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Spatiotemporal Memory Is an Intrinsic Property of Networks
of Dissociated Cortical Neurons

Han Ju, “Mark R. Dranias, “Gokulakrishna Banumurthy, and “Antonius M.]. VanDongen
Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore 169857, Singapore

The ability to process complex spatiotemporal information is a fundamental process underlying the behavior of all higher organisms.
However, how the brain processes information in the temporal domain remains incompletely understood. We have explored the spatio-
temporal information-processing capability of networks formed from dissociated rat E18 cortical neurons growing in culture. By com-
bining optogenetics with microelectrode array recording, we show that these randomly organized cortical microcircuits are able to
process complex spatiotemporal information, allowing the identification of a large number of temporal sequences and classification of
musical styles. These experiments uncovered spatiotemporal memory processes lasting several seconds. Neural network simulations
indicated that both short-term synaptic plasticity and recurrent connections are required for the emergence of this capability. Interest-
ingly, NMDA receptor function is not a requisite for these short-term spatiotemporal memory processes. Indeed, blocking the NMDA
receptor with the antagonist APV significantly improved the temporal processing ability of the networks, by reducing spontaneously
occurring network bursts. These highly synchronized events have disastrous effects on spatiotemporal information processing, by
transiently erasing short-term memory. These results show that the ability to process and integrate complex spatiotemporal information

is an intrinsic property of generic cortical networks that does not require specifically designed circuits.
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Introduction

The mammalian brain has a remarkably efficient ability to pro-
cess and integrate spatiotemporal sensory information so it can
be used to generate meaningful behavior. The mechanisms un-
derlying short-term memory processes that operate in the tem-
poral domain are still incompletely understood. Spiking neural
network models inspired by neocortical connectivity can classify
the duration of spike intervals, by transforming timing informa-
tion into a spatial code (Buonomano and Merzenich, 1995), and
this process has been demonstrated to operate in hippocampal
slices (Buonomano et al., 1997). Computer modeling has shown
that the transformation of time into space is an intrinsic property
of neural networks, which requires short-term synaptic plasticity
mechanisms and slow IPSPs (Buonomano, 2000).

The liquid state machine (LSM), a spiking neural network
paradigm modeled after cortical microcircuits, can operate in the
temporal domain because it implements a fading memory for
input stimuli by a combination of recurrent connections and
short-term synaptic plasticity (Maass et al., 2002). Because the
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LSM is constructed by randomly connecting neurons with ran-
dom synaptic weights, it represents a generic microcircuit: no
assumptions are made regarding the wiring diagram. An impor-
tant property of the LSM is its ability to compute any function of
the input data in real time (Maass et al., 2002). By training a
readout neuron to extract the relevant information from the
LSM, it can perform classification tasks on complex spatiotem-
poral data (Joshi and Maass, 2004; Verstraeten et al., 2005; Ju et
al., 2010; Ju et al., 2013).

This combination of experimental and theoretical results sug-
gests a mechanism by which neuronal networks process spatio-
temporal information (Buonomano and Maass, 2009; Goel and
Buonomano, 2014): the network state is altered by external stim-
uli, and such changes persist in the network for a period of time,
due to reverberating spiking activity and short-term synaptic
plasticity. This raises the question of whether similar state-
dependent mechanisms exist in cortical microcircuits in the
mammalian brain. Cultured networks grown from dissociated
cortical neurons provide a model system to answer this question.
Such networks are able to classify high- and low-frequency stim-
uli (Dockendorf et al., 2009), L-shaped spatial patterns (Ruaro et
al., 2005), and simple electrical stimulation patterns that last
hundreds of milliseconds (Bonifazi et al., 2005; Ortman et al.,
2011). All of these previous studies on cultured dissociated net-
works have focused on spatial information processing. Whether
dissociated neuronal networks are able to process complex spa-
tiotemporal data is not known.

In this paper, we show that networks derived from dissociated
cortical neurons can maintain stimulus-specific memories for
several seconds, enabling them to process complex spatiotempo-
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ral information. NMDA receptor function is not required for this
ability, whereas spontaneous synchronized network bursts de-
stroy stored information. The temporal pattern classification
ability shown here complements the spatial pattern classification
reported previously (Dranias et al., 2013). The results underscore
the usability of optogenetic stimulation to study mechanisms un-
derlying learning and memory in cortical microcircuits and dem-
onstrate the intrinsic ability of such networks to store and process
spatiotemporal information on a time scale of seconds.

Materials and Methods

Cell culture and transfection. Microelectrode arrays (MEA) dishes with
252 electrodes were rinsed and sterilized by methanol and UV exposure.
Before plating, the electrode area of each MEA was coated with poly-p-
lysine for 1.5 h, followed by fibronectin from bovine plasma for 4 h.
Cortical tissue from embryonic day 18 (E18) rat pups from either gender
was disassociated using papain, centrifuged at 1300 rpm for 5 min, and
then suspended in Earle’s balanced salt solution and ovomucoid. After a
second centrifugation at 600 rpm for 6 min, cells were resuspended in
culture medium (NBActive4 medium with 10% FBS and 1% penicillin
streptomycin). Transient transfection was performed through elec-
troporation using the Amaxa nucleofector II kit (Lonza AG), using 8
ug of plasmid DNA encoding a codon-optimized ChannelRhodopsin-2
(ChR2) gene driven by a CMV promoter; 70 ul of cell suspension con-
taining ~100,000 cells was plated on the electrode area and transferred to
the incubator to let the cells adhere well to the electrode surface. After 30
min, 1 ml of the culture medium was added to the dish. Recordings were
performed at 7-10 d in vitro. During MEA recordings, the cell culture
medium was changed to Dulbecco’s phosphate-buffered solution con-
taining glucose and pyruvate. To prevent water evaporation, a cap was
used to seal the MEA dishes.

