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a b s t r a c t

The Liquid State Machine (LSM) is a biologically plausible computational neural network model for real-
time computing on time-varying inputs, whose structure and function were inspired by the properties of
neocortical columns in the central nervous system of mammals. The LSM uses spiking neurons connected
by dynamic synapses to project inputs into a high dimensional feature space, allowing classification
of inputs by linear separation, similar to the approach used in support vector machines (SVMs). The
performance of a LSM neural network model on pattern recognition tasks mainly depends on its
parameter settings. Two parameters are of particular interest: the distribution of synaptic strengths and
synaptic connectivity. To design an efficient liquid filter that performs desired kernel functions, these
parameters need to be optimized. We have studied performance as a function of these parameters for
several models of synaptic connectivity. The results show that in order to achieve good performance,
large synaptic weights are required to compensate for a small number of synapses in the liquid filter,
and vice versa. In addition, a larger variance of the synaptic weights results in better performance for
LSM benchmark problems. We also propose a genetic algorithm-based approach to evolve the liquid
filter from a minimum structure with no connections, to an optimized kernel with a minimal number
of synapses and high classification accuracy. This approach facilitates the design of an optimal LSM with
reduced computational complexity. Results obtained using this genetic programming approach show that
the synaptic weight distribution after evolution is similar in shape to that found in cortical circuitry.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The neuronal wiring pattern in the human brain is one of the
most remarkable products of biological evolution. The synaptic
connectivity in the brain has been continuously and gradually
refined by natural selection, and finally evolved to possess extraor-
dinary computational power. The human brain not only can mem-
orize experiences, learn skills, and create ideas, but it is also a
superior pattern classifier that can process multi-modal informa-
tion in real-time.

The hippocampus, a brain region critical for learning andmem-
ory processes, has been reported to possess pattern separation
functionality similar to the Support Vector Machine (SVM) (Baker,
2003; Bakker, Kirwan, Miller, & Stark, 2008), a popular machine
classifier. The cerebellum has beenmodeled based on similar prin-
ciples (Yamazaki & Tanaka, 2007). The SVM is a kernel ‘machine’
that nonlinearly transforms input data into high dimensional fea-
ture space, where accurate linear classification can be obtained
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by drawing a hyperplane. This kernel method is quite popular
in pattern recognition. The Liquid State Machine (LSM) (Maass,
Natschläger, & Markram, 2002) is a biologically plausible neural
network model inspired by the structural and functional orga-
nization of the mammalian neocortex. It uses a kernel approach
similar to the SVM. The kernel part (the ‘liquid filter’) is an ar-
tificial spiking neural network consisting of hundreds of neurons
and thousands of synaptic connections, whose model parameters
are set to mimic properties measured in real cortical neurons and
synapses. The input neurons inject spike train stimuli into the liq-
uid filter, and a readout neuron that is connected to all the kernel
neurons can be trained to perform classification tasks. LSMs have
been applied to many applications, including word recognition
(Verstraeten, Schrauwen, Stroobandt, & Van Campenhout, 2005),
real-time speech recognition (Schrauwen, D’Haene, Verstraeten, &
Campenhout, 2008) and robotics (Joshi &Maass, 2004), and its per-
formance is comparable to state-of-the-art recognition systems.

The traditional sigmoidal recurrent neural networks (RNNs)
have a fully-connected structure. A fully-connected network can
be reduced to a partially-connected version by setting certain
synaptic weights to zero, but such networks suffer from high
computational complexity if the number of neurons is large,
because the number of connections increases exponentially with
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the number of neurons. The LSM consists of a partially connected
spiking neural network containing hundreds of neurons. In the
proposed formalism, the connections in the liquid filter are
initialized at random, with random synaptic weights, which do not
change during training. The model parameters that determine the
network connectivity and the distribution of synaptic weights are
critical determinants of performance of the liquid filter. The LSM
is a biologically realistic model, which suggests that the pattern
of neuronal wiring in brain networks and the topology of synaptic
connections could be taken into consideration when constructing
the LSM kernel.

