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Abstract 14 

In both humans and animals brief synchronizing bursts of epileptiform activity known as interictal 15 

epileptiform discharges (IEDs) can, even in the absence of overt seizures, cause transient cognitive 16 

impairments (TCI) that include problems with perception or short-term memory. While no evidence 17 

from single units is available, it has been assumed that IEDs destroy information represented in 18 

neuronal networks. Cultured neuronal networks are a model for generic cortical microcircuits, and 19 

their spontaneous activity is characterized by the presence of synchronized network bursts (SNBs), 20 

which share a number of properties with IEDs, including the high degree of synchronization and their 21 

spontaneous occurrence in the absence of an external stimulus. As a model approach to 22 

understanding the processes underlying IEDs, optogenetic stimulation and multielectrode array 23 

recordings of cultured neuronal networks were used to study whether stimulus information 24 

represented in these networks survives SNBs. When such networks are optically stimulated they 25 

encode and maintain stimulus information for as long as one second. Experiments involved recording 26 

the network response to a single stimulus and trials where two different stimuli were presented 27 

sequentially, akin to a paired pulse trial. We broke the sequential stimulus trials into encoding, delay 28 

and readout phases and found that regardless of which phase the SNB occurs, stimulus-specific 29 

information was impaired. SNBs were observed to increase the mean network firing rate, but this did 30 

not translate monotonically into increases in network entropy. It was found that the more excitable a 31 

network, the more stereotyped its response was during a network burst. These measurements speak to 32 

whether SNBs are capable of transmitting information in addition to blocking it. These results are 33 

consistent with previous reports and provide baseline predictions concerning the neural mechanisms 34 

by which IEDs might cause TCI.  35 

 36 

 37 
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1. Introduction 38 

Cellular and network memory mechanisms underlie psychologically relevant processes like working 39 

memory and perception.  These basic memory mechanisms include ‘hidden’ and ‘active’ mechanisms 40 

which reference the short-term adaptation of neurons to repeated stimulation as is revealed in ‘paired-41 

pulse’ experiments and the remnants of stimuli that persist as reverberations of action potentials in 42 

neuronal circuits (Buonomano and Merzenich, 1996; Mongillo et al., 2008; Buonomano and Maass, 43 

2009). In epilepsy, the performance of many tasks that rely on these basic memory mechanisms, from 44 

motor planning to perception to working memory, can be disrupted by abnormal focal discharges of 45 

synchronized neural activity between seizures, an effect known as transitory cognitive impairment or 46 

TCI (Binnie et al., 1987; Stafstrom, 2010). These abnormal discharges last 70-200 msec and are 47 

known as interictal epileptiform discharges (IEDs) (de Curtis and Avanzini, 2001; Binnie, 2003). 48 

IEDs likely arise from excessively synchronous inputs to a focal set of neurons that are possibly 49 

impaired by ion channel abnormalities or activated by the local release of glutamate by glia 50 

(Rogawski, 2006). Recently, a rodent model of TCI was developed using the short-term memory 51 

task, delayed match to sample (DMS) (Kleen et al., 2010). The DMS task has three phases: an 52 

encoding phase where the first stimulus (the ‘sample’) is presented, an intervening delay phase, and a 53 

recall phase where matching and mismatching cues are presented to elicit responses. Kleen et al. 54 

(2010) recorded hippocampal IEDs throughout the DMS task, but found only hippocampal IEDs 55 

occurring during the recall phase of DMS impaired performance. The authors argue this indicates the 56 

hippocampus only processes DMS-relevant information during the recall phase. However, the depth 57 

electrodes used in these experiments could not resolve whether the activity of hippocampal neurons 58 

encodes stimulus-specific information nor could they show whether this information was maintained 59 

or destroyed by IEDs.  The current study uses multielectrode array (MEA) recording and optogenetic 60 

stimulation to investigate whether neuronal networks continue to represent stimulus-specific 61 

information after synchronized bursts of network activity have occurred. Using a laser projection 62 

system, optogenetically modified, dissociated cultures of cortical neurons can be optically stimulated 63 

with complex stimuli such as random dot patterns (Dranias et al., 2013). When these neurons are 64 

plated on MEAs, the network activity that results from stimulation can be recorded and the firing rate 65 

of neurons and patterns of recruitment encode the identity of stimuli for hundreds of milliseconds 66 

after the stimulation has been removed (Dranias et al. 2013). In addition to displaying the ability to 67 

encode stimulus information in neuronal firing rates, cultured neuronal networks can maintain 68 

stimulus-specific information across delays where no network activity has been observed for 69 
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hundreds of milliseconds (Buonomano and Merzenich, 1996; Dranias et al., 2013). In these cases, 70 

stimulus information is said to be represented by hidden memory mechanisms and can be revealed 71 

using protocols like paired-pulse facilitation which are sensitive to synaptic adaptation and involve 72 

the sequential presentation of stimuli across a delay (Buonomano and Maass, 2009).  A number of 73 

theorists and computational modelers have posited that this simple mechanism of stimulus-specific 74 

adaptation is the primary mechanism the brain relies on when performing novelty and familiarity 75 

detection in DMS-like tasks (Brown and Xiang, 1998; Brown and Aggleton, 2001; Yassa and Stark, 76 

2008; Grossberg 1980).  77 

Synchronous Network Bursts (SNBs) arise spontaneously in cultures of living neuronal 78 

networks and appear to be an intrinsic property of any densely connected recurrent neural network 79 

(Wagenaar et al., 2005; Chiappalone et al., 2009; Hales et al., 2012; Maheswaranathan et al., 2012). 80 

Given that cultured neuronal networks can maintain stimulus-specific information across short 81 

delays, two experiments were performed to test whether this information is disrupted by SNBs. In the 82 

first experiment one of four possible stimuli was presented on each trial and trials interrupted by 83 

SNBs were compared to control trials to measure how much stimulus information was lost. A 84 

multiclass (4 class) SVM classifier is used to analyze these trials. In the second experiment a 85 

sequence of two stimuli is presented separated by a short delay. A binary (2 class) SVM classifier is 86 

used to analyze these trials. Like the paired pulse experiment, this experiment aims to measure 87 

whether information about prior stimulation is stored across a delay where there is no neural activity. 88 

Unlike the paired pulse experiment, the sequential stimulus experiment aims to detect evidence of 89 

stimulus-specific information, not just evidence of prior stimulation. In the sequential stimulus 90 

protocol, the identity of the first stimulus varies while the identity of the second stimulus is fixed. 91 

The adapted response of the network to the second stimulus is analyzed to measure how much 92 

information it contains about the first stimulus. In order to test whether stimulus-specific information 93 

survives an SNB, experiments were broken into three phases: encoding (first stimulus), delay, and 94 

recall (second stimulus). Once it was established that SNBs destroy stimulus-specific information, 95 

the firing rate, entropy, and similarity of network responses during SNBs were measured. It was 96 

hypothesized that if the SNBs act as white noise and interfere with the stimulus representation, 97 

network response patterns should be dissimilar and these trials will have a high entropy. As an 98 

alternative it was hypothesized if SNBs ‘overwrite’ stimulus-elicited responses by saturating active 99 

units then SNB network response patterns should be similar and have a low entropy. 100 
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 101 

2. Materials and methods 102 

2.1. Primary Neuron Cell Culture  103 

E18 Sprague-Dawley rat pups are decapitated and utilizing aseptic technique, cortical tissue is 104 

dissected from the embryonic brain and placed directly into a 15 ml sterile plastic vial containing 10 105 

ml ice-cold HBSS or Hibernate-E medium (BrainBits, www.brainbitsllc.com) and brought to a 106 

laminar flow hood for extraction of neurons from the cortical tissue. E1 is defined as the day after the 107 

plug is determined to be sperm-positive (Poon, et al. 2014). All procedures carried out were approved 108 

by the Institutional Animal Care and Use Committee (IACUC) of the National University of 109 

Singapore. Poly-D-lysine and fibronectin coated 60 electrode Micro-Electrode Array (MEA)-110 

containing culture dishes (Multi Channel Systems) are prepared as described previously (Van de Ven 111 

et al., 2005; Dranias et al., 2013). Cortical neurons from multiple pups are dissociated, and plated 112 

onto MEAs in aliquots of 40 uL at a density of 1x105 neurons per MEA dish. Prior to plating, 113 

neurons are transfected with plasmid DNA encoding ChannelRhodopsin-2 (ChR2, a kind gift from 114 

Karl Deisseroth) fused to EYFP for visualization and carrying mutations H134R and T159C which 115 

were introduced to increase current (Nagel et al., 2005). Transfection was carried out using 116 

electroporation (Amaxa nucleofector II device and kit, Lonza Inc.) After electroporation and plating, 117 

