing. The age of the cultures
and pause between cue and probe were as follows: A, DIV11, 800 ms; B, DIV9, 400 ms; C, DIV8, 200 ms; D, DIV9, 1 s.

Figure 8. Encoding of stimulus information on bursting and nonbursting trials. A, Raster plot of action potentials. The times at which action potentials were recorded from different electrodes
in response to the presentation of the four different experimental stimuli were pooled across the network and are shown plotted as black hash marks. Dish is the same as Figure 6. y-axis indicates
individual trials. B, Encoding of stimulus information on nonbursting trials. Hyphenated black line indicates accuracy of classification of testing data by LSM. Thin solid blue line indicates classification
accuracy when temporal information is filtered out by randomizing spike times (‘jittering’), and classification is performed relying only on overall firing rate and the pattern of active electrodes. Solid
green line indicates classification accuracy when spatial information is eliminated by pooling spikes across all electrodes into a single channel, leaving temporal information and overall firing rate
to guide classification. Dotted red line indicates classification rate based only on overall firing rate; both spatial and temporal data are filtered out of data before LSM classification. The time series
consists of 100 ms bins. Chance rate of classification is 0.25 (solid gray line). C, Encoding of stimulus information on bursting trials. Conventions as in B.
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The duration and capacity of short-
term memory during cue-probe experi-
ments were much larger than what would
be predicted from the analysis of active
(fading) network responses. The duration
of the one-back memory appears to ter-
minate at some point after 1.5 s. Figure 10
shows data from an experiment where the
delay between cue and probe stimuli was
1.2 s. Short-term memory could not be
detected at delays of 2 s or longer. At a
shorter delay up to 1400 ms, the response
to the probe stimulus was significantly
modulated by the identity of the cue stim-
ulus that preceded it.

It is possible that this one-back memory
does not encode stimulus-specific informa-
tion and simply reflects the influence of ha-
bituation on an all-or-none network burst.
To investigate this question, we performed
four experiments where we used 4 different
cue stimuli instead of the usual 2. A strong
one-back memory was observed in 2 of 4
dishes. Figure 11A charts the amount of cue-
related information recorded from a net-
work whose response to a probe stimulus
was modulated by all 4 preceding cues, re-
sulting in a classification accuracy rate of
90%. Filtering the classifier data indicates
that, for this dish, cue-related information
was primarily encoded by the spatial config-
uration of active units.

To determine whether additional cue-
related information could be revived
when a second probe stimulus was pre-
sented, a cue-probe-probe stimulus se-
quence was presented to four dishes. Two
of four dishes showed a one-back mem-
ory, where the probe presentation elicited
an increase in the amount of cue-related
information. However, in none of the
dishes did the presentation of a second
probe lead to a similar recovery of cue-
related information. Figure 11B shows a
case where one-back but no two-back
memory was seen.

Figure 10. Response to probe stimulus is modulated by identity of cue stimuli. A, Time series charting cue-related information
during an experiment with a DIV11 culture. Cues are presented for 100 ms, the delay is 1.2 s, and the probe is presented for 100 ms.
All stimuli are random dot patterns. The amount of cue-related information is measured using a time series constructed from an
array of binary LSM classifiers. Presentation of the probe stimulus causes a recovery of cue-related information, and that

4

information persists at levels above chance for a further 1.2 s.
Classifiers were trained and tested on 492 trials (246 trials per
stimulus). Chance rate of correct classification is 50% (hyphen-
ated black line). Other conventions are as in Figure 6. B, Net-
work activity in response to Stimulus 1 (blue) and Stimulus 2
(red). Lines indicate the mean spike rate per trial (Hz) across all
channels in the network. A network burst tends to occur in the
vicinity of 300 ms after stimulus presentation. C, Raster plot of
action potentials. Responses to Stimulus 1 and Stimulus 2 are
shown on the left and right, respectively. Vertical lines indicate
stimulus onset and termination. D, Heatmapofmeanspikerates
for each electrode. Spike rates were calculated in 20 ms bins; color
values range from 0 to 2 Hz. Other conventions as in Figure 6.
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Short-term memory relies on both active and
hidden mechanisms
To investigate whether short-term memory relies on spiking ac-
tivity or hidden memory processes to bridge the delay between
cue and probe, responses from the previous experiment were
sorted into bursting and nonbursting trials (Fig. 12). Two neuro-

