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Abstract— Spiking neural networks have been shown capable
of simulating sigmoidal artificial neural networks providing
promising evidence that they too are universal function ap-
proximators. Spiking neural networks offer several advantages
over sigmoidal networks, because they can approximate the
dynamics of biological neuronal networks, and can potentially
reproduce the computational speed observed in biological brains
by enabling temporal coding. On the other hand, the effec-
tiveness of spiking neural network training algorithms is still
far removed from that exhibited by backpropagating sigmoidal
neural networks. This paper presents a novel algorithm based
on reward-modulated spike-timing-dependent plasticity that is
biologically plausible and capable of training a spiking neural
network to learn the exclusive-or (XOR) computation, through
rate-based coding. The results show that a spiking neural
network model with twenty-three nodes is able to learn the
XOR gate accurately, and performs the computation on time
scales of milliseconds. Moreover, the algorithm can potentially
be verified in light-sensitive neuronal networks grown in vitro
by determining the spikes patterns that lead to the desired
synaptic weights computed in silico when induced by blue light
in vitro.

I. INTRODUCTION

S IGMOIDAL neural networks are arguably one of the
most powerful and flexible paradigms in the field of

computational intelligence, thanks to their universal function
approximation properties and their ability to learn unknown
mappings via backpropagation. Recently, spiking neural net-
works (SNNs) have been shown capable of simulating sig-
moidal artificial neural networks (ANNs) providing promis-
ing evidence that they too are universal function approxi-
mators [1]. SNNs offer several advantages over sigmoidal
ANNs. Not only they are biologically plausible, but they
have shown to reproduce fairly closely the dynamics of
biological neuronal networks. By enabling temporal coding
through spiking neurons, SNNs can potentially reproduce the
computational speed observed in biological brains, which,
for example, can carry out visual pattern analysis with ten-
layer neuronal networks in only 100 ms [2], [3]. Moreover,
SNNs can be used to build computational models of cortical
regions, as shown by Henriquez in [4], because they can
simulate the ability of biological neuronal networks to use
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the precise timing of single spikes to encode information [5],
[6].

On the other hand, the effectiveness of current SNN
training algorithms is still far removed from that exhibited
by backpropagating sigmoidal ANNs. Consequently, one
line of research has investigated modified backpropagation
algorithms for SNNs (as reviewed in [7]). Although the
response of certain SNN models (such as the spike response
model used in this paper) is piece-wise continuous, this
approach remains relatively unsuccessful due to the limited
applicability of gradient descent methods to objective func-
tions that are only continuously differentiable. More impor-
tantly, supervised backpropagation generally meets consid-
erable sceptism in the neurobiological community due to
overwhelming evidence disputing the propagation of errors
in biological neuronal networks [8]. Another active line
of research has investigated biologically-inspired algorithms
that update the weights based on physiologically plausible
mechanisms, such as, Hebbian synaptic plasticity and spike-
timing-dependent synaptic plasticity (STDP), both of which
are supported by considerable experimental evidence [8],
[9], [10], [11], [12]. Along this line of research, this paper
develops a biologically-plausible SNN training algorithm that
can solve a benchmark learning problem from the ANN
literature, known as the exclusive-or (XOR) gate, and is
experimentally realizable in vitro.