MEAs were filled with approximately 1 mL NB-Active 4 cell medium (BrainBits) with 10% fetal 118 

bovine serum (FBS), covered with a plastic cap with Teflon film (ALA-Scientific), and the dish was 119 

placed into the incubator (37C, 5%CO2). The cell medium was replaced every 2 to 5 days and YFP 120 

expression was visible within 24 hours of transfection. 121 

 122 

2.2. MEA Recordings 123 

Extracellular electrophysiological recordings of neurons were made from 60 electrode MEA dishes 124 

using the MEA1060 hardware system (Multi Channel Systems). Recordings were performed on an 125 

anti-vibration table and in a Faraday cage. During experimental recordings, the cell culture medium 126 

(NBActive4) was replaced with Dulbecco’s phosphate-buffered saline containing glucose and 127 

pyruvate (DPBS, Sigma). MC_Rack software (Multichannel Systems) was used to acquire 128 

extracellular signals that were high pass filtered at 300 Hz and low pass filtered at 3 kHz with 2nd 129 

order Butterworth filters. Action potentials or ‘spikes’ were detected using a voltage threshold rule. 130 

The value of the threshold was between 7-12 μV and was determined by the user for each dish based 131 
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on the observed amount of channel noise. Electrophysiological data was imported into MATLAB 132 

using the Neuroshare API library (www.neuroshare.org).  133 

2.3. Optical Stimulus Presentation and Imaging  134 

The MEA system was mounted on an inverted microscope during recordings (Eclipse Ti, Nikon). 135 

Fluorescent and Brightfield images were captured from the MEA dishes via a cooled CCD camera 136 

(Orca, Hamamatsu). Optical stimuli were presented onto the MEA using a 25 mW 488 nm laser 137 

(Spectra-Physics) beam which was passed through an acousto-optic tunable filter (AOTF, AA Opto-138 

Electronic), optically expanded, passed through a polarizing filter and projected onto a reflective 139 

LCoS Spatial Light Modulator microdisplay (SLM, Holoeye Photonics AG) (Dranias, et al. 2013). 140 

Blue light patterns reflecting off the SLM were passed through a second polarizing filter and 141 

projected onto the neuronal network growing on top of the MEA. All elements of the optical 142 

projection system were bolted to the anti-vibration table. TTL pulses generated by MATLAB 143 

synchronize recordings and stimulus presentations. The random dot stimuli were constructed from 144 

18-22 randomly positioned squares on a 10x10 grid and had an image size of approximately 1.25 mm 145 

square when projected onto the MEA dish with an effective light intensity of 0.1 mW/mm2.  146 

 Beginning at 5 days in vitro (DIV), cultures were screened for ChR2-YFP expression. 147 

Cultures exhibiting YFP expression in the range of 1% +/- 0.5% were monitored for spontaneous 148 

single unit electrophysiological activity. Optical stimuli of increasing spatial resolution were 149 

presented to active dishes to test for functional expression of ChR2: networks showing a 150 

differentiated response to squares in different locations of a 2x2 grid were then tested with patterns of 151 

random dots from a 10x10 grid. Dishes showing a differentiated response to at least 5 of 30 random 152 

dot patterns were selected to undergo further study. In addition, networks in this study needed to have 153 

a limited but useful number of SNBs. Each step in this screening process eliminates about ½ of 154 

dishes. Data arises from separate batches: 1905- Dish 1, Dish 4; 0504- Dish3; 2106- Dish 3, Dish 5. 155 

 156 

2.4. Experimental Protocols  157 

Random dot stimuli consisted of 18-22 randomly positioned squares on a 10x10 grid occupying 1.25 158 

mm2 on an MEA dish. Single stimulus presentation experiments are used to test whether SNBs 159 

disrupt stimulus information represented in lasting network activity. During single stimulus 160 

presentations one of four random dot stimuli is presented for 100-200 msec. A multiclass (4 class) 161 

SVM classifier was used to analyze these trials to identify stimulus-specific information (see section 162 
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2.6). Sequential stimulus presentation experiments are similar to paired-pulse experiments and aim to 163 

test whether SNBs disrupt hidden network representations of stimuli. During sequential stimulus 164 

presentations the first stimulus (cue) is presented for 100-200 msec, followed by a delay period of 1 165 

second after which the second probe stimulus is presented. While cue stimuli vary on different trials, 166 

the probe stimulus is the same on every trial. Two cue stimuli were alternated on trials so a binary (2 167 

class) SVM classifier is used to analyze these trials (see section 2.6). Responses to the probe are 168 

analyzed to see if they reflect information about specific cue stimuli. Like paired pulse experiments, 169 

the sequential stimulus experiments are used to detect evidence that the network stores information in 170 

the absence of neural activity. However in the sequential stimulus task the stimuli differ and the 171 

information to be measured regards the identity of past stimuli, rather than simple evidence of past 172 

stimulation. In order to minimize the possibility that action potentials are transmitting stimulus 173 

information during the delay period, unit activity is monitored during sequential stimulus trials and 174 

trials with unit activity during the final 200 ms of the delay period are flagged for later analysis. The 175 

persistence of cue-specific information was measured in both trials using a time-series constructed 176 

from Support Vector Machines (SVMs) (see below).  177 

2.5. Experimental Trials with and without SNBs  178 

Network responses were sorted into trials with and without SNBs. During single stimulus 179 

presentation trials, SNBs were detected using a threshold rule of more than 20 spikes in the first 590 180 

msec. During sequential stimulus presentation experiments ‘control trials’ are those trials where no 181 

SNBs occur until after the second (probe) stimulus. This protocol aims to investigate information 182 

stored using hidden mechanisms so control trials are additionally restricted to trials where there is no 183 

unit activity during the final 200 ms of the delay period. Trials with SNBs were divided into three 184 

types based on the phase in which an SNB occurred: cue, delay, or probe. A cue phase trial with 185 

SNBs was deemed to occur if an SNB occurred prior to or coincident with the cue stimulus. A cue 186 

period SNB was identified whenever half the mean number of spikes per trial occurred in the first 187 

590 ms of the trial. A delay phase trial with SNBs was deemed to occur when an SNB was observed 188 

between cue and probe stimuli. The delay phase SNB was identified whenever half the mean number 189 

of spikes per trial occurred in the interval between cue and probe, followed by a 100-300 ms pause in 190 

which no spikes were observed prior to presentation of the probe stimulus. Probe phase trials with 191 

SNBs were deemed to occur whenever an SNB immediately preceded or coincided with the probe 192 

stimulus. The probe SNB was identified when at least 20 spikes occurred in a 300 ms time window 193 
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starting from 100 ms prior to probe presentation until 100 ms after probe presentation. Trials 194 

presented in figures were selected in order to convey the typical network responses and do not 195 

represent observed frequencies of each trial type; rather trials are typically presented in some equally 196 

weighted distribution of across classes (50-50 or 33-33-33). 197 

2.6. Stimulus Information Time Series  198 

Support vector machines (SVMs) were used to distinguish network responses to different stimuli.  199 

The SVM time series is constructed using multiple, independent SVMs to measure how stimulus 200 

information varies over time (Nikolic et al., 2009; Dranias et al., 2013). Each SVM analyzed a 100 201 

msec time bin and is trained to recognize differences in the pattern of recruitment and firing rate of 202 

neurons in that time window. SVMs perform either 4-choice classifications (single stimulus task) or 203 

2-choice classifications (sequential stimulus task) and are implemented in MATLAB using libsvm 204 

(Chang and Lin, 2011). The baseline or chance rate of classification was either ¼ or ½, depending on 205 

the number of stimuli used in the experiment as all stimuli were presented an equal number of times 206 

(in blocks of 64 pseudorandom trials).  207 

Data points making up the stimulus information time series were computed by SVMs focused on classifying 208 

data from a single time bin.  Using notation, the construction of the SVM array and time series can be 209 

understood more precisely. Each trial was divided into n 100ms bins: 210 

 (bin1, bin2, bin3, … binn). 211 

Hence for a 2 second trial, there would be 20 100ms time bins (n=20). An independent SVM classifer 212 

is assigned to analyze data in each time bin:  213 

 (SVM1, SVM2, SVM3, … SVMn). 214 

In the case of a 2 second trial (n=20), there would be 20 independently trained SVMs, each focused 215 

on analysing the data from a corresponding time bin.  216 

Data in every time bin was constructed by computing a population spike count vector. Each spike 217 

count vector, spikei (where i corresponds to bini), is 60 dimensional (59 electrodes and a ground) and 218 

records the number of spikes seen in each unit in a 100ms time bin. The 60th channel (ground) was 219 

assigned a default value of 1 in every time bin (preventing dividing by zero). Hence each vector is: 220 

spikei= (count1, count2, count3, … count60) = (count1, count2, count3, … count59, 1) 221 