Recording and stimulation. Action potentials were recorded using a
256-channel MEA amplifier (USB-MEA256) and MCRack software
(Multi Channel Systems). Action potentials were detected using a user-
defined threshold set to a value based on the amount of noise in each
channel. Because the majority of channels displayed only single-unit
activity, no spike sorting was performed. Triggered recording mode was
used to synchronize the recording and stimulus presentation, using
transistor-transistor logic (TTL) pulses that signaled the beginning and
end of each trial. Optical stimulation was achieved using a 25 mW 488
nm blue laser beam passed through an acousto-optic tunable filter, which
served as an on/off switch controlled by the stimulation software. The
beam was expanded optically and projected onto a reflective spatial light
modulator (SLM, Holoeye Photonics), with a resolution of 1920 X 1080
pixels, connected to the PC through a DVI port as a secondary display,
such that each pixel of the SLM is controllable for light reflection. The
SLM received input from the computer to produce reflective patterns,
and the laser light reflected by the SLM carries image patterns instructed
by the computer. The light patterns were then projected onto the MEA
culture through the objective lens of an inverted microscope (Nikon
Ti-E). This setup allowed us to design arbitrary greyscale images and
movies and use them as stimuli. The stimulation presentation software
was developed by us using C+ + for accurate timing in the submillisec-
ond range. The software controlled both stimulus presentation and trig-
gering of the recording, by sending TTL signals to MCRack. For ease of
programming, stimuli were initially designed in MATLAB and then con-
verted to scripts and loaded into the C+ + software.

Stimulus design. To test the ability of neuronal cultures to classify
complex spatiotemporal patterns, two types of stimuli were designed,
illustrated in Figure 1: jittered spike trains and random 4-note “music.”
For the jittered spike train template classification task, 4 spike train tem-
plates were generated, each having 6 spikes over 3 s, with the first spike at
time 0 denoting the start of the trial. As stimuli we used jittered versions
of the templates, which were generated by changing the timing of the
spikes by a random amount with mean 0 ms and an SD of 150 ms. The
first spike was not affected by the jitter. Then the jittered spike train was
converted to a train of light pulses with a pulse-width of 100 ms (Fig. 1A).
Each light pulse illuminated the whole electrode area: these experiments
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therefore used pure temporal stimuli, containing no spatial information.
The classification task in this experiment was to determine which tem-
plate the light pattern was generated from. A total of 200 stimuli were
generated, 50 for each of the 4 templates, which were presented in ran-
dom order, with random interstimulus intervals of at least 8 s. This
allowed the network sufficient time to return to a baseline state after each
stimulus presentation.

The random “music” stimuli were composed using 4 notes (piano
keys), and each note was represented by a unique spatial light pattern.
When a key was pressed and held, the corresponding light pattern was
presented to the culture. The central area in the MEA dish was divided
into a 10 X 10 grid, and each light pattern illuminated 25 squares out of
the 100 in the grid. We first generated 28 such patterns, making sure that
every square of the grid has an equal probability to be illuminated across
all the patterns, and then all were presented to the neuronal network. The
4 patterns that elicited the strongest network responses were chosen to
represent the 4 piano keys. Forty “songs” (random 4 note sequences)
were generated, each composed of 16 notes with a fixed duration of 100
ms, separated by 135 ms of silence (no light), resulting in patterns that are
4 s long (Fig. 1B). Each song was presented to the culture 20 times. The
task was to classify which of the 40 songs was being played to the culture.
The note sequence of each song was random, except for one rule: at every
time point in the song, each note had the same probability of occurring.
The rationale behind this rule is that, by looking at one time bin only
(e.g., the second note for all 40 songs), the best possible classification
accuracy that can be achieved is only 10%. To achieve an accuracy >10%,
the network needs to “remember” (store and recall) which notes have
been played earlier (temporal information processing), and at the same
time correctly identify the note that is currently playing (spatial informa-
tion processing). This tests the culture’s memory and its ability to inte-
grate spatiotemporal information over time. Looking at this stimulus
paradigm from a different perspective, this classification task is actually
to recognize light pattern sequences (Fig. 1C). Music is defined as orga-
nized sound and the stimuli in this task are analogous to music. There-
fore, without losing generality, we describe this task as random music
classification.

Decoding responses. Spike trains recorded from the cultures were seg-
mented in time bins of 100 ms for the jittered template classification task.
For the random music task, 235 ms time bins were used, such that each
time bin contains the response of the network to one note. At every time
bin ¢, we trained a support vector machine (SVM) classifier (Chang and
Lin, 2011) as a readout, R(t). Spike counts within a time bin were used as
the input to the classifiers. Time-dependent readouts R(t) to classify
neuronal response have been used in previous studies to measure infor-
mation content over time both in vitro (Dranias et al., 2013) and in vivo
(Nikoli¢ et al., 2009). For both tasks, 60% of the recorded data was used
for training SVMs and the remaining 40% for testing. Silent channels
were excluded from the analysis.