One objective of this research is to develop learning rules
that can be verified in light-sensitive neuronal networks
grown in vitro by determining the spikes patterns that lead
to the desired synaptic weights computed in silico when
induced by blue light in vitro. Hippocampal and cortical
neurons are currently being grown in dissociated culture on
a multi electrode array (MEA) in the VanDongen Laboratory
[13], [14], [15], [16]. This constitutes a substantial difference
with the approach, described in [12], since the algorithm pre-
sented here has been designed to be experimented, through
the aforementioned techniques. The use of cultured neurons
enables the simultaneous recording of the firing behavior
of several hundred neurons, providing data with very high
spatial and temporal resolution that can be used to inves-
tigate and verify the mechanisms by which neurons store
and control the flow of information in the brain. Neuronal
cultures help address difficulties associated with studying
the intact brain, by reducing the neuronal connectivity and
diversity of cell types, and by enabling measurements from
all neurons. Furthermore, they enable system-level studies
about neurons reorganization and memory restoration in
response to defined lesions, and coordinated activity between
networks of neurons.
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Since these processes involve calcium (Ca) signaling, a
fluorescent Ca dye Fluo-4 can be used to visualize Ca waves
for thousands of neurons, as shown in Fig. 1. Using a
recent genetic advance that makes the cultured hippocampal
neurons light sensitive by the expression of a light-activated
cation channel, ChannelRhodopsin2 (ChR2), neurons can be
made to fire a chosen number of spikes using spatiotemporal
blue-light patterns that induce individual-neuron stimulation
and inhibition with very high precision, and for prolonged
periods of time. The effects of reward on learning and mem-
ory consolidation can also be investigated and tested in vitro
by monitoring and stimulating the chemical activity of the
neurons, including dopaminergic, adrenergic and cholinergic
signaling pathways. Consequently, the training algorithm
developed in this paper exploits the learning paradigm known
as reward-modulated STDP [11], which adapts the synaptic
efficacies according to a time-dependent reward, and the
relative timing of the pre- and post-synaptic spikes. The
STDP paradigm is particularly appealing because the synap-
tic efficacies (represented by adjustable weights in the SNN)
cannot be directly manipulated in vitro. Instead, neurons
can be made to spike at precise moments in time through
spatiotemporal light patterns that can be reconstructed from
the recordings obtained from the training session. The novel
reward-modulated STDP training algorithm is presented in
Section III, and applied to the spike response model SNN
described in Section II. The results presented in Section
IV demonstrate that this biologically-plausible algorithm is
capable of training SNNs to learn the XOR gate computation,
which is a simple and yet challenging classical benchmark
problem for ANN training.

(a) (b)

Fig. 1. Cultured hippocampal neurons grown 24 days in vitro and
visualization of Ca waves at t = 5 sec (a) and at t = 10 sec (b), with
arrows pointing at four neurons with synchronous activity.

II. SPIKING NEURAL NETWORK (SNN) MODEL

Spiking neuron models aim at providing a phenomeno-
logical model for the dynamics of biological neurons, which
include action-potential generation, refractory periods, and
post-synaptic potential shaping. A spike or action potential
consists of a short electrical pulse that propagates unchanged
along the axon of the firing neuron, and is delivered to other
neurons. It is generated when the membrane potential of
neuron i, denoted by vi(t), exceeds a threshold ϑ due to
the input spikes from presynaptic neurons. Each spike has an
amplitude of approximately 100 mV and lasts approximately

1 to 2 ms. However, since a neuron produces spikes that are
all in the same form, it is the time sequence of spikes, or
spike train of the neuron, that carries relevant information to
other neurons. Thus, every spike is represented by the Dirac
delta function δ(t − tki ) denoting a singularity function that
occurs at time t = tki , where i is the neuron index, and k is
the spike index in the spike train.

A. Spike Response Model (SRM)

Early examples of spiking neurons were highly simplified
and neglected many aspects of neuronal dynamics, such
as, adaptation, bursting, inhibitory rebound, and shunting
inhibition [17]. In this paper, the spike response model
(SRM) is used to represent the neuronal dynamics, as it
has been shown to approximate the Hogkin-Huxley model
with high accuracy [18], and gives rise to networks that are
trainable and mathematically tractable. Unlike earlier models
involving memoryless binary neurons, the SRM neuron keeps
a decaying memory of past spikes received from other
neurons. Also, although it can be viewed as a generalization
of the leaky integrate-and-fire model [18], the SRM expresses
the membrane potential as an integral instead of a differential
equation. This integral is formulated in terms of kernel
response functions of the time instant at which the neuron,
indexed by i, produced its last spike, denoted by t̂i. After
firing its last spike, the evolution of the membrane potential
in neuron i is approximated by,

ui(t) = η(t − t̂i) +
∑

j

wij

∑
k

εij(t − t̂i, t − tkj )

+

∫ ∞

0

λ(t − t̂i, τ)I(t − τ)dτ (1)

where j is the index of all presynaptic neurons, and wij is
the adjustable parameter or weight representing the efficacy
of the synapse where the axon of the presynaptic neuron j
makes contact with the soma of the postsynaptic neuron i.
I(·) is an external driving current that determines the resting
potential expressed by the integral in (1) and, in this paper,
is set to a small random signal.