Hence on a given 2 second trial, j, there would be 20 spike vectors, corresponding to each time bin: 222 

spike1,j, spike2,j, spike3,j, … spike20,j 223 

Each SVM classifier is focused on analysing the data of a single time bin and uses multiple trials 224 
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worth of spiking data during training and testing. Typically 70% of the trials for a given experiment 225 

were used for training an individual SVM and the remaining 30% of trials for testing.  Hence for an 226 

experiment where there are 800 trials, SVM7 in bin7, would be trained on the set of spike data: 227 

{spike7,1, spike7,2, spike7,3, … spike7,560}. 228 

But then the SVM7 model is tested on the remaining spike data: 229 

{spike7,561, spike7,562, spike7,563, … spike7,800}. 230 

The average accuracy across all training or testing trials is then reported. Only data that is linearly separable 231 

will have an accuracy of 100%. The stimulus information time series is contructed by presenting the average 232 

accuracy of individual SVMs as time-ordered data points.  To control against bias on individual training or 233 

testing sets, each SVM retrained and tested 50 times using different subsets of spike count data and 234 

the mean accuracy across these 50 training and testing epochs is reported in the stimulus information 235 

time series. In figures a red line typically indicates the amount of stimulus information during the 236 

training phase and a blue line indicates the amount of stimulus information during the testing phase. 237 

When measuring how much information was destroyed on trials where an SNB occurred, the SVM 238 

When measuring how much information was destroyed on trials where an  was trained on trials 239 

where no SNB occurred and then tested on trials with SNBs. 240 

2.7. Binary Network Activity Vectors  241 

Patterns of network activity were reduced to a binary vector that indicated whether a given channel 242 

was active or not in a 250 ms time bin. A unit is active when its firing rate is 3 STD above its inter-243 

trial interval firing rate, similar to the rule for characterizing neuronal avalanches (Shang et al., 2001; 244 

Beggs and Plenz, 2004; Pasquale et al., 2008). Time bins were fixed at 250 ms windows to facilitate 245 

averaging and comparisons across different trials. The duration of the window was selected because 246 

it captures the initial stimulus-elicited network response, separating it from the subsequent network 247 

bursting response. The ground electrode channel was assigned a value of one rather than zero, 248 

preventing undefined division operations. 249 

2.8. Entropy Time Series  250 

In order to measure the number of different ways the network responds to stimuli, a time series was 251 

constructed by breaking the data into 250 ms time bins and counting the number of different binary 252 

network activity vectors observed across all trials. Some binary network activity vectors occur more 253 

frequently than others and in order to measure this stereotypy, the number of exemplars of each 254 
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binary network activity vector is counted and these tallies are used to compute the entropy. Smaller 255 

entropy values indicate network responses during a given time bin are highly stereotyped while 256 

higher entropies during a given time bin indicate the patterns of network responses are diverse, with 257 

the upper limit of different response patterns being the number of observed trials. Entropy is 258 

computed by counting the number of unique binary network activity vectors that occurred in each 259 

time bin and then adjusting this number by the frequency that each unique binary network response 260 

occurred: 261 

𝑯(𝒙) = 𝒍𝒐𝒈𝟐𝑵−
𝟏

𝑵
∑𝒏𝒊𝒍𝒐𝒈𝟐𝒏𝒊
𝒊

 262 

Where ‘x’ represents the outcome space of observed network responses, H is the entropy, N is the 263 

total number of binary network activity vectors, and ni represents the count of binary network activity 264 

vectors in each class, i, of equivalent binary vectors. To make the entropy an intuitive measure of 265 

how stereotyped the network responses are, entropy is plotted as the ‘equivalent number’ of distinct 266 

network responses that would be associated with a given entropy value under the assumption that 267 

network responses arise from a uniform distribution. Hence, for each time bin, the entropy is plotted 268 

as 2H(x), giving the equivalent number of outcomes when the outcome space is composed of equally 269 

weighted classes. Time bins in the time series were set to 250 ms, except for the first time bin which 270 

was 550 ms. A weakness with entropy measurements is that they count the number of different 271 

responses but not how different the response are from each other. 272 

2.9. Cross-Correlation Matrix of Binary Network Activity Vectors 273 

Data was broken into 250 ms time bins and a cross-correlation matrix was computed to compare the 274 

binary network activity vectors recorded on different trials. The cross correlation matrix was 275 

computed using the module clusterdata from the Statistics Toolbox in MATLAB. After the cross 276 

correlation matrix was computed, trials were sorted into clusters using a dendrogram algorithm that 277 

clusters similar network responses. After the network responses had been clustered by similarity, the 278 

trials in each cluster were examined to see which stimulus had been presented and the trials within 279 

the cluster were re-sorted by stimulus identity. Using this clustering approach it is possible to see 280 

whether two different neural responses are similar to each other despite having different binary 281 

network activity vectors (Raichman and Ben-Jacob, 2008). Hence the cross-correlation matrix 282 

complements entropy measurements by showing whether different network responses can be 283 
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clustered into similar responses; this can indicate that some of the trial-to-trial variations in network 284 

responses are due to noise rather than fundamentally different patterns of activity. In diagrams, 285 

clusters of similar responses form reddish squares along the diagonal. 286 

2.10. Statistical Methods 287 

The specificity of SVM classification on single trials is established using random label shuffling.  288 

The best and worst classification rates (95th percentile) on randomly labeled data were recorded for 289 

each classifier to establish the significance of the correct classification rates. This is reflected in 290 

classification figures as dotted confidence intervals about the baseline or chance rate of classification, 291 

which was either ¼ or ½, depending on the number of stimuli. Bias relating to the unfair sampling of 292 

training and testing vectors is controlled by retraining and testing the classifiers fifty times. For each 293 

repeat, a different set of training and testing data is randomly selected from the experimental data and 294 

the mean accuracy of classification and standard error are calculated. In classification figures, the 295 

average classification accuracies are reported with solid lines and standard errors with gray shadows. 296 

When comparing trials with and without SNBs, modulations of accuracy in classification are 297 

recorded as mean percent of the values without SNBs, with standard error. The entropy of two 298 

categories of trials is compared: trials with and without SNBs. However, the number of trials in each 299 

category is not equal. In order to directly compare the entropy of these two categories, a random 300 

sample of trials is taken from the larger category, equal in size to the number of trials in the smaller 301 

category. This random sampling is repeated 300 times and the mean entropy is reported along with 302 

the 99th percentile extremes of the mean values seen across the resampling process are plotted as 303 

gray shadows behind the mean trend line wherever entropy was reported. For the category with the 304 

smaller number of trials, the entropy is computed directly. Wherever variables such as firing rate, 305 

number of active channels, and normalized entropy are compared across different networks, these 306 

variables were first standardized within each network. Standardization was done by computing the 307 

means and variances for each variable across all time bins. The values for firing rate, channel 308 

number, or entropy were then replaced with a standard score in each time bin and correlations 309 

between variables over time were computed after pooling data across all networks (or over a 310 

specified local time range): 311 

𝒓 =
𝟏

𝒏𝒎−𝟏
∑(

𝑿𝒊𝒋−𝑴𝑿
𝒔𝒙

)(
𝒀𝒊𝒋−𝑴𝒀
𝒔𝒚

)

𝒊𝒋

 312 
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Where MX and MY represent the mean values of the network-specific standardized variables Xij, Yij 313 

pooled over all networks j and time bins i. 314 

 315 

3. Results 316 

3.1. Synchronizing Network Bursts (SNBs) Disrupt Network Responses to Single Stimuli  317 

Primary cortical neurons were cultured and transfected using ChR2 (Figure 1A, B). Static images of 318 

random dots were optically projected onto the networks, eliciting responses typically lasting 100-200 319 

ms. Signals associated with this stimulation were electrophysiologically recorded using an MEA and 320 

spikes recorded by each electrode are translated into spike times (Figures 1C-D). Approximately 1-321 