Neural network simulations. To investigate whether neuronal cultures
can improve classification accuracy of SVM readouts, we designed a
control case: the stimulus spike trains were segmented into time bins
and their spike counts were fed directly into the SVM classifiers (Fig. 1D).
For the jittered spike train template classification task, the control quan-
tifies the difference between the 4 stimulus classes at each time bin. For
the random music task, each time bin contains only one note; thus, the
control can only use spatial information, which will result in a classifica-
tion accuracy of at most 10%. If the cultured neuronal network performs
spatiotemporal information processing that facilitates classification, the
accuracy should be higher than this control level. Neural network simu-
lations were performed for the random music classification task to inves-
tigate the mechanism underlying spatiotemporal memory processes in
neuronal networks. We simulated three types of spiking neural networks,
implemented as LSMs, with different synaptic properties (Fig. 1D). In the
simplest case, there were no recurrent connections in the LSM. The sec-
ond type of LSM had “static” synaptic connections without short-term
plasticity to investigate whether reverberating activity is sufficient for the
classification task. In the third LSM design, recurrent connections were
used with short-term synaptic plasticity (facilitation and depression) to
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Figure 1.  Spatiotemporal classification tasks. 4, Diagram illustrating the jittered spike train template classification task. Four spike trains with 6 spikes each serve as templates, from which stimuli were
generated by “jittering” the timing of each spike. The first spike at time 0 denotes the start of the trial. The example shows that, after jittering, a stimulus still retains some features of its template. Each spike in
atrial is converted to a light pulse with a duration of 100 ms, which illuminated the entire field of view. Because there is no spatial information in the stimulus, this constitutes a pure temporal task. B, Random
music dlassification task. Forty “songs” were generated, consisting of random sequences composed using only 4 notes. Each black vertical bar represents a key press (note). At every time bin, each of the 4 notes
occurs with the same frequency: in 10 of 40 songs. Therefore, knowing which note is playing at any pointin time only reduces the number of possible songs to 10, and the resulting classification accuracy is at most
10%. C, Each note in Bis represented by a unique random dot light pattern, which is presented to the neuronal network. The figure shows the first 4 notes of stimulus 1in B. Thus, a stimulus patter shownin B
is presented tothe networkasasequenceoflight pattems. D, Schematic diagram of the analysis, showing that the same stimulus pattems are presented tothe cultured networks, tosimulated neural networks (LSMs), or directly
fedinto the machine dassifiers (SVMs), as a control. Three types of LSMs were used for the music dassification task to help define the mechanisms that underlie the short-term memory processes observed in neuronal cultures.
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investigate whether the experimentally observed increase in classification
accuracy requires this type of plasticity.

Metric for selecting the best MEA channels. Multiclass linear discrimi-
nant analysis was applied at each time bin for each MEA channel, to
obtain Fisher’s linear discriminant ratio (FDR), which indicates the
amount of discrimination contributed by individual channels. The aver-
age FDR of each MEA channel over the stimulus presentation window
serves as a score to indicate how important the channel is for accurate
classification. The FDR of a channel n at time bin ¢is calculated as follows:

o > et = u()
t e
g D2 (81D = pen)?

where S!(t) is the spike count recorded from a MEA channel n at time bin
£, in response to stimulus #; pe(f) is the mean spike count of the channel
n at time ¢t for class C stimuli, and (%) is the mean of the class means
e(f). The numerator and denominator of the discriminant ratio J, are
known as the “between classes scatter” and “within class scatter,” respec-
tively. The larger value of ], indicates better discrimination. The average
discriminant ratio of a channel # is the mean ratio over the time for one
trial [0, t,,,,;] as follows:

1 ttrial
=] g,
tria
0

which is used as a score for selecting top MEA channels.
Mutual information: Shannon entropy of a given stimulus set is de-
fined as follows:

H(S) = —EP(s)logzP(s)

where P(s) is the probability of a class s stimulus. The entropy is measured
in bits. The entropy is log,C bits if the C classes’ stimuli have an equal
probability to be presented. The mutual information is defined (Quian
Quiroga and Panzeri, 2009) as follows:

P(s| 1)
I(S5R) = 2p(r) Pls | Nlog 5
where P(r) represents the probability of observing a response r. In this
paper, we used the spike count recorded from a MEA channel during
stimulus presentation to estimate P(r) of that MEA channel.

Simulation parameters. We used the CSIM software package
(Natschlager et al., 2003) to simulate LSMs and neural networks. The
same readout mechanism as the culture was used for fair comparison:
the responses of simulated networks were divided into time bins, and the
spike count for each bin was fed into its own SVM classifier, R(¢). Leaky
integrate-and-fire (LIF) neurons were used in the simulations:

av,,
Tm = _(Vm -

dt Vresting) + Rm(I + Inm'se))

syn
where the membrane time constant 7,, was set to 30 ms, and resistance
R,, = 1 M{); the resting membrane potential Vresting was 0 mV; the firing
threshold was 4 mV, and the refractory period was 2 ms. For the random
music classification task, a Gaussian noise current with zero mean and 3
nA variance was applied to simulate noise in the culture. The network
consists of LIF neurons occupyinga 5 X 5 X 5 3D space for the spike train
classification task, and a7 X 7 X 7 configuration was used for the random
music classification task, with 80% excitatory and 20% inhibitory neu-
rons. Synaptic connections were built based on Euclidean distance be-

tween two neurons:
D(a, b))’
p=C-exp|— Y ,

where p is the probability to build a connection between neuron a and b,
and D(a, b) is the Euclidean distance. A determines the range of connec-
tions, and C is a scaling factor. The following model for short-term
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facilitation and depression was used, with parameters determined from
experimental recordings (Markram et al., 1998):