The kernel response functions η(·), ε(·), and λ(·) represent
the temporal effects of spike firing and spike reception
on the membrane potential of the neuron. The kernel η(·)
describes the refractory response due to the last spike, and
captures the form of the action potential, which consists of
a positive pulse, and of the subsequent spike afterpotential.
The latter consists of a negative overshoot representing the
hyperpolarization phase experienced by the neuron after
it fires, and before it returns to its resting potential. The
refractory response is modeled as,

η(x) = −η0e
−x/τf H(x) (2)

based on experimental studies on motoneurons [19], where
η0 is a scaling constant, τf is the refractory time constant,
and H(·) is the Heaviside function. The kernel λ(·) captures
the linear response of the membrane potential to an impulse
current input, which decays more rapidly when the neuron
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has been recently active. It is expressed as a decaying
exponential with time constant τm, times a recovery factor
that scales the magnitude of the postsynaptic potential by the
amount of time that has elapsed since the neuron last fired
a spike:

λ(x, τ) =
R

τm

[
1 − e−x/τr

]
e−τ/τmH(τ)H(x − τ) (3)

Where, τr >> τf is the response recovery time constant.
The kernel ε(·) describes the postsynaptic potential evoked

by the reception of a spike from a presynaptic neuron. The
functional form of the postsynaptic potential is obtained by
mapping integrate-and-fire neurons to the SRM (as shown in
[18]):

ε(x, y) =

∫ x

0

e−τ/τmα(t − τ)dτ

=
e−t/τs

τs

∫ x

0

e−τ(1/τm−1/τs)H(t − τ)dτ (4)

Where τm is an effective passive membrane time constant,
and α(·) is the postsynaptic current, which is assumed to
decay exponentially with time constant τs. The capacitance
and charge are set equal to one, for simplicity. As observed
in biologically neurons, the shape of the above kernel allows
to reproduce a neuron’s refractory behavior by which its
response to a presynaptic spike is considerably reduced
if the neuron has recently fired. Excitatory and inhibitory
postsynaptic potentials (EPSP and IPSP, respectively) are
obtained depending on the sign of wij .

Unlike integrate-and-fire neuron models, the SRM is char-
acterized by a phenomenological dynamic threshold model:

ϑ(t− t̂i) =

{
ϑf , 0 < t − t̂i < Tf

ϑ0

[
1 − e−(t−t̂i−Tf )/τϑ

]
, t − t̂i ≥ Tf

(5)
Thus, the threshold has a high constant value, e.g., ϑf = 100
mV, during the absolute refractory period Tf , to prevent the
neuron from firing. After this period, the threshold decreases
from zero to a steady-state value ϑ0 = − 50 mV, with a
time constant τϑ = 6 ms, reproducing the behavior of a full
cortical neuron model [18, pg. 131]. In the SRM, neuron i
fires a spike when its membrane potential increases up to
the threshold and exceeds it, at which point the value of the
neuron’s last firing time is reset, i.e.:

tfi = t, when ui(t) = ϑ(t − t̂i) and dui(t)
dt > 0

t̂i = suptf
i
∈Si(t)

tfi
(6)

Where, the set Si(t) = {t1i , t
2
i , . . .} is the spike train of

neuron i at time t, and sup denotes the supremum of Si(t).

B. SRM Population Dynamics

One approach to studying a population of SRM spiking
neurons is to consider a fully-connected network, with the
same synaptic efficacy among all neurons [18, pp. 204-207].
In this case, the term representing the postsynaptic potential
in (1) is re-written in terms of a pre-specified average popula-
tion activity and an escape noise model that replaces (5) with

a noisy threshold. Subsequently, spikes occur according to a
probability density function, referred to as firing intensity,
that depends on the difference between the deterministic
membrane potential (1) and a random threshold. Under these
assumptions, the dynamics of the population can be analyzed
by deriving a partial differential equation for the averaged
refractory density, representing how many neurons are in a
refractory state that falls within a specified time interval.