A well-studied paradigm for network connectivity is the small-
world topology (Watts & Strogatz, 1998), inwhich nodes (neurons)
are highly clustered, and yet the minimum distance between any
two randomly chosen nodes (the number of synapses connecting
the neurons) is short. Small-world architectures are common in
biological neuronal networks. It has been shown that neuronal
networks in the worm C. elegans have small-world properties
(Amaral, Scala, Barthelemy, & Stanley, 2000). Simulations using
cat and macaque brain connectivity data (Kaiser, Martin, Andras,
& Young, 2007) have shown these networks to be scale-free,
a property also found in small-world networks. For human
brain networks, small-world properties have been shown from
MEG (Stam, 2004), EEG (Micheloyannis et al., 2006), and fMRI
data (Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006).
The small-world property is also important in neural network
simulations. For a feed-forward network with sigmoidal neurons,
small-world architectures produced the best learning rate and
lowest learning error, compared to ordered or random networks
(Simard, Nadeau, & Kröger, 2005). In networks build with Hodgkin
and Huxley neurons, small-world topology is required for fast
responses and coherent oscillations (Lago-Fernandez, Huerta,
Corbacho, & Siguenza, 2000). It has also been suggested that
small-world networks are optimal for information coding via
poly-synchronization (Vertes & Duke, 2009). As the LSM is a
3D spiking neural network with a lamina-like structure, it is
worthwhile to explore the effects of the small-world properties on
the performance of LSMs.

In addition to small-world properties, the orientation of the
synaptic connections in brain networks may also be important.
If a neuron fires, an action potential will travel along the axon,
distribute over the axonal branches, and reach the pre-synaptic
terminals and boutons (en passant), causing transmitter release
which excites or inhibits the post-synaptic cell. During brain
development, axons tend to grow along a straight line until a
guidance cue is encountered. As a result, much of the information
flow in biological neuronal networks is not radial, but displays
directionality. Models with directional connectivity have not yet
been explored for LSMs.

A previous study by Verstraeten, Schrauwen, D’Haene, and
Stroobandt (2007) investigated the relation between reservoir
parameters and network dynamics with a focus on Echo State
Networks (ESN), which is a computational framework similar
in structure to the LSM, but built from analog neurons. ESN
and LSM architectures both belong to the reservoir computing
family. However, the relation between network parameters and
performance is still poorly understood for the LSM. Various neuron
models have been explored to boost performance of the LSM. It
has been shown that compared to deterministic models, using a
probabilistic neuron model (Kasabov, 2010) could offer potential
advantages for both LSMs (Schliebs, Mohemmed, & Kasabov,
2011) and spiking neural networks with a reservoir-like structure
(Hamed, Kasabov, Shamsuddin,Widiputra, & Dhoble, 2011). In this
paper we focus on how LSM performance depends on parameters
associated with synaptic connectivity, including network topology
and synaptic efficacies. Several connectivity models are studied:
the original radial connection model proposed by Maass et al.,
small-world network topologies, and a directional axon growth
model. The effects of both the connection topology and connection
strength were studied. The main purpose of this paper is not to
determinewhichmodel performs best, but rather to derive general
rules and insights, which may facilitate optimal LSM design.
More than 12,000 LSMs with different connection topologies were
simulated and evaluated. Based on the results, we propose a
method that uses genetic algorithms to evolve the liquid filter’s
connectivity to obtain a structure with high performance and low
computational complexity. One of the LSM’s main merits is its
ability to perform classification in real-time. The complexity of the
liquid filter directly affects the computation speed and the real-
time performance. Thus, a minimum kernel structure is always
desired.

2. Models

The simulations were implemented using MATLAB with the
CSIM (a neural Circuit SIMulator) package (Natschläger, Markram,
& Maass, 2003).

2.1. Neuron model

A network of leaky integrate-and-fire (LIF) neurons is created
as the liquid filter, with each neuron positioned at an integer point
in a three dimensional space. 20% of the neurons in the liquid filter
are inhibitory and 80% are excitatory. Each neuron is modeled by a
linear differential equation:

τm
dVm

dt
= −(Vm − Vresting) + Rm(Isyn + Iinject) (2.1)

where the parameters are: membrane time constant τm = 30 ms,
membrane resistance Rm = 1 M� and steady background current
Iinject = 13.5 pA. No random noise is added to the input current.
For the first time step in the simulation, the membrane potential
Vm was set to an initial value randomly selected between 13.5 and
15 mV. When Vm is larger than the threshold voltage 15 mV, Vm
is reset to 13.5 mV for an absolute refractory period of 3 ms for
excitatory neurons and 2 ms for inhibitory neurons (Joshi, 2007).