nal networks showed that a short-term
memory with lumped trials also showed a
short-term memory on nonbursting tri-
als. From the raster plots in Figure 12 it
can be seen that no activity bridges the gap
between cue and probe presentations.
Nevertheless, the network responds dif-
ferently to the probe depending on which
stimulus preceded it. In Figure 12A, the
network is presented with a random dot
stimulus “X.” When “X” is followed by the
probe stimulus “Z,” there is a short re-
sponse to the stimulus but no network
burst. In Figure 11B, the same probe stim-
ulus has been preceded by the other ran-
dom dot stimulus “Y.” This time, however,
the response of the network to the probe is
very different: there is a network burst. For
this dish, the cue stimulus appears to alter
the probability that the probe will elicit a
network burst. Figure 12C, D shows the re-
sponses of a second dish with very different
dynamics. Although this dish had sparse ac-
tivation on nonbursting trials, it also
showed a short-term memory. In this case,
the probe stimulus only activates 3–4 units
in the multielectrode array and “short-
term” memory appears to be a result of cue-
dependent adaptation in two of the three
units. Analysis of how the hidden mem-
ory was encoded in the network activity
revealed that the information was pri-
marily encoded in overall firing rate,
whether the units engage in a network
burst or not.

Hidden memory was disrupted during
bursting trials. When the same dishes that
displayed hidden memory during non-
bursting trials were analyzed to determine
whether there was evidence for short-
term memory during bursting trials, no
evidence for short-term memory was
observed. Figure 13 shows the bursting
trial responses from the same neuronal
networks as Figure 12. These results in-
dicate that, on trials where a network
burst occurs, the memory of the cue
stimulus is lost and the response to the
probe stimulus does not reflect cue-
related information. For both dishes,
network bursts disrupted hidden mem-
ory for the cue.

Discussion
We have employed a combination of op-
togenetics, MEA recordings, and machine
classifiers to investigate how stimulus in-

formation is encoded and stored in networks formed by dissoci-
ated cortical neurons in culture. The results from our
experiments indicate that stimulus-specific information is main-
tained for durations longer than 1 s and that both active and
hidden memory processes are present.

Figure 11. Encoding of short-term memory and test for two-back memory. A, Time series charting cue-related information
during an experiment with a DIV11 culture. Cues are presented for 150 ms, the delay is 350 ms, and the probe is presented for 150
ms. All stimuli are random dot patterns. Hyphenated black line indicates accuracy of classification of testing data by LSM. Thin solid
blue line indicates classification accuracy when temporal information is filtered out. Solid green line indicates classification accu-
racy when spatial information is eliminated by pooling spikes. Dotted red line indicates classification rate based only on overall
spike count. Data indicate that most stimulus information is encoded in the pattern of active channels, not spike counts or timing.
Chance rate of classification is 0.25 (solid gray line); other conventions as in Figure 7. B, Response of DIV7 dish to cue-probe-probe
trials. A “one-back” memory was observed, where the probe presentation elicited an increase in the amount of cue-related
information. However, presentation of the second probe did not lead to a similar recovery of cue-related information. “A” and “B”
are the two cue stimuli to be classified. Either “C” or “D” was randomly assigned to be the first probe stimulus. The graphs above
present the average across these two cases, indicating that in these two cases a short-term memory could be detected. No
“two-back” memory for cue identity was detected. Top, Time series showing available cue-related information. Bottom, Spike
rates. Solid line indicates the chance rate of classification for the cue stimulus (50%); and the dotted lines indicate the 95%
confidence intervals for a random label reassignment. Other conventions as in Figure 6.
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These experiments used a new optoge-
netic approach. Electrical stimulation
elicits an artifact at the time of stimulation
followed by a highly stereotyped, fixed-
order response lasting 10 –30 ms. The first
5–15 ms of this initial response is artifac-
tual in that it appears to be mediated elec-
trically, not synaptically (Kermany et al.,
2010). A synchronized network burst of-
ten follows this initial response with a
peak occurring between 20 and 200 ms,
before a return to the prestimulus state
(Jimbo et al., 1999; Eytan and Marom,
2006; Shahaf et al., 2008). With optical
stimulation, there is no stimulus artifact,
and the latency to the first recorded spike
is much longer, between 50 and 200 ms.
The initial response to optical stimulation
typically involves fewer neurons and also
is fairly stereotyped (Fig. 5). As with elec-
trical stimulation, a network burst is usu-
ally induced by optical stimulation, but at
a much later latency (typically in the range
of 100 –300 ms) and for a longer duration,
typically lasting 300 –500 ms before activ-
ity dissipates to prestimulation levels.