5% of trials were interrupted by SNBs. The occurrence of SNBs appeared unchanged across the 322 

recording session of single stimulus presentations (unsorted data shown in Figure 1E, sorted shown 323 

in Figure 1F).  Simple stimulus presentation experiments involve presenting one of four stimuli to the 324 

dish in a pseudo random order. Figure 1(E-H) shows the responses of one network to four different 325 

stimuli (Batch 1905-Dish 4). 326 

In order to quantify how much stimulus information is lost during trials with SNBs, support 327 

vector machines (SVMs) were trained to classify the electrophysiological responses of neuronal 328 

networks to different random dot stimuli. SVMs are linear classifiers and they classify data by 329 

separating them with linear decision boundaries (Figure 2A). The SVMs were trained using 70% of 330 

the trials without SNBs (training set; Figure 2B). The array of SVMs is unable to classify neural 331 

responses at an accuracy of 100%, even on its training set (classification accuracy on training set is 332 

indicated by a red line in the graph at bottom of Figure 2B). This indicates that network responses to 333 

different stimuli are not linearly separable. Figure 2C and 2D provide examples of how the array of 334 

classifiers (optimized using training data) analyze single trials from the remaining 30% of trials (the 335 

‘testing set’). Overall generalization was good and the classification accuracy for testing data was 336 

comparable to training data (blue dashed line, graph at bottom of Figure 2B). 337 

The pattern of activity on trials with SNBs was very different from that seen during control 338 

trials without SNBs (Figures 1, 3).  During control trials stimuli elicit a reliable spike train (Figures 339 

3A and 3B, black hash marks) that activates a specific set of electrodes (Figures 3C and 3D). In trials 340 

with SNBs that interrupt presentation of stimuli (Figures 3A-B, red hash marks) can activate very 341 

different sets of electrodes (Figures 3E-F). Data is from 640 trials which consist of 160 trials per 342 

stimulus (Batch 2106-Dish 5).  343 
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 When SVMs are trained using data from control trials without SNBs and then tested using 344 

previously unencountered data of the same type, the SVMs can classify the unencountered data with 345 

a high level of accuracy, usually in excess of 80% (Figure 3G). However, when SVMs that had been 346 

trained on control trials are used to classify trials with SNBs, classification accuracy falls to chance 347 

levels (Figure 3H). This indicates SNBs destroy stimulus-specific network activity during. 348 

 349 

3.2. SNBs Use More Than One Mechanism to Disrupt Responses to Stimuli  350 

Trials with SNBs were analyzed from four cultured neuronal networks (1905- Dish 1, Dish 4; 0504- 351 

Dish3; 2106- Dish 3). As described in the Methods section, 12 time bins of data were standardized 352 

for each network and correlations computed on the pooled 48 data points.  These comparisons reveal 353 

that the mean firing rate, number of active channels and normalized entropy are all positively 354 

correlated. In particular, mean firing rate was positively correlated with both the normalized entropy 355 

and number of active units (r=0.40, p=0.0052; r=0.96, p<0.0001) and the number of active units was 356 

positively correlated to the normalized entropy (r=0.48, p=0.0008). These correlations suggest that a 357 

simple dynamical model can explain the results: SNBs are associated with the recruitment of 358 

additional units, the activation of which increases the mean firing rate and results in higher entropies 359 

because more active units mean more unique patterns of network activity.  However, when SNB 360 

responses were examined on a case by case basis, this trend did not hold for all the networks.  Figure 361 

3 displays data from two neuronal networks (Batch 1905, Dishes 1 and 4). The figures in the left 362 

column present data from a neuronal network where this correlation does not hold during the 363 

occurrence on an SNB (Figures 4A, C, E, G, I).  The figures in the right column present data from a 364 

second neuronal network where this correlation does hold during SNBs (Figures 4B, D, F, H, J). 365 

These contrasting results indicate that the simple mechanism proposed previously does not explain 366 

the behavior of SNBs in all networks, warranting closer examination of network responses. In order 367 

to understand why different networks are associated with different response patterns, data from trials 368 

with and without SNBs were analyzed. 369 

 Figures 4A and 4B show the pattern of activate channels during trials with SNBs (top row) 370 

and control trials (bottom row) using the same single-stimulus presentation protocol detailed in 371 

Figure 3. These images demonstrate that at the time of stimulus presentation (or SNB occurrence) 372 

more units are active during trials with SNBs than control trials. This difference in activation level is 373 

also reflected by a large difference in the overall mean firing rate during both trial types (Figures 4C-374 

D). When just these two statistics are considered, the response dynamics of the two networks are 375 
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qualitatively very similar despite the large differences in the overall mean firing rate, and number of 376 

active channels between the two networks (the firing rate in the first network is larger by a factor of 4 377 

and number of channels larger by a factor of 1.5). When entropy is considered, the responses of the 378 

networks during control trials continue to be very similar: entropy peaks in the third time bin and 379 

then declines (Figures 4E-F, black lines). This indicates that for control trials mean entropy tracks 380 

mean firing rate. However when trials with SNBs were considered, very different trends in entropy 381 

were observed between the two networks. For the second network, entropy follows the trend outlined 382 

previously and increases during an SNB along with mean firing rate and the number of active 383 

channels (Figure 4F, red line). Whereas in the first network, entropy actually decouples from the 384 

mean firing rate during an SNB (Figure 4E, first and second time bins) and doesn’t peak until the 385 

firing rate subsides a bit in the third time bin. Hence the entropies of networks can be significantly 386 

different in the time bins where SNBs occur.  387 

 To determine whether SNBs activate a single stereotyped pattern, act like white noise, or 388 

activate a small number of different stereotyped patterns, the similarity of network responses was 389 

assessed using cross correlation and similar responses were clustered and then ordered within each 390 

cluster by the stimulus that was presented on the trial. As qualitative differences in network responses 391 

were most profound during the first two time bins, a clustering analysis of these responses was done 392 

for both trial types (Figures 4G-J). During control trials, network responses during the first time bin 393 

are similar and are composed of one or a few stereotyped responses (Figures 4G-H, left; similar 394 

responses are grouped into the same red clusters). In both networks the largest cluster of similar 395 

responses in the first time bin corresponds to the trivial case where no units are active. This case 396 

reflects low baseline activity and the absence of external stimulation in the first time bin. For the first 397 

network 76% of trials have a null response (and hence are similar) while in the second network 63% 398 

of trials have a null response. This analysis indicates that the low entropy seen on control trials 399 

during the first time bin is due to one type of stereotyped response: no response. In the second time 400 

bin an external stimulus is applied to the networks and a number of very different network responses 401 

are observed. Here network responses are influenced by the identity of the stimulus that is presented 402 

on each trial. Although only four stimuli are presented in nearly equal proportion, many more 403 

response clusters are seen, indicating the same stimulus does not always elicit the same response 404 

(Figures 4I-J, left arrays).  In addition, different stimuli do not always yield different responses—405 

when averaged across both networks, the typical cluster of similar network responses is composed of 406 

network responses to about 2 different stimuli (0.9 bits or 1.87 stimuli per cluster). This number is 407 
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influenced by the algorithm employed and in our hands SVM response classification outperformed 408 

all such clustering algorithms. 409 

 SNBs occur mainly in the first and second time bins during trials with SNBs. For both 410 

networks the largest clusters tended to be in the first time bin, indicating that SNBs are more 411 

stereotypical in the first time bin (Figures 4G-H, right). In the first network, for trials with SNBs, 412 

78% of responses during the first time bin are grouped into a single cluster (Figure 4G, right). This 413 

cluster was not stimulus-specific and includes network responses to all four stimuli (3.68 stimuli or 414 

1.844 bits). All four stimuli were not equally represented in the cluster because one stimulus is under-415 

represented during trials with SNBs. The remaining 22% of trials form several small clusters. These 416 

results suggest that in the first network SNB responses are primarily slightly noisy versions of a 417 

single stereotyped response. Clusters in the second network were less well defined. One similarity 418 

cluster was composed of about half the trials with SNBs while the remaining trials are fairly unique 419 

(Figure 4H). This observation suggests again that most responses are composed of a few stereotyped 420 

responses. Analysis of the second time bin in trials with SNBs indicated that network responses tend 421 

to group into similar responses that are not sensitive to the identity of the four different stimuli that 422 

were presented. For the first network, a single large cluster of trials with similar SNB responses can 423 

still be observed (Figure 4I, right). For the second network, the clusters are less similar to one another 424 