Input neurons receive and inject stimuli into the liquid filter
through static spiking synapses with delays. Each input neuron is
randomly connected to 10% of the neurons in the liquid filter, and
is restricted to connect to excitatory neurons only.

2.2. Dynamic synapse

All the connections established between neurons in the liquid
filter are dynamic synapses. Following the literature (Legenstein &
Maass, 2007), the dynamic synapsemodel incorporates short-term
depression and facilitation effects:

Ak = w · uk · Rk

uk = U + uk−1(1 − U) exp(−∆k−1/F)

Rk = 1 + (Rk−1 − uk−1Rk−1 − 1) exp(−∆k−1/D)

(2.2)

where w is the weight of the synapse, Ak is the amplitude of the
post-synaptic current raised by the kth spike and ∆k−1 is the time
interval between the k−1th spike and the kth spike. uk models the
effects of facilitation and Rk models the effects of depression.D and
F are the time constants for depression and facilitation respectively
and U is the average probability of neurotransmitter release in the
synapse. The initial values for u and R, describing the first spike, are
set to u1 = U and R1 = 1.

Depending on whether the neurons are excitatory (E) or
inhibitory (I), the values of U , D and F are drawn from pre-defined
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Gaussian distributions. According to the published synapse model
(Joshi, 2007), the mean values of U , D, F (with D, F in seconds) are
0.5, 1.1, 0.05 for connections from excitatory neurons to excitatory
neurons (EE), 0.05, 0.125, 1.2 for excitatory to inhibitory neurons
(EI), 0.25, 0.7, 0.02 (IE), 0.32, 0.144, 0.06 (II), respectively. The
standard deviation of each of these parameters is chosen to be half
of its mean.

Depending on whether a synapse is excitatory or inhibitory,
its synaptic weight is either positive or negative. To ensure
that no negative (positive) weights are generated for excitatory
(inhibitory) synapses, the synaptic strength for each synapse
follows a Gamma distribution. The mean for the distribution is set
toW×Wscale, where the parameterW is 3×10−8 (EE), 6×10−8 (EI),
−1.9 × 10−8 (IE, II) (Maass et al., 2002); Wscale is a scaling factor,
which is one of the parameters that we will investigate in this
paper. The standard deviation for the synaptic strength is chosen
to be half of its mean, i.e. the coefficient of variation is 0.5.

The value of the post-synaptic current (I) passing into the neu-
ron at time t is modeled with exponential decay I = exp(−t/τs),
where τs is 3 ms for excitatory synapses and 6 ms for inhibitory
synapses. Information transmission is not instantaneous for chem-
ical synapses: transmitter diffusion across the synaptic cleft causes
a delay, which is set to 1.5 ms for connections between excitatory
neurons (EE), and 0.8 ms for all other connections (EI, IE, II).

2.3. Readout neuron

A single readout neuron is connected to all the LIF neurons in the
liquid filter, and it is trained to make classification decisions. Each
LIF neuron in the liquid filter provides its final state value to the
readout neuron, scaled by its synaptic weight. The final state value
sfm(i) of the LIF neuron i with the input stimulus m is calculated
based on the spikes that the neuron i has emitted:

sfm(i) =


n

exp


−
tsim − tni

τ


(2.3)

where τ is a time constant set to 0.03 s, tni is the time of the nth
spike, and tsim is the duration of simulation for each input stimulus.

Network training is done by finding a set of optimal weightsW
for the readout using Fisher’s Linear Discriminant. The output of
the readout in response to a stimulusm is:

O (m) = W T

sfm(1)

sfm(2)
· · ·

 = W T S(m). (2.4)

3. Connection topologies

3.1. Original connection topology

In neuronal networks, the probability of finding a connection
between two neurons decreases exponentially with distance. A
possible explanation of such connection mechanism is that axons
tend to grow along the direction with a high concentration of axon
guidance molecules. The concentration of the molecules decays
exponentially with distance, and thus, neurons closer to the source
of the molecules will have a higher probability to detect the
signal (Kaiser, Hilgetag, & van Ooyen, 2009; Yamamoto, Tamada, &
Murakami, 2002). Synaptic connections in the original LSM paper
(Maass et al., 2002) are initialized according to the Euclidean
distance between pre- and post-synaptic neurons. The probability
of creating a connection between two neurons is calculated by the
following equation:
p = C · exp