In this paper, a feedforward homogeneous network of
N SRM spiking neurons is considered, with non-uniform
synaptic weights to be determined through training (Section
III). Each neuron is represented by the membrane potential
(1), and is subject to stochastic effects caused, for example,
by random fluctuations in neurotransmitters and thermal
noise, and represented by I(·) in (1). In particular, a zero-
mean random variable with a variance of 20 nA is used to
simulate a random current injection into the cell body which,
in turn, causes a baseline fluctuation in the resting potential
of the cell resulting into a baseline spiking rate of 8 Hz (for
zero synaptic weights).

A subset of the neurons labeled by the index set I, referred
to as inputs, can be made to fire desired spike trains. The
response of the entire population is then simulated by solving
a set of N equations in the form (1), with i = 1, 2, . . . , N ,
over a period of time t ∈ [0, T ]. Although the response of
every neuron can be recorded from the simulation, only the
spike trains of a subset of output neurons, labeled by the
index set O, are used for temporal coding, i.e., to extract
information from the response of the network. The remaining
neurons, labeled by the index set H, are referred to as hidden,
because their response is not directly controlled, nor can be
used to evaluate the network’s performance during training.
In the next section, an algorithm is presented for determining
the synaptic weights of this SRM SNN, such that its output
response can be decoded and used to perform a desired task.

III. BIOLOGICALLY-INSPIRED TRAINING ALGORITHM

A biologically-plausible training algorithm that is real-
izable in neuronal cultures grown in vitro is developed
by accounting for local effects, such as, refractory period,
synapses’ eligibility, and STDP, modulated by a global time-
dependent reward signal. Let wij denote the adjustable
synaptic weight for the ordered pair of pre- and post-synaptic
neurons (j, i) in a feedforward SRM SNN, where j ∈ H if
i ∈ O, and j ∈ I if i ∈ H. The weight magnitude is assumed
to be bounded by a positive constant wmax at all times,
such that −wmax ≤ wij ≤ wmax for ∀i, j. Suppose the
target function y = h(x) specifies the desired SNN response,
where y ∈ R

m denotes the target output, and x ∈ R
n

denotes the target input. The SNN input and output layers are
designed such that to every output neuron there corresponds
an output variable, y = {yi}i∈O , and to every input neuron
there corresponds an input variable, x = {xi}i∈I . Then,
training can be formulated as the problem of finding a set
of weights such that the feedforward SRM SNN learns the
target function.
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Similarly to biological neuronal networks, SNNs code
information in the spike train of each neuron with a temporal
resolution that is on a millisecond time scale [20], by
a process known as temporal coding. Information can be
carried either by individual spike timing or by firing rates
and, therefore, can be coded based on the temporal structure
or the frequency of a spike train, respectively. In this paper,
rate-based coding is adopted, representing each value of the
input and output variables by an average value of firing rate
for the corresponding neuron. Where, the average firing rate
of a neuron i over a time period [0, T ] is defined as

φi(T ) ≡
1

T

∫ T

0

∑
tk
i
∈Si(T )

δ(t − tki )dt (7)

Based on rate-coding, target input spike trains are used to
form a training set T encoding all possible values of x. Then,
the SNN response to target input spike trains in T can be
decoded to obtain the SNN estimate of the output, ŷ(x),
which can be compared to the target output, y = h(x), to
establish the SNN reward. An example of rate-based coding
is provided in Section III.

Training is conducted by discretizing a time period
[0, Ttrain] by an interval Δt, and by updating every synaptic
weight according to the rule,

wij(t + Δt) = wij(t) + Δwij(t) (8)

at every time step t ∈ (0, Ttrain]. The weight increment in
(8) is computed as the contribution of a reward function r,
an STDP term f , and the synapses’ eligibility g:

Δwij(t) = μ · r(t) · f(t̂i, t̂j) · g[wij(t)] (9)