(Figure 4J, right).  425 

 Results from Figure 4 indicate that in the first network SNBs overwrite stimulus information 426 

by activating a single noisy stereotyped response, while in the second network there are a couple of 427 

noisy stereotyped SNB responses and a number of trial-unique SNB-associated network response 428 

patterns.  429 

 430 

3.3. SNBs Disrupt Encoding, Storage, and Retrieval of Stimulus-Specific Information 431 

During a Modified Paired Pulse Task. 432 

A modified paired pulse task was performed to test whether SNBs can disrupt stimulus information 433 

stored across delays where no neural activity is measured. The persistence of stimulus-specific 434 

information is measured by the adaptation of the network response to the presentation of the second 435 

of two stimuli. However, unlike paired pulse tasks, the identity of the first stimulus differs from trial 436 

to trial and the experiment aims to uncover whether stimulus-specific information (not simply 437 

evidence of past stimulation) is disrupted by SNBs. The task is divided into cue, delay and probe 438 

phases (Figure 5A). During the cue phase, one of two possible stimuli is presented. A delay ensues 439 
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during which no stimuli are presented, followed by the presentation of a single probe stimulus. The 440 

response of the network to the probe stimulus is analyzed using SVMs for evidence of cue-dependent 441 

adaptation. Figures 5B and 5C show the responses of one cultured neuronal network to the two 442 

different cue-probe sequences shown in Figure 5A. Trials without SNBs were defined as those in 443 

which no network bursts occurred prior to presentation of the probe stimulus (Figures 5B-C; black 444 

rasters). During these trials the cue changes how the network responds to the probe. When SVMs 445 

were trained to distinguish network responses to either the cue or the probe, they were able to 446 

accurately determine which stimulus had been presented during the cue phase of the task on 71.1% ± 447 

4.3% of trials without SNBs SEM, n=3; Figure 5D). SVMs were capable of classifying the adapted 448 

responses of the network during the probe phase equally well (72.6% ± 6.4%, SEM, trials without 449 

SNBs, n=3). 450 

 In order to compare this data with previous IED experiments, trials with SNBs were 451 

segregated into three classes depending on whether the SNB occurred prior to cue onset (Figures 5B 452 

and 5C; red rasters), during the delay (blue rasters), or during the probe presentation (green rasters). 453 

SVMs could not accurately classify network responses to the probe for any of the three classes of 454 

trials with SNBs. This was true when SVMs were trained using trials without SNBs (Figure 5E) or 455 

trials with SNBs. However, different results were seen among each of three classes of SNB-456 

containing trials when these SVMs were tested on their ability to correctly distinguish cue stimuli. 457 

On delay or probe phase trials with SNBs (Figure 5E; blue and green lines), SVMs were able to 458 

correctly classify network responses to the cue stimulus. However, on cue phase trials with SNBs, 459 

SVMs failed to correctly classify the cue (Figure 5E; red line).  460 

 Figures 5F and 5G summarize the results of three experiments, presenting the average 461 

accuracy that SVMs trained using control trials were able to classify SNB-trial network responses to 462 

cue stimuli (Figure 5F) and probe stimuli (Figure 5G). All three types of trials with SNBs result in 463 

diminished capacity for SVMs to classify network responses to the probe stimulus (Figure 5G). As 464 

expected, SVMs were unable to classify network responses to the cue stimulus during cue phase 465 

trials with SNBs (Figure 5F; red bar) but were able to classify probe phase trials with SNBs (Figure 466 

5F; green bar). In the case of delay phase trials with SNBs, classification results varied across dishes. 467 

An analysis of seven dishes found that this variability correlated with the delay between the cue-468 

elicited response and the onset of the network burst. When there was a long lag between the 100-200 469 

ms cue-elicited response and the onset of a network burst, SVM classifiers that were trained on 470 

control trials generalized well to delay phase trials with SNBs. In cases where the network bursts 471 
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followed quickly after the initial cue-elicited response, classifiers generalized poorly. As a result 472 

there is a large standard error for the blue bar in Figure 5F.  473 

 474 

3.4. Network Excitability Determines the Pattern of Network Activity  475 

When network responses across all time bins were analyzed, the same correlations found in the 476 

previous task were found in the sequential stimulus task:  firing rate, the number of active channels 477 

and entropy are all positively correlated. In order to investigate whether SNBs that occur during the 478 

delay phase of the task might have properties different from those that interrupt the presentation of 479 

cues, delay phase network responses on trials with and without SNBs were collected and analyzed. 480 

Inspection of delay phase responses revealed these correlations do not hold in all networks. Figure 6 481 

presents data from two networks that respond differently when stimulus presentation is interrupted by 482 

an SNB. Figures 6A and 6D display the responses of two different cultured neuronal networks during 483 

delay phase trials with SNBs (top row) and trials without SNBs (bottom row). When SNBs occur 484 

during the delay phase they recruit a large number of units from across the network. In contrast, on 485 

trials without SNBs, only a few units are activated by light stimulation or during the delay. However 486 

in both cases, increases in mean firing rate track increases in the number of activated units (Figures 487 

6B and 6E).  488 

 In the first network the overall correlation between active units, firing rate, and entropy 489 

mostly holds during both control and error trials (Figure 6C). The entropy on control and delay phase 490 

trials with SNBs does not really diverge until the third time bin, which is where an SNB occurs on 491 

delay phase trials with SNBs. In the fourth and fifth time bins, the very high entropy of the SNB 492 

response continued while activity on control trials diminished to zero. Although this network mostly 493 

follows the trends expected by the overall correlation, there are some small variations in entropy that 494 

run counter to this the trend. During the fourth time bin when both firing rate and the number of 495 

active channels are at their peak, a slight decrease in entropy is observed.  496 

 For the second network (Figure 6F), the pattern of entropy during SNBs does not follow the 497 

trend expected by the overall correlations. During the cue phase, presentation of the stimulus 498 

increases entropy, mean firing rate and the number of active units in both control and error trials. As 499 

with the first network, the occurrence of a SNB in the third time bin is associated with higher firing 500 

rates and more active channels, however entropy decreases to levels below control trials for the same 501 

time bin.  Hence the response on SNB-trials was more stereotyped than the response on control trials. 502 

In the fourth time bins, the pattern of network activity on trials with SNBs became more stochastic 503 
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and entropy increased. However entropy did not peak until the fifth time bin, which is associated 504 

with a markedly lower firing rate and average number of active channels. While activity is lower 505 

during control trials, the overall patterns in mean firing rate, active units, and entropy did not deviate 506 

from expected overall correlations. Interestingly, in both networks, peak firing rate is associated with 507 

a reduction in entropy, and in adjacent time bins where firing rate is lower, entropy is higher. 508 

 Network responses were analysed and grouped by similarity using cross-correlation matrices 509 

(Figure 7). Control trials (from the network shown in Figures 6D-F) are shown at left and trials with 510 

SNBs at right. The identity of the stimulus influenced the occurrence of a network burst and as a 511 

result, the two stimuli used in these experiments are not equally distributed among control and SNB 512 

trials. Control trials are slightly biased towards stimulus 2 (stimulus label distribution entropy=0.92 513 

bits) and trials with SNBs are biased toward stimulus 1 (stimulus label distribution entropy=0.77 514 

bits). When all three cases are considered, the average entropy of trials without SNBs was 0.94 bits 515 

and trials with SNBs, 0.56 bits (n=3).  516 

 In Figure 7A, the response of the network to stimulus presentation is analyzed. During control 517 

trials the first cluster of similar network responses was found to be selective for stimulus 2 (0.52 bits) 518 

while the second cluster was nonselective (0.99 bits). During trials with SNBs the same pattern was 519 

found; the first cluster of similar responses was selective for stimulus 1 (entropy= 0.29 bits) while the 520 

second cluster was relatively nonselective (entropy= 0.82 bits). During the next time bin (Figure 7B), 521 

the SNB occurred and on trials with SNBs most of the network responses were grouped into a large 522 

red cluster that was mildly selective for stimulus 1 (0.7 bits). The second, smaller cluster was 523 

nonselective (0.94 bits). During control trials, both clusters of similar network responses mildly 524 

favored stimulus 2 (0.64 bits and 0.78 bits). In the next bin (Figure 7C) control trials went silent and 525 

were stimulus non-selective (0.93 bits). A remnant of the SNB continued during trials with SNBs and 526 

the network responses were, with the exception of one outlier, grouped into one cluster. This cluster 527 

was nonselective (0.8 bits).  528 

 Although not displayed, the second network (Figures 6A-C) had similar trends: stimuli were 529 

unequally distributed amongst trials with and without SNBs so that control and SNB trials had 530 

entropy values of 0.98 and 0.49 bits, respectively. During stimulus presentation, similar, highly 531 

selective responses were observed for both control and SNB trials (average of 0.14 bits per cluster). 532 