−


D(a, b)

λ

2


(3.1)

where λ is a connection parameter, and D(a, b) is the Euclidean
distance between neurons a and b. We will refer to the above
connectionmodel as the ‘‘lambdamodel’’. In this study, depending
on whether neurons are inhibitory (I) or excitatory (E), C was set
at 0.3 (EE), 0.2 (EI), 0.4 (IE), or 0.1 (II), respectively. These values
are taken from LSM models used in previous studies (Maass et al.,
2002) and are based on measurements of synaptic properties in
cortical brain areas (Gupta, Wang, & Markram, 2000). Note that by
using this equation, the connection range for each neuron has a
sphere shape, i.e. there is no directional preference.

3.2. Small world networks

A small world network (Watts & Strogatz, 1998) is a type of
graph that has two properties: (i) nodes (neurons) are highly
clustered compared to a random graph, and (ii) a short path length
exists between any two nodes in the network. It has been shown
that many real world networks are neither completely ordered
nor purely random, but instead display small-world properties. A
small-world network can be obtained by randomly rewiring the
connections in a network with a lattice structure. There is a range
for the rewiring probability for which the rewired networks will
display small world properties.

The average shortest path lengthmeasures the average number
of edges that a piece of information needs to be passed through
to reach the destination node (global property), i.e. a measure
for ‘‘averaged distance’’ between nodes in the graph. The average
clustering coefficient measures the degree of cliquishness (local
property) existing in the network. The shortest path length
between any two neurons in the liquid filter is calculated by
the minimum number of synapses one must travel to get from
one neuron to the other. The average shortest path length is
obtained by averaging the shortest path for each pair of neurons
across the whole liquid filter network. For each neuron, the
clustering coefficient is the number of connections it made with
its neighbors (excluding itself), divided by the total number of
possible connections. The average clustering coefficient is the
mean of the clustering coefficients for all the neurons in the
network.

The liquid filter used here consisted of 540 LIF neurons
placed in a grid having the dimensions 6 × 6 × 15. We have
tested two lattice connectivity structures (Fig. 1). The connections
between the neurons are initially constructed according to one
of the two lattice structures. After the construction of the lattice
liquid filter, each synapse has a probability P to be rewired to
another randomly chosen neuron. Self-connections and duplicated
connections (having the same pre- and post-synaptic neurons)
are not allowed. It should be noted that this rewiring process
does not alter the total number of synapses in the liquid filter.
Lattice (A) will generate 2808 synapses in the liquid filter, and
(B) will generate 10,468 synapses. As the rewiring probability P
increases,more long-range synaptic connectionswill be generated,
which will greatly reduce the average shortest path length. The
liquid filter will become a totally random network when P is one.
We tested the performance of such liquid filters by varying the
rewiring probability P , andWscale which is the global scaling factor
for synaptic weights.

3.3. Axon model

Axon growth cones follow straight lines unless guidance cues
are present or pathways are blocked (Yamamoto et al., 2002).
Previous simulations (Kaiser et al., 2009) have shown that a
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Fig. 1. The lattices used to generate small-world networks. Lattice (A) will result
in 6 outgoing degrees and 6 incoming degrees for the central vertex (neuron). Its
clustering coefficient is 0 because there is no connection between any vertex’s
neighbors. Lattice (B) has 26 outgoing and incoming degrees for the central vertex.