Ak =W Up-* Rk
up = U+ u (1 — U)exp(— Ay /F)
Ry =1+ (Ri-y — 1Ry — Dexp(— A_,/D)

where w is the synaptic weight; A; is the amplitude of postsynaptic cur-
rent raised by the k' spike; A, represents interspike interval between
the k7 and (k — 1)™ spike; u; models the effects of facilitation and R is
for depression; Uis the average probability of neurotransmitter release in
the synapse, and F and D are time constants for facilitation and depres-
sion. Depending on whether a synapse is excitatory (E) or inhibitory (I),
the values of U, D, and F are drawn from Gaussian distributions with a
mean of (D and F in seconds): 0.5, 1.1, 0.05 for excitatory neuron to
excitatory neuron connections (EE). The means for the other types of
connections were 0.05, 0.125, 1.2 (EI), 0.25, 0.7, 0.02 (IE), 0.32, 0.144,
0.06 (II). These values are chosen based on Gupta et al. (2000). The SDs
of these parameters were set to be half of the mean. Initial values of  and
Rareul = UandR1 = 1.

Results

A number of experiments were designed to investigate the ability
of networks formed from dissociated cortical neurons to process
spatiotemporal data. Stimuli were provided as patterns of blue
light that activated ChR2-expressing neurons, whereas responses
(spikes) were recorded from 252 MEA electrodes. The multi-
channel spike train activity before, during, and after stimulus
presentation was analyzed using nonlinear machine classifiers
(SVMs).

Classification of jittered spike train templates
The jittered spike train template classification is a pure temporal
pattern classification task: each stimulus consists of five time in-
tervals, and there is no spatial information in the stimuli, as each
light pulse illuminates the entire electrode area. Figure 2A shows
spike responses recorded from a single MEA channel. A 100 ms
light pulse was able to induce a burst of spikes lasting 100-150
ms, significantly shorter than the spontaneous network bursts,
which are typically longer than 500 ms. Such light-elicited re-
sponses were observed in many channels. Furthermore, different
stimulus classes had different probabilities to elicit network
bursts during or immediately after stimulus presentation. Stimuli
having shorter spike time intervals (Fig. 2A, purple and cyan
classes) were more likely to elicit network bursts than the stimuli
having longer intervals (red and green), indicating that the net-
work could distinguish time intervals in the seconds range. Clas-
sification accuracy as a function of time shown in Figure 2B
illustrates how much information about the stimulus was present
in the culture at each time bin. The blue line is a control, calcu-
lated by feeding stimuli directly into the machine classifiers (Fig.
1D). The yellow areas represent the improvement of the classifi-
cation accuracy provided by the activity of the network. For com-
parison, the same stimuli were also presented to computer-
simulated LSMs. The results show that the performance of the
neuronal networks is better than control during stimulus presen-
tation but slightly lower than the simulated LSMs. All three
curves have similar shapes. The classification accuracy for the
culture does not immediately drop to chance level after the stim-
ulus ends, indicating that neuronal cultures have a fading mem-
ory that is able to retain stimulus information for a short period
of time.

Pooling all the time-dependent readouts R, to make a final
decision on stimulus class allows for the evaluation of overall
classification performance. This pooling method yields a classifi-
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cation accuracy of 60% for the neuronal network (Fig. 2C), much
higher than the 25% chance level and also significantly higher
than the control (51%), but lower than the simulated LSMs
(72%). This shows that the neuronal networks have the ability to
process these temporal stimuli in a way that improves the classi-
fication accuracy of downstream readouts.

Fisher’s linear discriminant analysis allows us to rank MEA
channels according to their importance in classification. We plot-
ted FDR of each channel versus its light response consistency

(cross-correlation between spike responses and light pulses) in
Figure 3A, and FDR versus average number of spikes induced
by the first light pulse in Figure 3B. The high positive correlation
shown in both plots suggests that top-performing MEA channels are
likely to have consistent light responses, whereas more spikes in a
channel induced by a single light pulse are beneficial for class dis-
crimination. Multiple spikes induced by a single light pulse are likely
due to short-term reverberating network activity and may serve to
encode temporal information for later recall.
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Figure 3C illustrates how the classification accuracy depends
on the number of MEA channels used. The gray horizontal bar is
the control accuracy and its SEM. By using only a few top chan-
nels with a high FDR, the classification accuracy is higher than the
control value. The accuracy increases as more channels are used,
suggesting that there is still useful information in those less dis-
criminative channels. In other words, stimulus information not
only exists in a few top discriminative channels but is distributed
over the entire network. The accuracy is not monotonically in-
creasing as more channels are used because some channels may
contain too much noise and deteriorate classification accuracy,
or they may not be able to provide additional information not
present in other channels.

Classification accuracy by randomly selecting channels is
shown in green in Figure 3C, for comparison with selecting top
channels using FDR. The red curve is always above the green one,
thereby confirming that FDR indeed ranks channels based on
their contribution to classification. This also shows the impor-
tance of selecting top-performing channels: by listening to only a
few presynaptic neurons containing highly discriminative infor-
mation, readouts are able to achieve high accuracy; in contrast,

random channel selection requires >60 channels to be compara-
ble to the control.