Where, the learning rate μ is a constant of order O(wmax).
The reward function,

r(t) = [b(ŷ, y) + r(t − Δt)] · e−(t−t̂i)/τc (10)

mimics the injection of a chemical reward that decays
exponentially over time with time constant τc, and delivers
a positive reward when the decoded SNN output, ŷ, matches
the target output, y, and a negative reward otherwise. Thus,
b(ŷ, y) is a binary operator that takes the value +1 when
ŷ = y, and the value −1 when ŷ �= y. The STDP term,

f(t̂i, t̂j) = sgn(t̂i − t̂j) · e
−|t̂i−t̂j |/τd (11)

represents the phenomenon by which when the ith and the
jth neurons fire spikes that are close in time, their synaptic
efficacy undergoes a greater change [20], as illustrated in Fig.
2. Where, sgn(·) is the signum function, | · | is the absolute
value, and τd is a reference time delay. Finally, the synapses’
eligibility is modeled by the function,

g[wij(t)] = 1 − c1 · e
−c2·|wij(t)|/wmax (12)

to take into account the phenomenon by which synapses
with a higher efficacy typically undergo a greater change due
to learning. Where, c1 and c2 are two user-chosen positive
constants.

f

( ji tt ˆˆ � )

Fig. 2. STDP term as a function of the time delay between the last spike
of neuron i and the last spike of neuron j.

At every time step the weights are updated starting from
the output layer, proceeding to the hidden layer, and then to
the input layer, using the following algorithm.

Algorithm 1 SNN Learning algorithm
for t = Δt to Ttrain do

for i = N, N − 1, . . . , 1 do
for every pair (j, i) do

Δwi,j(t) = μ · r(t) · f(t̂i, t̂j) · g[wij(t)]
wi,j(t + Δt) = wi,j(t) + Δwi,j(t)

end for
end for
t = t + Δt

end for

IV. SPIKING NEURAL NETWORK TRAINING

SIMULATIONS AND RESULTS

The training algorithm presented in the previous section
is implemented here to train an SRM SNN to perform an
exclusive-or (XOR) gate computation, a classic benchmark
problem for ANN training, recently used to demonstrate
learning rules for other models of SNNs. Seung demon-
strated a biologically-inspired training rule through the XOR
problem in integrate-by-fire SNNs [21]. Xie used the XOR
problem to demonstrate a learning rule reproducing short-
term facilitation and depression for SNNs implementing a
Poisson escape model [22]. Florian demonstrated another
type of STDP learning rule derived from Markov decision
processes, involving a noisy threshold to perform the XOR
computation [11]. The XOR gate is a binary operator denoted
by � that takes n = 2 binary inputs, x1 and x2, and returns
an m = 1 binary output y = x1 � x2, such that y = 0
when x1 = x2, and y = 1 when x1 �= x2. All variables
take the values 1 or 0, to obtain a logic gate. Learning an
XOR gate requires a multi-layer architecture for artificial
perceptrons, and can be challenging for SNNs because the
inputs x1 = x2 = 1 must be suppressed to produce a zero
output.

The SNN architecture illustrated in Fig. 3, containing
two input neurons, one output neuron, and twenty hidden
neurons, is found capable of learning the XOR gate by means
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of Algorithm 1. A set comprised of target input spike trains
T = {S�∗

1 (ttrain), S
�∗

2 (ttrain)}�=1,...,q, and a time step Δt =
3 ms are used for training. Where, the asterisks (∗) denotes
a target value, the superscript 
 indexes the training sample,
and the subscript i = 1, 2 is the index of the two input
neurons coding x1 and x2. Each target spike train lasts for
a time period ttrain = 0.5 s, and is generated using a Poisson
distribution,

P (n, t) = e−νt (νt)n

n!
, n = 0, 1, . . . (13)

by letting the time interval t = ttrain, and by choosing the
Poisson rate ν and the number of arrivals (or spikes) n to
match the target firing rate. Firing rates of 0 Hz and 40 Hz are
used to code the binary values 0 and 1, respectively. Thus,
T is obtained by generating a pair of target spike trains,
{S�∗

1 (ttrain), S
�∗

2 (ttrain)}, for each combination of XOR input
values, and by ordering the resulting four pairs randomly. The
process is repeated q/4 times, finally generating a set T that
is presented to the SNN over a training period Ttrain = q·ttrain.
In this paper, q is varied between 20 and 400, and the larger
values of q led to the best performance. Both during and
after training the SNN is simulated using the neural Circuit
SIMulator (CSIM) provided in [23], which implements an
adaptive time-step Crank-Nicolson integrator.

i
i

i �

Fig. 3. Architecture of feedforward SRM spiking neural network.