On both bursting and nonbursting tri-
als, most actively encoded stimulus infor-
mation is found in the first 200 ms. This is
also a period where the network response
is less variable. During this initial 200 ms,
stimulus information is primarily en-
coded by the spatial configuration of ac-
tive units. However, this is not a simple,
static spatial pattern of units that resem-
bles the image of the optical stimulus; only
50% of units respond to direct illumina-
tion and the units that encode the stimu-
lus change over time, with the relationship
between network activity and stimulus
identity gradually deteriorating into ran-
domness. On bursting trials, actively en-
coded stimulus information can persist as
long as 1 s, but this information appears to
be mainly encoded by differences in over-
all spike counts or temporal information,
particularly differences in the onset and
termination of network bursts.

When the network was challenged
with a second “probe” stimulus, which
contains no information regarding the
first “cue” stimulus, the response to the
probe was typical and primarily encoded
in the spatial pattern of active units. How-
ever, there was evidence for a residual
memory of the previously presented cue
stimulus. The mechanisms that encode
this short-term memory were not singu-
lar. In two dishes, the ability of the probe
to recall cue information relied on the ab-
sence or presence of a network burst, and
the short-term memory was primarily en-
coded by a change in overall spike count.

Figure 12. Hidden memory encodes stimulus identity in overall spike counts. A, Raster plot of sorted nonbursting cue-probe
trials from same dish as Figure 6; 50 trials of data are shown. Conventions are as in Figure 7. B, Encoding of stimulus information.
Both cue and hidden memory are primarily encoded in the overall spike rate (dotted red line). Filtering out of temporal information
has no effect (solid blue line), and filtering out of single unit activity by pooling spikes has little effect (solid green line). Chance
classification performance is 50% (gray line); classification of unfiltered nonbursting trials is shown as hyphenated black line. C,
Raster plot of sorted nonbursting data from cue-probe trials recorded from a different DIV7 MEA. D, As with the other dish, the
majority of stimulus information recorded in hidden memory is encoded in overall spike counts (dotted red line). Disrupting
temporal (blue) or spatial (green) information fails to reduce classifier accuracy from control levels (hyphenated black line). Other
conventions are as in Figure 10.
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In another dish, short-term memory was
mainly encoded by changes in the spatial
pattern of active units.

Important questions concerning the
information content of synchronous net-
work bursts were also answered. Network
bursts are capable of representing and ex-
tending stimulus information in active
memory, but simultaneously it was shown
that network bursts erased hidden mem-
ories of the cue. If hidden memory plays
an important role in short-term memory,
then these observations may have some
implications for cognitive impairments
that are associated with pathological dis-
charges that can accompany seizure disor-
ders. This is an area that requires more
investigation.

The observation that a probe stimulus can
elicit information about previously presented
stimuli compares favorably with some the-
oretical models of short-term memory.
Mongillo et al. (2008) proposed a model
of working memory wherein a randomly
organized neural network with adaptive
synapses is presented with a stimulus and
then periodically maintains the stimulus
information by reactivating the network
with a uniform or nonspecific probe in-
put. Figure 9A shows one such case where
we used a uniform white stimulus as the
probe and a observed a probe-dependent
extension of cue-related information
However, whenever we administered a
second probe stimulus, we were unable
observe a “two-back” memory effect (Fig.
11B). The theory may, however, antici-
pate this result as one of its primary prem-
ises is that excitatory synapses in
prefrontal cortex are facilitating. The ex-
citatory neurons in our living neuronal
networks are likely to mainly have de-