Random “music” classification

The results of the jittered spike train template classification task
suggest that these cultured neuronal networks have memory and
are capable of processing temporal information. However, from
these experiments, it is not clear how long stimulus information
is retained and how the network uses this memory to integrate
temporal information over time. To answer these questions and
investigate the state-dependent computational properties of the
networks, we recorded network responses to complex spatiotem-
poral stimuli consisting of “random music” stimuli (see Materials
and Methods) and used the responses to classify which musical
example was playing.

Consistent responses for each random music piece were ob-
served as shown in Figure 4A, as a raster plot of spike responses
recorded from a single MEA channel. Forty songs were each pre-
sented 20 times in random order. The responses in Figure 4A
were ordered by song number, and songs were color-coded. Re-
sponses to the first note of all 800 trials, indicated by the first
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vertical stripe in the figure, reveal a differential sensitivity of this
channel to the 4 piano keys. It can be seen that different keys (light
patterns) elicit different but deterministic spike response pat-
terns. Network responses were not immediately induced after the
onset of the first note but occurred with a higher chance at a later
time point.

The random music stimuli were designed such that, looking at
a single measure (a single time bin) will only yield 10% accuracy.
As a result, the accuracy for the control case (stimuli directly fed
into the SVMs) is 10% for the entire 4 s stimulus presentation
window (Fig. 4B) and drops to chance level (1 of 40 = 2.5%) after
the stimulus ends. The only way for the cultured networks to
achieve >10% performance is by storing note sequences and
integrating that information with new notes. Classification of the
first note is slightly below the 10% control level for the neuronal
network, possibly due to noise from intrinsic activity. The accu-
racy at the second note is higher than control, suggesting that the
network is able to remember the first note and use that informa-
tion. Interestingly, as more notes were played, the accuracy keeps
increasing over the 4 s stimulus window. This means that all the
notes played in a song can be remembered; hence, the cultured
network has a memory span of atleast 4 s. Increasing the duration
of the music stimulus to 6 s still displays an increasing trend in
classification accuracy (Fig. 4C), indicating the existence of a sev-
eral seconds long memory process. The increasing trend also
shows that stimulus-specific information accumulates over time
(i.e., a history of sensory input is maintained in the cultured
network). As a result, the network response to the final note con-
tains the largest amount of stimulus information, and the highest
classification accuracy is achieved at the end of the stimulus presen-
tation.

Pooling all the time-dependent readouts R, yields a classifica-
tion accuracy of 69%, significantly higher than chance level
(2.5%), and also much higher than the accuracies shown in Fig-
ure 4B, C. By using the top 4 channels ranked by FDR, 24%
accuracy can be achieved (Fig. 4D, red curve); in contrast, ran-
dom channel selection requires >80 channels to reach 20%
(green curve), and 60 channels only yield ~4% accuracy. Both
Figures 3C and 4D show that stimulus information is stored
network-wide, and using more channels (output neurons) can
greatly increase the accuracy.

Separation property

One of the most important characteristics of the LSM is the sep-
aration property: its ability to produce distinct network states in
response to different input stimuli. Larger input differences
should result in more pronounced differences in the network’s
response. Previous studies have characterized the separation
property in cultured neuronal networks (Ruaro et al., 2005;
Dockendorf et al., 2009; Ortman et al., 2011), showing that
different inputs are able to elicit distinct network responses.
Here we have investigated this in more depth and asked
whether larger input difference can cause larger differences in
network responses.

The state distance measures the difference between two state
trajectories of a neural circuit in response to two distinct input
stimuli. To characterize the separation property in our cultured
neuronal networks, input distances were calculated as the num-
ber of different notes in a pair of songs, whereas the state distance
for the networks was calculated by the Euclidean distance of spike
counts at every time bin. Figure 5A shows that our results are
similar to those published for simulated LSMs (Maass et al.,
2002): after reaching an initial peak, the curves settle to a level
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proportional to the input difference. The thick blue curve in Fig-
ure 5A is the average state distance of the neuronal culture when
driven by two identical inputs, which represents the amount of
noise in the culture. State distance curves from two distinct in-
puts are clearly above this noise level. Larger input differences
generally cause larger state distances. This relationship is quanti-
fied in Figure 5B: the state distance averaged over the entire song
has a positive linear relationship with input state difference. As
the input difference increases, the state distance increases linearly
without any sign of saturation, even for the cases when all the
notes in a pair of songs are completely different. This suggests
that the cultured neuronal network is able to separate very com-
plex stimuli.

The curves in Figure 5A have a similar shape as the network
firing rate (Fig. 5C). A possible explanation for the early peak is
that neurotransmitter reserves may get depleted somewhat by the
high level of network activity induced by the stimuli. Because
network state distances are calculated from spike counts, higher
network activity results in larger spike counts, which therefore
increases the state distance. Similar curve shapes were also ob-
served in simulated LSMs having synapses that incorporate
short-term plasticity (Maass et al., 2002).

Role of NMDA receptors

The above results show that neuronal cultures can memorize
spatiotemporal information for several seconds, a time scale that
is longer than the short-term facilitation and depression of
individual synapses, which usually lasts for tens to hundreds of
milliseconds. It is shorter, however, than long-term synaptic
plasticity, which lasts for minutes to hours. The NMDA receptor
(VanDongen, 2008) plays a critical role in the induction of both
LTP and LTD. We therefore investigated a possible role for the
NMDA receptor in the spatiotemporal memory observed in our
cultured networks, using the competitive glutamate-site antago-
nist APV. If NMDA receptor function is required for the memory
we observed, APV should reduce the classification accuracy.
However, the opposite result was obtained: APV significantly
improved the culture’s information processing ability and mem-
ory performance (Fig. 6A). Classification accuracy after APV
treatment was well above the level seen before treatment. The
classification accuracy at the first note was almost the same before
and after applying APV, both <10%, indicating that APV does
not have obvious effects on the spatial pattern classification abil-
ity of the network, but the accuracy was improved at subsequent
notes, suggesting positive effects of APV on temporal informa-
tion processing.