During the next time bin, where the SNB occurred, responses on both control and SNB trials were 533 

relatively nonselective, with the largest control cluster having an entropy of 0.92 bits and largest 534 

cluster of SNB responses having an entropy of 0.22 bits. In the next bin, control trials were silent 535 
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with an entropy of 0.98 bits and the SNB trials were all clustered into a single SNB response except 536 

for 3 outliers. The entropy of that SNB response was 0.37 bits. 537 

 In summary, delay-phase SNBs, like pre-stimulus SNBs, recruit one or possibly a few 538 

stereotyped patterns of active units. Additional units get recruited in a stochastic fashion. When the 539 

observations from all four networks are pooled, a trend in the entropy on SNBs and mean firing rate 540 

in SNBs emerges: networks that have a higher mean firing rate during SNBs (>500 spikes/sec) 541 

experience a reduction in entropy during SNBs while networks that have a lower mean firing rate 542 

during an SNB (<500 spikes/sec) experience an increase in entropy during SNBs (Figure 8). 543 

 544 

4. Discussion 545 

The results from the experiments described above demonstrate that stimulus-specific information can 546 

be represented in randomly organized neuronal network formed from disassociated cortical neurons 547 

and that this information is disrupted when synchronized bursts of network activity take place. 548 

Specifically, when complex optical stimuli are presented to optogenetically modified neuronal 549 

networks, different stimuli elicit different patterns of neural activity and these patterns are disrupted 550 

by SNBs (Figure 3). SVMs can be trained to recognize which stimulus is being presented on single 551 

trials by classifying the pattern (unit number) and energy (firing rate) of neural responses (Figures 3, 552 

5). The disruption of these ‘active’ stimulus representations by SNBs has not been shown previously 553 

(Figures 3H and 5E). Cultured neuronal networks can also store stimulus-specific information across 554 

delays of several hundred milliseconds where no neural activity has been measured (Dranias, et al. 555 

2013). This was revealed using a modified paired pulse experiment in which these ‘memory traces’ 556 

are likely represented by the adaptation of neurons or synapses and it is shown here that this 557 

stimulus-specific adaptation is disrupted when SNBs occur during stimulus presentations or during 558 

the delay (Figures 5B,C,E and 8). Together these findings demonstrate networks bursts disrupt active 559 

and hidden stimulus memory. 560 

 The structure of SNBs was characterized in addition to measuring the effects of SNBs on 561 

stimulus information. A correlation between entropy, firing rate, and the number of active channels 562 

was observed. This correlation suggests a simple and intuitive model that describes network 563 

dynamics during an SNB: SNBs recruit additional units, increasing the overall firing rate. With more 564 

units active and higher firing rates, more distinct patterns of network activity are possible, hence 565 

network entropy increases. However, not all the networks seemed to follow this simple model of 566 

network dynamics. For some networks increases in firing rates and active units did not increase 567 
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entropy (Figure 8). 568 

 Since the trend in entropy wasn’t constant, a cluster analysis was performed to look at the 569 

structure of network responses. It was hypothesized that SNBs either act as a noise source that 570 

corrupts the representations of stimuli or that they overwrite stimulus-elicited signals by saturating 571 

the network with activity. The results from the cluster analysis were similar for trials with SNBs from 572 

the single stimulus and sequential stimulus experiments: SNBs do not act as white noise, nor do they 573 

simply saturate all the active units with activity. Instead SNBs tend to activate one or a few 574 

stereotyped patterns that are noisy and the number of different stereotyped responses varies between 575 

dishes (Figure 8). In some networks, SNB responses are highly reproducible and form almost a single 576 

cluster (Figure 4E, 4G). In other networks, the SNB responses are more diffuse with different 577 

patterns (Figures 4F, 4H). These results seem to occupy a middle ground: some networks have 578 

stereotyped bursts while others have several different noisy stereotyped response patterns (Figures 4, 579 

6, 8).  580 

 Work by Shew and others (Shew et al., 2009; Shew et al., 2011) provide an explanation for 581 

this behavior.  These researchers were exploring how the balance between excitation and inhibition 582 

can influence the capacity of neuronal networks to represent information. The ability of a network to 583 

store information is limited by how many states the network can occupy (Shew et al., 2011). Their 584 

experiments demonstrate that an ‘inverted-U’ describes the relationship between network excitability 585 

and network entropy. When a network is too excited it saturates and cannot occupy more than one 586 

state. When a network is too inhibited, there is no activity and again no information can be 587 

represented. This rule is consistent with the observations made here (Figure 8). However, in these 588 

experiments no pharmacological agents were applied so the observed differences in entropy reflect 589 

the intrinsic excitability of different neuronal networks. Some networks are more excitable (have a 590 

higher mean firing rate during SNBs) and in these networks an SNB will quickly saturate all 591 

available units, decreasing entropy. Other networks are less excitable and SNBs simply recruit more 592 

units, increasing network entropy (Figure 6). Figure 6C demonstrates that this rule is at play even in 593 

less excitable networks; when firing rate peaked in this network, entropy actually decreased slightly.  594 

In terms of applications to understanding epilepsy and IEDs, the balance of excitation and inhibition 595 

in a network is a property known to be critical in epilepsy (Raichman and Ben-Jacob, 2008). 596 

Understanding how information representations are changed when pharmacological agents are used 597 

to alter the balance of excitation and inhibition in intrinsically excitable networks is an area of future 598 

investigation.  599 
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 The entropy time series provides some additional observational evidence to the generally 600 

acknowledged temporal evolution of network responses to stimulation. Specifically it has been noted 601 

that there is an initial orderly response to a stimulus that decays into chaotic randomness (Jimbo et 602 

al., 2000; Kermany et al., 2010). On trials without SNBs, entropy increases slightly during stimulus 603 

presentation and then shows a larger increase just after stimulus presentation when network 604 

responses transition into disorder (Figures 4E, 4F, 6C, 6F).  605 

 The current study leverages a technical advantage to elaborate the findings of previous paired 606 

pulse experiments and answers a somewhat more difficult question: does stimulus-specific 607 

information survive an SNB? In a sequential stimulus or modified paired-pulse task, a neuronal 608 

network will normally respond to the second stimulus with an adapted response whose recruitment 609 

and activity levels vary depending on the identity of the first stimulus (Figure 5D).  SNBs disrupted 610 

any dependency of the response of the second stimulus on the identity of the first stimulus (Figure 611 

5E). When an SNB occurs during cue presentation, cue-specific information is not encoded into 612 

network responses, and no stimulus-specific adaptation of network responses to the probe stimulus is 613 

detected. When an SNB interrupts presentation of the probe stimulus, no cue-specific information 614 

can be found in the network response to the probe, though the network response to the cue remains 615 

intact. Finally, when an SNB occurs during the delay phase, the network response to the probe no 616 

longer reflect stimulus specific information (Figure 5G). 617 

 More general application of these results requires clarification of what the behavior of this in 618 

vitro model of an isolated network of cortical neurons has in common with the behavior of networks 619 

in vivo, which are an integral part of a functional brain. One property both networks appear to have in 620 

common is the ability to represent different stimuli using spatiotemporal patterns of activity in neural 621 

circuits (Buonomano and Maass, 2009). In cultured neuronal networks, different electrical stimuli 622 

can be differentiated by the paths or circuits of neurons they activate (Shahaf et al., 2008). This 623 

observation is confirmed in our studies as the SVMs we use to identify stimuli act by distinguishing 624 

stimuli on the basis of which units are recruited and their firing rates (spatial pattern and energy). The 625 

heat maps in Figures 3C and 3D also show that different patterns of activation can be associated with 626 

different stimuli. The ability of SNBs to recruit additional units and synchronize their activity 627 

provides an explanation for how they are able to devastate stimulus representations: SNBs recruit 628 

units from across isolated parts of the network and provide these units with synchronized input. The 629 

response elicited by an SNB is usually longer in duration and higher in energy than optogenetic 630 

stimulation so it is natural for the stimulus-specific pattern of adaptation induced by optogenetic 631 
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stimulation to be disrupted and SNB. The ability of a network to store stimulus information using 632 

different spatial patterns of activity, of networks to process different stimuli in stimulus-specific 633 

circuits, of neurons to maintain traces of past activation neural activity, and of network bursts to 634 

recruit neurons and synchronize activity are all related to fundamental network mechanisms shared 635 

by networks in vitro and in vivo. Because of these shared properties and the relative difficulty of 636 

using microelectrodes and making unit recordings in vivo, this study provides observations on how 637 

SNBs destroy stimulus information that can serve as a guide for future hypotheses regarding cortical 638 

tissue that is epileptogenic and prone to IEDs. It will be interesting to see if IEDs in a cortical 639 

network have properties different from those that would be expected from a generic neural network 640 

formed from dissociated cortical neurons. If so, these results might help to reveal those principles. 641 