simple rule of axonal straight outgrowth in random directions
in two dimensional space with a neuron density of around 4%
results in a connection length distribution similar to that found
experimentally in neuronal networks of rat brain and C. elegans.
We followed this work to construct a liquid filter in 3 dimensional
space with the size of 25× 25× 25 (Fig. 2). 540 neurons (the same
number of neurons as the previous two models) are randomly
placed at integer coordinates in space. This setting leads to a sparse
neuron density of 3.46%. For each neuron, a random vector is
generated to be its axon growing direction. Axons are assumed to
be growing straight until it touches the border of the liquid filter. As
each neuron has a finite dendritic surface which limits the number
of synaptic contacts, vacancies for the pre- and post-synaptic
connections are constrained: no additional incoming or outgoing
connections can be established if both pre- and post-synaptic
vacancies are occupied. A connection will be built from neuron A
to B only if the distance from B to A’s axon line is smaller than R
units, and at the same time, neuron A has at least one post-synaptic
vacancy, and neuron B has at least one pre-synaptic vacancy.
Axons are built one by one, in random sequence. Therefore,
neurons whose axons are built first will have an advantage to
connect to whichever neurons they want, while the others whose
axons are built later will have to selectively make connections to
neurons that still have vacancies. A lower limit for pre-synaptic
versus post-synaptic vacancies will cause competition for the pre-
synaptic vacancies between neurons. The limit of pre- and post-
synaptic vacancies was set to 15 and 30, respectively. In this
topology, all outgoing connections are ‘‘directional’’, in contrast to
radial connectivity of the original ‘lambda model’. Each neuron’s
outgoing connections’ range has a cylindrical shape with radius
R and the axon being the central axis. We will investigate the
performance of such liquid filters with different R values (axon
cover range) and different scales of synaptic strengthWscale.

In CSIM, the length of connections between neurons does not
have any effect on the simulation. Hence, in the axon growth
model, once the liquid filter is build, the physical locations of
neurons do not affect the simulations. Since this axon model
produces a biologically realistic distribution of connection lengths
(Kaiser et al., 2009), it is desirable that the lengths of connections
affect the outcome of the simulations. Spike propagation along the
axon proceeds with a constant speed, so longer axons produce
larger axonal delays. Therefore,we further adjust each axon’s delay
to be proportional to its length (the Euclideandistance between the
pre and post-synaptic neurons), such that longer axons have larger
delays.

4. Methods

4.1. Classification tasks description

The liquid state machine operates on spikes; therefore, spike
train classification is a suitable task for the LSM. A binary
classification task is used to evaluate the performance and the
properties of the liquid filter with the three connection models
described above. This task is a benchmark problem and is likely
to be relevant for computations in cortical neural microcircuits
(Legenstein & Maass, 2007).

Poisson spike train templates classification
80 templates are generated, each consisting of four 20 Hz

Poisson spike trains with a duration of 200 ms. The 80 templates
are divided into two groups, each of which denotes a class. From
these two classes of templates, stimuli are produced by adding
Gaussian jitter to the templates with mean zero and standard
deviation of 4 ms. A total of 2500 jittered stimuli are generated,
2000 for training and 500 for testing. The LSM is trained to classify
which group of templates the input spike trains are generated
from. The performance is measured by the percentage of jittered
inputs being correctly classified for the test group.

Since the 80 templates are randomly generated from the same
Poisson distribution, there are no obvious discriminant features or
Fig. 2. The axon model and the distribution of synaptic delays. (A) The axon model. Red lines denote axons. 540 neurons, 20% inhibitory (purple) and 80% excitatory (blue),
are randomly placed in a 25 × 25 × 25 space. The 4 neurons shown on the left are input neurons. Each input neuron is randomly connected to 10% of the 540 neurons in
the liquid filter. Only a few neurons’ axons are drawn for clarity. (B) The distributions of synaptic delays. We set the delays to be proportional to the synaptic length, thus,
the synaptic delays follow an exponential distribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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rules that distinguish the two classes, making this classification
task quite challenging. The LSM needs to somehow ‘‘memorize’’
which template belongs to which group during training, and then
apply this ‘memory’ to the testing data set to perform classification.

4.2. Separation, generalization, and the kernel quality

An optimal classifier combines an ability to distinguish
between many inputs (separation property) and generalize from
learned inputs to new examples (generalizability). The liquid
filter has the ability to operate in a chaotic regime, in which
small differences between inputs result distinct network states.
Although this improves kernel discrimination quality, it also
lowers generalizability (Legenstein & Maass, 2007). Highly chaotic
networks might produce vastly different network states due to the
presence of small amounts of noise in the input. Thismagnification
of noise is certainly undesired in classification. When the liquid
filter is at the edge of chaos, this tradeoff could be optimal.

The liquid filter possesses fading memory due to its short-term
synaptic plasticity and recurrent connectivity. For each stimulus,
the final state of the liquid filter, i.e. the state at the end of
each stimulus, carries the most information. It has been proposed
(Legenstein &Maass, 2007) that the rank of the final state matrix F
can reflect the separation and generalization ability of a kernel:

F =


S(1)T

S(2)T

· · ·

S(N)T

 (4.1)

where S(n) is the final state vector of the liquid filter for the
stimulus n. Each column of F represents one neuron’s response for
all the N stimuli. If all N inputs are very different from each other,
i.e. they are from N classes; a higher rank in F indicates better
kernel separation. If N inputs are from very few classes, a lower
rank in F means better generalization.