Before APV treatment, the classification accuracy climbs to
around 15% at ~1.5 s and then reaches a plateau (Fig. 6A). After
APV, classification performance keeps increasing for nearly 3 s,
indicating the memory span is prolonged, and classification ac-
curacy reaches 30%. These results indicate that NMDA receptor
function is not a critical requirement for this type of memory.
Figure 6B shows Shannon’s Mutual Information between stimu-
lus class and total spike counts for the top 30 channels ranked by
FDR score. The curve was concave before APV treatment and
became convex after APV, showing significant improvements in
the amount of information present in the top-ranking channels.

We noted that APV has a significant effect on the behavior of
dissociated neuronal networks: it significantly reduced the fre-
quency of spontaneous synchronized network bursts. APV re-
duced the average number of bursts per trial by 50%. In our
previous work (Dranias et al., 2013), we showed that network
bursts reduced or destroyed hidden memory that lasts for 1.2 s in



Juetal.  Memory in Dissociated Neurons

A

e e

RGN
N A O 00O O N M O

Distance in culture’s responses
o
N
w
AN

Time (sec)

W

Average distance over time
N
(&)}

5 10 15
Number of different notes

(@)=

(@)

400

(0]
-—
©
—
(®)]
=
—
=
-
—
o
2
(O}
P

2 3 4
Time (sec)

o
-

Figure5.  Separation propertyof cultured neuronal networks. A, The network's state distance over ime s proportional to the number of different
notes between twosongs (color coded). Each state distance curveis obtained by averaging responses from all pairs of songs having the same number
of different notes. The thick blue distance curve s calculated from identical inputs. Only trials without network bursts were used. B, State distance in 4
averaged over a4 stimulus window versus input distance. Error bars indicate SEM. Regression line: y = 0.21x + 5.9; correlation coefficient r =
0.997. ¢, Network firing rate (Hz) at each time bin. Black curve indicates the averaged of all the trials. Gray area represents the SEM.

J. Neurosci., March 4, 2015 - 35(9):4040 — 4051 « 4047

The importance of short-term synaptic
plasticity

As we have shown that the NMDAR only
contributes indirectly to the memory per-
formance we observed, by reducing the
frequency of bursting, the question now
becomes: what are the processes underly-
ing this memory? We hypothesized that
even though short-term synaptic facilita-
tion and depression have time constants
of at most hundreds of milliseconds, re-
verberating activity may allow a neuronal
network with many synapses to sustain
encoded information for a much longer
period of time, thereby giving rise to the
seconds-long memory we observed. We
have demonstrated the existence of this
emergent property through computer
simulations. Figure 6C shows the classifi-
cation accuracy for spiking recurrent
neural networks (LSMs) with different fa-
cilitation time constants, without synaptic
plasticity, and without recurrent synaptic
connections. The stimulus set of 40 ran-
dom music pieces (Fig. 4) was used for
this experiment. Parameters for synaptic
dynamics and time constants for facilita-
tion and depression were based on exper-
imental recordings from living neurons in
rodent cortex (Markram et al.,, 1998;
Gupta et al., 2000). Similar to the classifi-
cation results from cultured networks,
when default time constants for short-
term plasticity are used, accuracy keeps
increasing within the 4 s stimulus win-
dow. However, networks without short-
term plasticity or lacking recurrent
connections have accuracies that do not
improve over the 10% control level.
Reverberating activity, by itself, is not
enough to sustain the memory; but when
short-term synaptic plasticity was incor-
porated, stimulus information can be
maintained for a much longer duration.
Furthermore, increasing the synaptic facili-
tation time constant to 5 times the default
value significantly increases the classifica-
tion accuracy. When the time constant is re-
duced (0.1 X default), the classification
accuracy is lower than the default case,
and memory duration is shorted to
around 1.5 s; the classification accuracy
climbs to ~40% at 1.5 s and then settles
into a plateau. These results demon-
strate the important role of short-term
synaptic plasticity in the emergent
property of seconds-long memory in
neuronal networks.

a “cue and probe” stimulus setting. The results from these APV~ Real-time state-dependent computation: switches

experiments further confirmed the disastrous effects of synchro- ~ To investigate whether neural cultures are able to perform real-time
nized network bursts on memory and the ability to process spa-  state-dependent computations, we designed a switch-function ap-
tiotemporal patterns. proximation task using the random music classification stimuli,
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which use 4 piano keys. The task is to let
the network spike train activity control a
readout neuron which acts as a switch: de-
pending on which key is pressed, the tar-
get output should by either 1 (on) or 0
(off). Similar function approximation ex-
periments were perform using simulated
spiking neural networks (Maass et al,
2007). Two readout neurons were created
and trained to approximate two switch
functions (Fig. 7A). The first readout im-
plements a simple on/off switch: Keys 1
and 2 are on switches and Keys 3 and 4 are
off switches. This requires only spatial in-
formation processing: the network needs
to identify which keys are pressed at each
time bin and control readout 1 to output
on/off accordingly. The mean cross-
correlation coefficient between the tar-
geted (desired) outputs and the actual
readout output for all the testing data is
0.93 + 0.07. The task for the second read-
out is more difficult: Key 1 toggles the
switch, Key 2 holds the switch state, Key 3
is an on switch, and Key 4 is an off switch.
Correctly toggling and holding in this task
requires temporal processing and mem-
ory. The results show that the cross-
correlation with the target output is
0.84 = 0.09. The high correlation coeffi-
cients suggest that the culture has rich dy-
namics that can be used in parallel by
different readouts to extract stimulus in-
formation from multiple perspectives.
Two independent switches can be imple-
mented simultaneously: one requires spa-
tial information processing only, and the
other one requires both spatial and tem-
poral information.