Since the response of the output neurons to the input
targets cannot be controlled, the reward function (10) is
provided as a feedback to the network that is based on
how close the decoded SNN output, ŷ, is to the target
output, y = h(x), for a given input x = (x1, x2). Where,
(̂·) represents the SNN estimate of the XOR gate output,
y = x1 � x2. The output of the SNN consists of the
time history of the membrane potential of the N th (output)
neuron uN , modeled as (1), which can be translated into
an output spike train, SN(t). The firing rate (7) obtained
from SN (t) encodes ŷ. During training, t ∈ [0, Ttrain], and
the output spike train is monitored to determine the reward
feedback at every time step Δt. According to Algorithm
1, the network is provided with a decaying positive reward
when ŷ(x) = h(x) = x1 � x2, and with a negative decaying
reward when ŷ(x) �= h(x) = x1 � x2. In order to monitor
the SNN progress during a training session, the time history

of the sum
∑

t b(ŷ, y) is plotted in Fig. 4. The increasing
trend of this sum indicates that the SNN is learning the
XOR computation, and that its performance is constantly
improving over the training period Ttrain = 10 sec. The spike
trains of all N = 23 neurons during the same training session
are plotted in Fig. 5.

�t
yyb ),ˆ(

Time, (ms) 

Fig. 4. The cumulative reward used for training the SNN in Fig. 3 is
plotted as a function of time during XOR-gate training.

Input
neurons 
index,  

i

•   Spike occurrence 

Hidden
neurons 
index,  

i

Output 
neuron 
index,  

i

Fig. 5. Spike trains of the SNN neurons in Fig. 3 during XOR-gate training.

After training, the SNN output is decoded by assigning
high firing rates of approximately 40 Hz to the output value
ŷ = 1, and low firing rates of approximately 20 Hz to the
output value ŷ = 0. Although similar to the rate-based crite-
rion used for coding the SNN target input spike trains, output
decoding differs from the former because output firing rates
near zero cannot be achieved in the presence of a random
resting potential (Section II-B). The non-zero resting poten-
tial results in a baseline spike rate (8 Hz) which represents the
neurons’ spontaneous tendency to fire randomly when there
are no synaptic connections or incoming action potentials
(i.e., weights are equal to zero). After training the weights
are typically non-zero and, therefore, the spontaneous firings
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are propagated and amplified by the connections even when
the input neurons have zero firing rate (e.g., their spikes are
inhibited to code input (x1, x2) = (0, 0)). The performance
of the trained SNN is tested by decoding its output in
response to four pairs of target spike trains generated from
(13) for each combination of XOR input values.

The trivial case y = 0 when x1 = x2 = 0 is always
verified in practice, because in the absence of input spikes,
output spikes are observed in response solely to the resting
potential. The two cases with y = 1, namely (x1, x2) =
(0, 1) and (1, 0), are properly computed by the trained SNN,
as demonstrated in Figs. 6 and 7, where a high-frequency
output spike train representing ŷ = 1 is obtained in response
to either of the two input neurons displaying high firing
rates. The last case, with y = 0 and x1 = x2 = 1, is the
most challenging, because the SNN must suppress action
potentials by the output neuron in response to two high-
frequency input spike trains, containing numerous action
potentials that tend to propagate throughout the network. This
phenomenon is shown in Fig. 8, where the response is plotted
for an untrained SNN with the same architecture (Fig. 3) and
weight values that are randomly chosen between −wmax and
wmax. It can be seen that, as expected, the firing rate of the
output neuron is very high and even surpasses that shown in
Figs. 6-7. Instead, after the SNN is trained using Algorithm
1 (as shown in Figs. 4-5) its response to input spike trains
representing x1 = x2 = 1 produces a low-frequency spike
train corresponding to ŷ = 0, as shown in Fig. 9. Therefore, it
can be concluded that, through training, the SNN has learned
to perform all XOR computations.

Trained SNN response to Inputs (x1, x2) = (0, 1) 

Input
neurons 
index,  

i

•   Spike occurrence 

Time, (sec)

Hidden
neurons 
index,  

i

Time, (sec)

Output 
neuron 
index,  

i

Time, (sec)

Fig. 6. Spike trains of the trained SNN response to input spike trains
representing (x1, x2) = (0, 1), obtained after XOR-gate training.