The numerical rank of a matrix is very sensitive to noise,
especially for a chaotic liquid filter. We therefore refine the
measurement by taking the effective rank of the matrix, which
is not only robust to noise, but also shows the degree of linear
dependency in the final state matrix. In cases where the network
activity is high, the state matrix could be full rank. However,
there may be groups of neurons whose activity is inter-dependent.
Those dependent neurons are doing redundant work. Therefore,
the numerical rank does not reveal the true rank of the statematrix,
while the effective rank does.

The effective rank is calculated by a Singular Value Decomposi-
tion (SVD) on F , and then taking the number of singular values that
contain 99% of the sum in the diagonal matrix as the rank. i.e.

F = UΣV T (4.2)

where U and V are unitary matrices, and Σ is a diagonal matrix
diag(λ1, λ2, λ3, . . . , λN) that contains non-negative singular val-
ues in descending order. The effective rank is then determined by:

keffective = min
k


i=k
i=1

λi ≥ 99% ×

j=N
j=1

λj


. (4.3)

A similar method has been used to estimate the number of hidden
units in a multi-layer perceptron (Teoh, Tan, & Xiang, 2006).

5. Results and discussion

For every liquid filter, the simulation is divided into three steps.
First, 500 templates (500 spike trains that are different from each
other) are generated, and then injected into the liquid filter, to
measure its separation ability by calculating the effective rank of
the final state matrix F . Second, 500 jittered spike trains generated
from 4 different templates are injected into the liquid filter, to
measure its generalization ability. Finally, the Poisson spike train
classification task is performed using this liquid filter, to calculate
its training and testing accuracy. Simulations were performed
using a range of values for the synaptic weight scale Wscale and
the connection range, in the case of the lambda and axon models.
For the small world networks, we have investigated the effects of
varyingWscale and the rewiring probability.

For the spike template classification experiments, the number
of ‘active’ neurons was calculated and plotted against the
parameter values for synaptic weight and connectivity (Fig. 3).
Active neurons are defined as the neurons that fire at least one
spike over the entire test data set. This plot indicates how many
neurons have responses to the inputs, and reflects the network’s
activity level.

The parameter Wscale is a factor that enhances the signal
transmission within the liquid filter. Hence, it is expected that
when the Wscale is large, more neurons will fire (Fig. 3(A), (B)). As
lambda and axon cover range increases,more synaptic connections
are created in the liquid filter (Fig. 4). The synaptic connections can
be thought as communication channels between neurons. With
more communication channels, the neurons will have more paths
to ‘‘talk’’ to each other, and the average shortest path length is also
reduced. Because the size of the liquid filter is fixed, the maximum
number of active neurons is 540. Thus in the lower right part (the
dark red region) of Fig. 3(A) and (B), the number of active neurons
becomes invariant to Wscale, as well as the lambda value and the
axon cover range. Another reason for this invariance is that, for the
axon model, we set limits for the number of pre and post-synaptic
vacancies. Therefore, the number of synapses for the axon model
reaches a limit when the axon cover range (radius R) is large. This
makes the red region in Fig. 3(B) to be more flat than the lambda
model (Fig. 3(A)). These two figures show that,when the number of
synapses is fixed, larger synaptic weights will increase the number
of active neurons, and vice versa.

More synapses can certainly increase the numerical rank of the
final state matrix used to calculate separation and generalization
properties. In fact, the dependence of the numerical rank onWscale
and lambda shows a pattern very similar to that of the number
of active neurons (data not shown). However, this is not the case
for the effective rank (Fig. 3(C), (D)), which reaches an optimum
for intermediate synapse density. For the lambda model, the
number of synapses created increases steadily as lambda increases
(Fig. 4). When lambda is 9, more than 50,000 synapses are created,
i.e. on average about 100 synapses/neuron. This large number
of connections may create more dependencies between neurons;
thus the effective ranks of both separation and generalization are
decreased for the lambda model when the number of synapses is
too high.