Classification of musical styles
We have shown that dissociated neuronal
networks are able to classify random mu-
sic composed of 4 piano keys and that they
can be used to implement a neuronal ver-
sion of the LSM (Maass et al., 2002). How-
ever, real music is much more complex
than the computer-generated random
music discussed above. In our previous
work (Ju et al., 2010), we have used com-
puter simulations to show that LSMs are
able to classify two styles of piano music:
classical versus ragtime. Here we show
that biological networks of dissociated
cortical neurons are able to perform the
same task.

We used the same musical files as in
our previous work (Ju et al., 2010). Clas-
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sical and ragtime piano music pieces by well-known composers  piano keys, and then encoded as light patterns (Fig. 7B). This
were downloaded in MIDI format. These MIDI files were seg-  encoding preserves most of the musical information, including
mented to 30 s sections, from which 150 segments (75 from each ~ note value, onset time, duration, and key velocity (the force with
musical style) were randomly selected as stimuli, mapped to 20 ~ which the key was pressed). As a control, we fed the stimuli di-
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Figure7.  Computation and classification by cultured neuronal networks. A, Implementing switches. Two readouts were used.
The first readout was trained to switch on (to output “1”) when Keys 1 or 2 were pressed and switch off (to output “0”) when Keys
3 or 4 were pressed. For the second readout, Key 1 toggles the switch: if the switch was on, Key 1 turned it off; if it was off, Key 1
turned it on. Key 2 holds the current on/off state, Key 3 is an on-switch, and Key 4 is an off-switch. Red curve indicates the target
output. Blue curve indicates the response of the readouts. B, Encode music as light patterns. Twenty stimulation sites (circles) were
selected, each representing a piano key. When a piano key is pressed and held, its corresponding circle will be illuminated with an
intensity value proportional to the key’s velocity (how forcefully the key is pressed). C, Transcription of a 10-s-long classical music
segment not used during training, taken form animpromptu composed by Schubert (D.395 #1). D, A 30 s fragment of the Schubert
impromptu, after transposition and encoding. Each note is represented by a horizontal bar. Each bar’s gray level represents its key
velocity. The transcription in Cis the first10 s of this musical segment. E, Readout output when the stimulus in D was presented. The
readout was trained to output 1 for classical music stimulus and 0 for ragtime. F, Network responses recorded from MEA electrodes.
The readout output in E had large fluctuations when network bursts occurred and was reset to chance level (0.5).
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rectly in a readout neuron to classify the
music styles. Thus accuracy of this control
reflects how much trivial differences (e.g.,
notes per minute) exist between the two
musical styles. If the dissociated networks
can produce a classification accuracy that
is higher than the control, we can confi-
dently conclude that the network per-
formed computations on the stimuli that
extracted nontrivial differences from the
input data.

Figure 7C shows a transcription of the
first 10 s of a classical music segment,
taken from an impromptu composed by
Schubert. Figure 7D shows this 30 s music
segment after light pattern encoding. Fol-
lowing the LSM paradigm and our previ-
ous work, a linear readout receiving MEA
responses (multichannel spike trains) as
input, was trained to output 1 for classical
music and 0 for ragtime. Figure 7E shows
the readout output when the musical frag-
ment in Figure 7D was presented to the
culture. The neuronal network output
stays above 0.5 most of the time, indicat-
ing a classical song is playing, whereas the
control output fluctuates around chance
level. For the network output, an increas-
ing trend was observed for three periods
(0—6,8-22,and 25-30 s). Two large fluc-
tuations occurred at 6 and 22 s, disrupting
the increasing trend. To examine what
happened in the network at these two time
points, we plotted the responses recorded
from the MEA (Fig. 7F). Clearly, the oc-
currence of two synchronized network
bursts at 8 and 22 s greatly affected the
readout output. The output fell to 0.5
(chance level) immediately after each
burst and then slowly increased until the
next network burst occurred. This further
confirms that network bursts interrupt
spatiotemporal information processing
and erase any memory stored in the
network.

The average of the readout output over
the entire stimulus presentation window
can be used to make a classification deci-
sion: if it is larger than 0.5, the stimulus is
classified as classical music; otherwise, it is
ragtime. Three neuronal networks were
tested. Two of them had higher classifica-
tion accuracies (93 = 0.6% and 90.3 *
1%) than the controls (86 = 1.1% and
87.3 £ 1.3%) obtained by using a readout
directly classifying the stimuli. The third
network performed similarly to the con-
trol: 78 = 3% for the cultured network
versus 75 % 2% for the control. One factor
that greatly affected the classification ac-
curacy is the sensitivity of the networks to
spatial light patterns (i.e., whether the net-
works can correctly identify all the piano
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keys; classifying the circles in Fig. 7B). Additional experiments of
classifying the 20 piano keys were performed for the three net-
works, and the results showed that networks with higher musical
style classification accuracy tend to have higher 20 keys classifi-
cation accuracy (55.6%, 37.5%, and 22%, respectively).