The actual firing rates of the SNN output neuron, obtained
in response to input spike trains representing the four cases
of the XOR-gate inputs are summarized in Table I. Firing
rates are shown for a SNN with the architecture in Fig.

Trained SNN response to Inputs (x1, x2) = (1, 0) 

Input
neurons 
index,  

i

•   Spike occurrence 

Time, (sec)

Hidden
neurons 
index,  

i

Time, (sec)

Output 
neuron 
index,  

i

Time, (sec)

Fig. 7. Spike trains of the trained SNN response to input spike trains
representing (x1, x2) = (1, 0), obtained after XOR-gate training.

Untrained SNN response to Inputs (x1, x2) = (1, 1) 

Input
neurons 
index,  

i

•   Spike occurrence 

Time, (sec)

Hidden
neurons 
index,  

i

Time, (sec)

Output 
neuron 
index,  

i

Time, (sec)

Fig. 8. Spike trains of an untrained SNN response to input spike trains
representing (x1, x2) = (1, 1), obtained before XOR-gate training.

3 before training (first column). These firing rates can be
compared to those of two networks, SNN1 and SNN2, with
the architecture in Fig. 3, but different weights obtained
through training from two different XOR training sets, that
are both generated by the aforementioned procedure. It can
be seen from Table I that the firing rates of the trained
SNNs are very close to the target rates, for all four cases.
Whereas, the untrained SNN perform very poorly in the case
(x1, x2) = (1, 1), when the frequent action potentials of the
input neurons propagate through the network and cause the
output neurons to also fire very frequently, thus producing
the output ŷ = 1, instead of the target XOR output y = 0.

1786 2008 International Joint Conference on Neural Networks (IJCNN 2008)



Trained SNN response to Inputs (x1, x2) = (1, 1) 

Input
neurons 
index,  

i

•   Spike occurrence 

Time, (sec)

Hidden
neurons 
index,  

i

Time, (sec)

Output 
neuron 
index,  

i

Time, (sec)

Fig. 9. Spike trains of the trained SNN response to input spike trains
representing (x1, x2) = (1, 1), obtained after XOR-gate training.

TABLE I

FIRING RATES OF SNNS BEFORE AND AFTER TRAINING THE XOR GATE.

(x1, x2) Untrained Trained Trained Target
SNN SNN1 SNN2 Rate

(0,0) 6 (Hz) 28 (Hz) 22 (Hz) 20 (Hz)
(0,1) 36 (Hz) 38 (Hz) 44 (Hz) 40 (Hz)
(1,0) 40 (Hz) 44 (Hz) 44 (Hz) 40 (Hz)
(1,1) 54 (Hz) 26 (Hz) 28 (Hz) 20 (Hz)

V. SUMMARY AND CONCLUSIONS

This paper presents a novel SNN training algorithm that is
biologically-plausible and experimentally realizable in vitro.
The algorithm developed exploits the learning paradigm
known as reward-modulated spike-timing-dependent plastic-
ity, which adapts the synaptic efficacies according to a time-
dependent reward, and the relative timing of the pre- and
post-synaptic spikes. The reward function mimics the injec-
tion of a chemical reward signal that decays exponentially
over time and could be tested in vitro by exploiting dopamin-
ergic, adrenergic, and cholinergic signaling pathways. Spike-
timing-dependent plasticity is particularly appealing because
the synaptic efficacies cannot be directly manipulated in
vitro. Instead, neurons can be made to spike at precise
moments in time, through spatiotemporal light patterns that
can be reconstructed from the recordings obtained during the
training session. The training algorithm is demonstrated by
training a spike response model neural network to learn the
exclusive-or (XOR) computation, a well known benchmark
problem in ANN training, that requires a multi-layer archi-
tecture for artificial perceptrons and is challenging for SNNs,
because unit inputs represented by high firing rates must be
suppressed to produce a zero output represented by a low
firing rate. The results show that a SNN with twenty-three

nodes is able to learn the XOR gate accurately, and performs
the computation on time scales of milliseconds.
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