 Returning to the question raised in the original study by Kleen et al. (2010) that motivated 642 

this investigation: whether bursts of epileptiform activity always destroy stimulus information stored 643 

in an isolated neuronal network. The results of the present experiments, grounded in more basic 644 

processes and using microelectrodes and unit recordings, indicate that SNBs do indeed destroy 645 

stimulus specific information, regardless of timing. However there are a few questions and avenues 646 

of investigation left unanswered. First it appears that while SNBs destroy stimulus-specific 647 

information, these bursts have a nontrivial entropy and may convey some information. One piece of 648 

information that survives an SNB appears to be nonspecific information about stimulation. Further 649 

analysis of this question might be an interesting avenue of future investigation. Another question that 650 

this research didn’t examine but might be relevant to more general questions is whether isolated 651 

neuronal networks are capable of representing information about more than one stimulus 652 

simultaneously. This question appears to relate to the ability of a network to harbor isolated 653 

representations of stimuli.  654 

 IEDs are difficult to study in vivo and there have been no experiments done to establish their 655 

impact at the neuronal circuit level. This study provides observations on how SNBs destroy stimulus 656 

information that can guide future hypotheses. The aim of this study was to provide insight into the 657 

kinds of neural dynamics that explain how synchronized bursts of neural activity can disrupt 658 

cognitive processing. Because of advances in stem cell technology, the development of new in vitro 659 

models of basic processes relevant to cognitive and neurological disorders has become increasingly 660 

relevant (Chiappalone et al., 2003; Berger et al., 2011; Durnaoglu et al., 2011; Hales et al., 2012; 661 

Stephens et al., 2012).  The ability to culture human neurons derived from patients with neurological 662 

diseases and to test those cells using in vitro drug protocols will help researchers develop 663 
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individualized treatments for patients and perhaps even aid in the development of new drugs for 664 

controlling negative symptoms. 665 

 666 
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7. Figure legends 751 

Figure 1: Primary Culture, ChR2 transfection, and Multielectrode Array (MEA) Signals. (A) 752 

Light microscopic image of primary neuronal culture at 8 days in vitro (DIV9) on a 60 electrode 753 

microelectrode array (MEA) transfected with Channel Rhodopsin-2 (ChR2) plasmid DNA coupled to 754 

Yellow Fluorescent Protein (YFP). (B) Image taken using a 4X objective and 510 nm excitation light 755 

to visualize ChR2-YFP expression. 2405-Dish3. (C): The MEA samples unit activity at 22 kHz. A 756 

threshold for detecting spikes in voltage is set based on observation of background noise levels. (D): 757 

When a threshold depolarization event or spike is detected, the ‘spike time’ is recorded along with a 758 

3ms clip of the waveform and saved in a data file. (E): Peristimulus rasterplots of spike times. Spike 759 

times are pooled from across all units in the network. TTL trigger signals are recorded and used to 760 

align data to stimulus onset, allowing the raster plots to be created. Each row indicates one trial. No 761 

consistent trends in SNB frequency across time were observed. Time from stimulus presentation 762 

shown on x-axis (ms), trial number on y-axis. Data from response to ‘stimulus 2’ by 1905-Dish4. (F): 763 

Recorded trials sorted according to the whether or not a spontaneous network burst (SNB) interrupts 764 

the presentation of an optical stimulus and analyzed. Other conventions as (E). (G) Peristimulus 765 

raster plots showing spiking responses of network, pooled across all units. Each row indicates one 766 

stimulus presentation. Stimulus identity varies from left to right:  on left, responses to stimulus 1; 767 

center, responses to stimulus 3; on right, responses to stimulus 4. Data from trials without SNBs. 768 

Other conventions as (E). (H) Peristimulus raster plots showing spiking responses of the network 769 

pooled across all units on trials with SNBs. Stimulus identity varies from left to right:  on left, 770 

responses to stimulus 1; center, responses to stimulus 3; on right, responses to stimulus 4. Other 771 

Conventions as (G). 772 

 773 

Figure 2: Detection of Stimulus Information Using Linear Support Vector Machines (SVMs).  774 

(A) Network responses to 12 stimulus presentations (data from 2106-Dish 5, DIV11). Six trials 775 

involve the presentation of stimulus 2 and 6 trials stimulus 4. On left and right are examples of 776 

network responses represented as heatmaps.  Left: heatmaps showing network responses on three 777 

different presentations of Stimulus 4. Network represented by 8x8 colored arrays in which each 778 

colored cell represents an electrode position and the cell color represents spike rate (color code 779 

ranges from blue to red  indicating 0 to 4 spikes per 100ms). Right: heatmaps showing network 780 

responses to three presentations of Stimulus 2. Same conventions and color codes described for 781 
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stimulus 4 (left). Center: Scatter plot showing responses of two units across these 12 representative 782 

trials. Responses to stimulus 2 are indicated by an ‘X’ and responses to stimulus 4 are indicated by an 783 

‘O’. Data points reflect the number of spikes observed at each unit in a 100ms bin starting 200ms 784 

post-stimulus. The x-axis indicates the number of spikes recorded from the unit at electrode 10 while 785 

the y-axis counts the number of spikes from the unit recorded at electrode 41. The line in red is the 786 

projection of the decision boundary used by the SVM to classify stimulus 2 from stimulus 4. 787 

Classification is effected by taking the inner product of the decision boundary vector with the spike 788 

count vector of an individual trial. Inner products with positive values are assigned to class 1 and 789 

negative values to class 2. The scatter plot is a restricted view of the overall network activity and 790 

examples of network-wide activity shown on left and right reveal additional units may be active on 791 

every trial. (B) Spikes recorded from cultured neuronal networks are counted and classified using an 792 

array of linear SVMs. Top: Peristimulus raster plot of network spikes (pooled across all units) to 793 

stimulus 2 on trials at are not interrupted by SNBs. Other conventions as Figure 1(E). Middle: 794 

Schematic image of the array of linear classifiers used to construct the stimulus information time 795 

series. A unique linear SVM is assigned to every 100ms bin and each SVM is trained to classify only 796 

data from that time bin. SVMs are trained using a ‘batch mode’ algorithm. 70% of single trial data is 797 

used for training and 30% of single trial data is used for testing classifier generalization. Bottom: 798 

Average accuracy of SVM classification. Red line plots the average accuracy with which a linear 799 

SVM can classify trials from the dataset it was trained on. Accuracy below 100% indicates that 800 

network responses in the training set are not linearly separable. The chance rate of classification is 801 

25% for experiments where four stimuli are presented (solid black line). Dotted lines about the 802 

chance level (black line) represent the highest (90th percentile) and lowest (10th percentile) rates of 803 

accurate classification seen after 200 simulations of randomly assigning datapoints to different 804 

classes (random relabeling).  The blue line represents the mean classification accuracy observed 805 

when trained SVMs classify data from testing trials. Time is represented on x-axis, classification 806 

accuracy on y axis (percentage of single trials classified correctly). (C) Application of trained SVM 807 

model to a single trial of test data (trial #33, stimulus 4, Figure 1(G)). Top: Peristimulus rasterplot of 808 

all units recorded from network on a single trial. Each unit is shown on a single row, spikes are 809 

shown as colored dots, the color of the dot is specific to the unit, aiding discrimination of which spike 810 

belongs to which row (unit). Y-axis indicates unit number, x-axis time (ms).  Second from top: 811 

Peristimulus graph of the spike count associated with each 100ms bin. The spike count in each 812 

100ms bin is encoded by intensity (colorbar at right provides a key for interpreting spikes counts). 813 
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Time relative to stimulus onset shown on x-axis (ms), y-axis encodes units. Second from bottom: 814 

Schematic of the array of SVMs used to classify the testing data. Other conventions as (B). Bottom: 815 

Accuracy of individual SVMs associated with each 100ms time bin. Each SVM is either correct or 816 

incorrect (y-axis indicates ‘hit’ or ‘miss’). Correctly classified time bins are indicated by a black 817 

marker, incorrectly classified time bins are indicated by a red marker. X-axis indicates time in ms, 818 

with a different SVM assigned to analyze data from every 100ms time bin. (D) Analysis of spiking 819 

activity from a different single testing trial (trial #89, stimulus 1, Figure 1(G)). Other conventions as 820 

(C). Data in (B, C, D) from 1905-Dish4. 821 

  822 

Figure 3: Active Stimulus Memories are Disrupted by Spontaneous Network Bursts. (A, B): 823 

Peristimulus raster plots of network wide responses to the presentation of two random dot stimuli 824 

(left and right). Each row represents a different stimulus presentation. Trials are sorted into control 825 