4

Figure 13. No short-term memory is observed on bursting
trials. A, Raster plot of sorted bursting cue-probe trials from
same dish as Figure 6; 50 trials of data are shown. Conventions
are as in Figure 7. B, Encoding of stimulus information. No
“short-term” memory is seen after probe presentation. Cue
information is primarily encoded in the overall spike rate on
bursting trials (dotted red line). Filtering out of temporal infor-
mation has no effect (solid blue line), and filtering out of single
unit activity by pooling spikes has little effect (solid green line).
Chance classification performance is 50% (gray line); classifi-
cation of unfiltered nonbursting trials is shown as hyphenated
black line. C, Raster plot of sorted bursting data from cue-
probe trials recorded from a different DIV9 MEA. D, As with the
other dish, no short-term memory is seen on bursting trials.
For this DIV9 MEA, cue information is mostly encoded tempo-
rally (blue and red). The loss of information is less when only
spatial information is eliminated before classification (green).
Chance classification rate is 50%. Other conventions are as in
Figure 10.
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pressing synapses, such as rat sensory cortex (Markram et al.,
1998).

The results from our cue-probe experiment more closely
match the results reported by Nikolić et al. (2009), who recorded
from the visual cortex of anesthetized cats. Despite the large dif-
ferences between our in vitro system and the in vivo system used
by Nikolić et al. (2009) there are many similarities. The duration
of memory for single stimuli is comparable with fading stimulus
memories reported as lasting �700 ms in vivo while in vitro the
mean was 675 ms. The correlation between mean firing rate and
correct classification rates is about the same in vivo (r � 0.65) and
in vitro (r � 0.64), indicating that mean firing rate carries a sim-
ilar amount of information in each system. The presence of a
“one-back” memory but absence of a “two-back” memory was
also reported in vivo. Nikolić et al. (2009) hypothesized that the
absence of this “two-back” memory might be a mechanism asso-
ciated with visual masking, but the fact that this trend exists in
vitro suggests that it is a generic property of neural networks
rather than an unusual property of visual cortex. The networks
also have their differences. The in vitro network is prone to net-
work bursts after �300 ms. The ratio of inhibitory to excitatory
neurons is similar for the two systems (Marom and Shahaf,
2002), so the added stability of the in vivo system likely is a func-
tion of its architecture. Another cause for this difference may be
developmental rather than architectural, reflecting the absence of
external inputs to the in vitro network during development.
When networks growing on an MEA were continuously stimu-
lated with random inputs, the development of synchronized net-
work bursting was suppressed (Wagenaar et al., 2006b). Hence,
external signals may be needed during development to ensure
network stability, by helping to tune and balance the outputs of
excitatory and inhibitory neurons.

The memory processes we demonstrate endow the network
with the ability to perform state-dependent computations, such
that the response to a stimulus varies with the identity of the
preceding stimulus. This constitutes a form of “reservoir” com-
puting (Buonomano and Maass, 2009): nonlinear interactions in
time and space. The usual application for reservoir computing is
pattern separation, and these nonlinear interactions allow similar
signals to evolve into very different network states. The short-
term memory observed during the cue-probe presentation ex-
periments demonstrates that networks of disassociated cortical
neurons can have a nonlinear sensitivity to temporal order. At the
same time, our time-series analysis of the network response to
optical stimulation demonstrates that these networks have a fad-
ing memory that preserves stimulus information long enough to
allow recurrent interactions. The only complication is that net-
work bursts may limit some computations; although they can
propagate stimulus information they appear to erase hidden
memory.

In conclusion, optogenetic methods can allow researchers to
explore neuronal mechanisms of memory in vitro using stimuli
and experimental designs similar to those used in vivo. An in vitro
platform provides the additional benefit of allowing researchers
to rapidly screen for drugs that might have therapeutic effects,
manipulate genes and gene expression, provide a test bed for stem
cell research, or examine how computers might be used in con-
junction with brain cells to enhance memory and information
processing (Chiappalone et al., 2003; Bakkum et al., 2008a; Jain
and Muthuswamy, 2008; Berger et al., 2011; Stephens et al.,
2012). All these possibilities can have far reaching consequences

for the treatment of diseases associated with short-term memory
impairments.
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