5.1. Regions with satisfactory performance

Several interesting phenomenon can be observed from the test
performance plots in Fig. 5. The location and the shape of the red
region, which indicates a region of good performance for each
connection model, are highly dependent on the number of active
neurons. By comparing Figs. 3(A) and 5(A), it can be seen that
high classification accuracy are located at the edge of the red
region in Fig. 3(A). In other words, too many or too few active
neurons in the liquid filter will not yield a good performance. The
performance becomes satisfactory only for intermediate amount
of active neurons. The same conclusion can be made by comparing
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Fig. 3. Analysis for separation and generalization ability of the lambda and axonmodels. (A) The amount of active neurons for the lambda connectionmodel. Values are coded
in color. (B) The amount of active neurons for the axon connection model. (C) The effective ranks of the final state matrix to measure separation, for the lambda connection
model. (D) The effective ranks of the final state matrix to measure generalization, for the lambda connection model. Each plot in this figure is obtained by interpolation of
100 points, and each point is calculated by averaging the results from 10 randomly initialized liquid filters with the parameters specified by the point. The horizontal axis is
plotted in linear scale while the vertical is in log scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Figs. 3(B) and 5(B). This result is also valid for the small-world
models.

We found that the number of synapses and Wscale are highly
correlated to performance. In both Fig. 5(A) and (B), the red region
spreads from the lower left to the upper right, indicating that as the
number of synapses increases, the LSM requires smaller Wscale to
obtain good performance. For the small-world networks (Fig. 5(C),
(D)), the red region spreads almost horizontally. Note that the
number of synapses is invariant to the rewiring probability for the
case of the small-world networks. This indicates that the value
of Wscale that yields satisfactory performance is not dependent
on the rewiring probability, i.e. not sensitive to the small world
properties (the average shortest path length and the average
clustering coefficient). The red band in Fig. 5(C) is located at the
Wscale range of (0.5, 4), while in 5D, the Wscale range is around (0.1,
1.5). Notice that Fig. 5(C) is obtained from the LSMwith the latticeA
structure having 2808 synapses, significantly less than the lattice B
having 10,468 synapses. Based on these observations, we conclude
that the range of Wscale for satisfactory performance depends on
the number of synapses in the liquid filter. With more synapses,
smallerWscale is required to achieve good classification results.

5.2. Regions with optimal performance

In both Fig. 5(A) and (B), it can be seen that the dark red color
fades from the lower left to the right. The best testing accuracy
over the whole plotting region is located near or at the lower
left corner. For larger values of lambda (or axon cover range), the
performance of the liquid statemachinewas suboptimal, and could
not be improved by tuning the parameterWscale.

To explain this, we further examined the two types of param-
eters: Wscale, and lambda or axon cover range. First, increasing
lambda or axon cover range will increase the number of synapses
Fig. 4. The number of synapses for the lambda and axon connection models. The
number of synapses is saturated to 8100 for the axon model when the axon cover
range R is greater than 4, because we limit pre and post-synaptic vacancies.

created in the liquid filter. Second, the Wscale parameter deter-
mines the mean synaptic strength. The variance of the synaptic
weights is half of themean, i.e. the coefficient of variation is 0.5 (see
Section 2.2). Therefore, greaterWscale values produce larger weight
variance. In caseswhere the number of synapseswas small, a larger
Wscale was required to obtain satisfactory performance. We there-
fore hypothesized that a large variance of the weights leads to
better performance. This hypothesis explains why the best testing
accuracy is always located at the lower left corner, where Wscale is
large and the number of synapses is small. It also explains why the
highest testing accuracy for the lattice A (Fig. 5(C)) is better than
the lattice B (Fig. 5(D)), because the red region in 5C corresponds
to higher Wscale values and thus larger weight variance than 5D.
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Fig. 5. The testing performance of the Poisson spike templates classification task. (A) Lambda connection model. (B) Axon model. (C) Small-world with lattice a. (D) Small-
world with lattice b. The classification accuracy is coded in color. Each plot is obtained by interpolating 100 points, and each point is calculated by averaging the results from
10 randomly initialized liquid filters with the parameters specified by the point. The horizontal axis for (C) and (D) are plotted in log scale, as the small world properties
change fast when P is small. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
To test this hypothesis, we used liquid filters with a fixed
synaptic connection model, the lattice A structure without
rewiring, but with various Wscale and synaptic weights’ coefficient
of variation. The resultant synaptic weight distributions (synaptic
weights follow Gamma distributions, see Section 2.2) are shown
in Fig. 6(A) and (B). Fig. 6(C) shows that given a Wscale (i.e.
given the mean of the synaptic strength) and fixed connection
topology, large coefficient of variation produces better results. The
satisfactory performance regionwas highly dependent on the edge
of the red region in the active neuron plot; thus, the red region
in Fig. 6(C) spreads horizontally, due to the flat edge of the red
region in Fig. 6(D), which shows the amount of the active neurons.
The best classification accuracy is obtained when the coefficient of
variation is close to 1.