(black ticks) and trials with SNBs (red ticks). Green and red vertical lines indicate the onset and 826 

offset of stimulus. Time is on the x-axis (ms). (C, D): Average firing rate in 20ms bins during trials 827 

without SNBs. Colour map range is 0 to 8 Hz. Electrodes sorted by firing rate. (E, F) Average firing 828 

rate in 20ms bins during trials with SNBs, colour map range 0 to 20 Hz. (G) Time series measuring 829 

stimulus information during trials without SNBs. Data points computed using support vector 830 

machines (SVMs) to classify spike counts in 100 ms bins. Four stimuli were presented to network 831 

and chance accuracy is 25% (dash-dot line). Solid lines indicate classification accuracy on training 832 

(red) and testing (black) trials. Classifier significance computed by taking the best and worst 833 

classifications (95th percentile) after random shuffling of target labels (dotted lines). (H) Time series 834 

of stimulus information during trials with SNBs computed using SVMs trained on control data but 835 

tested on trials with SNBs. Other details as (G). All responses from Batch2106-Dish5, DIV8 640 836 

trials (4 stimuli x 160 presentations). 837 

 838 

Figure 4: The Number and Pattern of Units Activated by a Spontaneous Network Burst is 839 

Network Specific. (A, B): Active units during trials with SNBs (top row) and control (bottom row) 840 

for two networks: Batch1905-Dishes 1, DIV9 and 4, DIV11 (left and right). Each 8x8 array is laid 841 

out in the same configuration as the recording electrodes. Colour map indicates probability that a 842 

given unit is active in specified time bin. (C, D) Mean firing rate (spikes/sec) during control (black) 843 

or trials with SNBs (red). (E, F) Entropy time series. The entropy during trials with SNBs (solid red 844 

line) measures how many unique network response patterns were seen in each time bin (y=axis 845 
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counts the equivalent number of unique network response patterns associated with the entropy value, 846 

see Materials and Methods). The number of trials with SNBs is the upper limit on entropy (dashed 847 

red line; E: 46 trials with SNBs, F: 16 trials with SNBs). Solid black line indicates the average 848 

entropy for 46 control trials (E; sampled from 783 control trials, 46 trials with SNBs) or 16 control 849 

trials (F; sampled from 816 control trials, 16 with SNBs). Trials without SNBs were resampled 300 850 

times and 99th percentiles are shown in grey. Other details as in legend of Figure 1. (G-J): Cross-851 

correlation matrices computed at two time points for control (left) and trials with SNBs (right). Trials 852 

are sorted to form clusters of similar network responses (red squares). Each cell in the cluster 853 

compares the binary response vectors from the two trials as indicated by row and column position 854 

and the Colour map indicates the correlation distance (response similarity) between the two binary 855 

network activity vectors (range=0 to 1). (G, H) Network responses from the first time bin, prior to 856 

stimulus presentation, ranging -500ms to 50 ms post-stimulus. (I, J) Network responses from the 857 

second time bin, during and after stimulus presentation, ranging from 50 to 300 ms post-stimulus. 858 

 859 

Figure 5: Spontaneous Network Bursts Disrupts Stimulus-specific Information Stored Using 860 

Hidden Memory Mechanisms. (A) Modified paired pulse task: the sequential stimulus task. Two 861 

stimuli were presented sequentially to a neuronal network: a cue stimulus followed by a probe 862 

stimulus after a short delay. The cue stimulus could be one of two random dot stimuli. The probe 863 

stimulus was fixed for every trial. Marked in red, blue, and green are the cue, delay, and probe phases 864 

that define the three different kinds of trials with SNBs. (B, C) Peristimulus raster plot of responses 865 

to two different stimuli, recorded from a DIV11 neuronal network during the sequential stimulus 866 

task. Each row represents a different trial, and trials are sorted into control and trials with SNBs. On 867 

trials without SNBs, tick marks are black. Trials with SNBs are colored depending on whether a 868 

spontaneous burst was observed during the cue (red), delay (blue), or probe (green) phases. Other 869 

conventions as in Figure 3A. (D) Time series identifying the amount of cue-related stimulus 870 

information across the trial. Time series are constructed as discussed in Figure 3D. SVMs were 871 

trained and tested on trials without SNBs. Accuracy of SVM on classifying training trials is shown 872 

with dashed lines. Accuracy of SVM classification on testing trials is shown by black solid line. 873 

Chance classification is 50%, other conventions as in Figure 3D. (E) Time series identifying the 874 

amount of cue-related stimulus information on trials with SNBs. The SVM is trained using data from 875 

trials without SNBs (dashed black line) and then tested on cue, delay, or probe phase trials with 876 
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SNBs (red, green, or blue lines, respectively). Other conventions as in (D). Data (A)-(E) from 1905-877 

Dish4, DIV11. (F) Mean change in classification accuracy measured during presentation of the cue 878 

stimulus for each of the three trials with SNBs (cue phase coded red, delay phase coded blue, probe 879 

phase coded green). Change in accuracy characterized as a percent of the classification accuracy 880 

during trials without SNBs. Vertical black lines on each bar indicate SEM (n=3, 1905-Dish 4 DIV11, 881 

2106-Dishes 3 DIV10 and 5 DIV9). (G) Mean change in classification accuracy during presentation 882 

of the probe stimulus. Other conventions as in (E), n=3, 1905-Dishes 4 DIV11, 2106-Dishes 3 883 

DIV10 and 5 DIV9) 884 

 885 

Figure 6: Firing Rate, Active Channels, and Entropy of Spontaneous Network Bursts During 886 

Sequential Stimulus Trials. Data from sequential stimulus trials are presented as time series. (A) 887 

8x8 arrays, indicating probability that individual units are active from neuronal network, 1905-Dish4 888 

DIV11. Each array corresponds to one time bin. Conventions as in Figure 3A. Trials without SNBs 889 

consist of trials where no SNB occurred. Trials with SNBs consist of trials where an SNB occurred 890 

during the delay phase of sequential stimulus task, a modified paired-pulse paradigm. (B) Mean 891 

firing rate recorded across all units, averaged by trial (spikes per second). Black line indicates trials 892 

without SNBs, red line trials with SNBs. Every time bin after the first is 250 ms. (C) Entropy of 893 

network responses, plotted as the equivalent number of unique network response patterns. 76 trials 894 

with SNBs are plotted in red. 76 trials without SNBs (randomly sampled 300 times from 150 trials 895 

without SNBs) are plotted in black. Other conventions as in Figure 4C. (D) 8x8 arrays associated 896 

with a second neuronal network, 2106-Dish 5 DIV9. (E) Mean firing rate of second network in 897 

spikes per second. (F) Entropy of second network. 98 trials with SNBs are shown in red. Black line 898 

represents the mean entropy of 98 trials without SNBs drawn from a pool of more than 400 trials 899 

without SNBs by 300 re-samplings. 99th percentiles of the resampling are shown in gray. Other 900 

conventions as in Figure 4C. When data from 3 cultures (1905-Dish 4 DIV11, 2106-Dishes 3 DIV10 901 

and 5 DIV9)  are pooled (n=60 observations: 2 trial types across 10 time bins from 3 cultures with 902 

scores standardized within each culture), the correlation between the mean firing rate and the 903 

normalized entropy was r=0.34 (p=0.008); the correlation between the number of active channels and 904 

normalized entropy was r=0.35, (p=0.007); and larger numbers of active channels are correlated with 905 

higher firing rates, r=0.92 (p<0.0001).  906 
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 907 

Figure 7: Matrix Comparing Similarity of Bursting and Non-Bursting Responses During 908 

Sequential Stimulus Trials. Matrices encode the similarity of network responses. Color of cells 909 

indicates the similarity of responses by correlation strength. Average entropy of the clusters is given 910 

at top of each figure. Other conventions as in Figure 4. (A) Clusters of similar network responses 911 

during time bin when stimuli are presented (50ms to 300ms) for control (left) and trials with SNBs 912 

(right). (B) Clusters of similar responses during the time bin (300ms to 550 ms) when the SNB 913 

usually occurs on trials with SNBs (right). Data from trials without SNBs also shown (left). (C) 914 

Clusters of similar responses during the third time bin (550-800ms) for trials without SNBs the 915 

relationship between similar network responses and stimulus identity has deteriorated in this time 916 

bin. Trials with SNBs remain unselective for stimuli. (1905-Dish4 DIV11)  917 

 918 

Figure 8: Scatterplot of Mean Firing Rate and Normalized Entropy. Data from 7 spontaneous 919 

network bursts (SNBs) from 4 networks (1905-Dishes 4 DIV11 and 5 DIV9, 2106-Dishes 3 DIV10 920 

and 5 DIV 9) in 7 experiments (circles). Networks with higher mean firing rates during SNBs have 921 

lower normalized entropies; networks with lower mean firing rates during SNBs have higher 922 

entropies (r= -0.78, p=0.037). 923 
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