Discussion

Through a combination of optogenetics and MEA recordings, we
have demonstrated the feasibility of using optogenetically en-
hanced cultured neuronal networks for state-dependent compu-
tations. These networks were grown from dissociated cortical
neurons, which form a spontaneously active, densely connected
cortical microcircuit. Despite the lack of a specific architecture or
defined wiring diagram, they are able to store and process com-
plex spatiotemporal patterns, suggesting that this ability is an
intrinsic property of generic cortical microcircuits. Classification
of spatiotemporal input data can be achieved by adding memory-
less linear classifiers (readouts) that use the network state to make
classification decisions.

Results from the random music task show that classification
accuracy steadily increases while the song is playing, for a dura-
tion up to 6 s (Fig. 4), indicating that stimulus-specific informa-
tion is stored in the network for this period of time. This extended
duration of spatiotemporal memory exceeds what we have shown
in previous experiments using paired (cue-probe) spatial pat-
terns, in which stimulus-specific information was maintained for
~1 s (Dranias et al., 2013). One possible explanation for this
difference is the frequency of stimulation: in the random music
experiments, stimuli were presented continuously at a rate of 4
per second; whereas in the cue-probe experiments, there was no
stimulation during the 1 s delay, allowing network activity to
return to low baseline levels. This suggests that continuous stim-
ulation allows memory of the input history to be maintained. A
similar mechanism has been proposed for a working memory
model based on short-term synaptic plasticity (Mongillo et al.,
2008), where stimulus memory could be maintained for a pro-
longed period of time by periodic stimulations that elicited
strong network responses (“population spikes”). Our results pro-
vide experimental support to this idea, with one qualification:
population spikes may not be necessary, as each input pattern
activated only a subset of neurons, not the entire network. In-
deed, as shown by the results from the APV treatment in the
musical style classification task, excessive activity seen during a
synchronized network burst is detrimental to information pro-
cessing and may eradicate memory information residing in the
networks (see also Dranias et al., 2015).

If the randomly organized networks formed from dissociated
neurons are to serve as a model system for local cortical micro-
circuits in the mammalian brain, then the question arises: to what
do the readouts correspond? The readouts were trained to per-
form classification tasks on the spatiotemporal data, and they
received inputs from all 252 MEA channels. The neurons whose
spiking activity is recorded by the MEA electrodes represent the
output neurons of the microcircuit. The readouts can be thought
of as “downstream” neurons localized in other cortical microcir-
cuits or deeper brain structures, which are innervated by the
output neurons. An important unresolved problem is the biolog-
ical interpretation of the training of these readout neurons that is
required for accurate classification. Our implementation using
linear readouts or nonlinear SVM classifiers to optimize synaptic
weights between output neurons (MEA channels) and readout
neurons has no obvious biological counterpart because the train-
ing is “supervised”: the SVM receives labels for each input (e.g.,
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“classical,” “ragtime”). It is not clear how the brain would imple-
ment such a supervised training paradigm. Recent computer sim-
ulation studies have shown that cortical circuits having long-term
memory or reward-modulated plasticity may not require super-
vised training for the readout neurons (Klampfl and Maass, 2013;
Hoerzer et al., 2014). Therefore, future experiments should ad-
dress this important issue and attempt to find unsupervised
training approaches based on known synaptic learning rules
(LTP, LTD, Spike-Timing-Dependent Plasticity) that can still
achieve proper changes in synaptic strength for accurate
classification.

High classification accuracy can be achieved by listening to
only a handful of top-performing neurons (Figs. 3C and 4D),
suggesting that selectively keeping connections after synaptic
pruning, as happens during brain development, may not be very
harmful to performance. The relationship between accuracy and
number of MEA channels also shows the robustness of the read-
outs: information is distributed over the entire network, and
destroying several connections will not degrade accuracy signifi-
cantly, unless the top-performing output neurons are specifically
selected for destruction.

The results obtained here point to a possible future applica-
tion of optogenetically controlled cultured neuronal networks
(i.e., as a neurocomputer). Computer implementations of the
LSM are inefficient, as they require a large amount of computa-
tional resources to simulate realistic neural networks. Substitut-
ing the LSM with a neuronal culture solves this problem: a
neuronal culture is a piece of “wetware” with millions of syn-
apses, with computations processing both in parallel and in real
time. We have shown that such a neuronal LSM is able to classify
piano music. Long-term potentiation in neuronal cultures can be
induced through electrical stimulation (Ruaro et al., 2005), and
neurons are able to adapt to different spatial stimuli (Shahaf and
Marom, 2001; Eytan et al., 2003), suggesting the possibility that
cultures themselves could be trained through optical stimulation
to perform optimally.

In conclusion, by combining optogenetics with MEA record-
ings and machine classifiers, we have developed an in vitro plat-
form that is able to classify complex spatiotemporal patterns.
Dissociated neuronal cultures can maintain memory of spatio-
temporal input patterns for several seconds. The results suggest
that generic cortical microcircuits have an intrinsic ability to
store spatiotemporal information for several seconds and unravel
the complexities of the input data such that downstream ele-
ments can use a linear combination of the output activities for
classification.
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