5.3. Music and non-music classification

The experiments described until now were limited to applying
the LSM to benchmark problems. To further support the above
observations and discussions, we applied LSM to a real-world task:
music classification.

Music classification is a complex problem that requires the
analysis of a highly ordered temporal structure. Here we follow
up on our previous work on polyphonic music classification (Ju,
Xu, & VanDongen, 2010). To create examples of note progressions
that do not correspond to music (‘non-music’), notes of a short
musical piece are randomly swapped 100 times. The training data
set contains 234 musical pieces and its corresponding 234 ‘non-
music’ versions, segmented from 50 classical music MIDI files.
Testing data has 177×2 pieces, segmented from 30MIDI files. The
liquid filter consists of 600 neurons with dimensions 12 × 10 × 5.
To facilitate classification, after coding the music and non-music
into input spikes, the input stimuli are speeded up so the stimulus
duration is 0.3 s. We let the readout neuron make a decision value
every 0.01 s, and the final classification decision at 0.3 s is the
average of all the 30 output values from the readout neuron.

The results (Fig. 7) show that all the conclusions from the
benchmark problem experiments described above are still valid in
this practical application, except that the variance of the synaptic
weights seems to have no obvious effect on the classification
accuracy. This indicates that the positive effect of large weight
variance is stimulus specific. It may not be topology specific,
however, because we have observed improved performance in
the spike train template classification task for all the connection
models that were discussed so far: the lambda model, the axon
growth model and small world networks. During the design of an
optimal liquid filter for a given stimulus, enlarging the variance
of synaptic weights should be considered as an option to achieve
better performance.

Since both the number of synapses and the synaptic strength
play important roles, we plotted the total synaptic strength per
neuron, defined as the difference between the sum of excitatory
synaptic weights and inhibitory weights, against the classification
accuracy (Fig. 8). It can be seen that for the Poisson spike train
classification problem, the lambda and axon model curves are
similar, both reaching an optimum around 2 × 10−6, while for
the music classification task, the peak is at 5 × 10−7. All three
curves drop steeplywhen the average synaptic strengthper neuron
is larger than optimal. This indicates that the average synaptic
strength is a key parameter for performance, and the optimal
value of this parameter seems to be independent of connection
topology. The optimum does depend on the stimulus type, since it
was slightly left-shifted for the spatiotemporalmusic classification
problem compared to the purely temporal spike train task.

The results are summarized below. First, when the number
of synapses in the liquid filter is fixed, larger synaptic weights
increased the number of active neurons, and vice versa. Second,
poor performance was observed when the number of active
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Fig. 6. Effects of synaptic weights distribution on the performance of the liquid state machine. (A) The distribution of the synaptic weights with a coefficient of variation
0.1. (B) The weights distribution when the coefficient of variation is 0.5. (C) The performance of the liquid filters with different coefficients of variation for the synaptic
weights. (D) The number of neurons that fire at least one spike. Each of the plot in (C) and (D) is obtained by interpolating 200 (20× 10) points with each point representing
the average of 10 runs, i.e. 2000 liquid filters were created and simulated. All the liquid filters have the same connection structure with lattice A. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Music and non-music classification task using the lambda connection model. (A) Classification accuracy on training data. (B) Number of neurons that fire at least one
spike. Each data point is the average of 10 liquid state machines.
neurons was either large or small; optimum performance was
achieved using an intermediate number of active neurons. Third,
the performance of the LSM was highly related to the number
of synapses in the liquid filter. When the number of synapses
was large (small), smaller (larger) values of Wscale were needed
to obtain satisfactory performance. Fourth, larger synaptic weight
variance may produce better classification accuracy for certain
types of stimuli. Fifth, the total synaptic strength per neuron is an
important parameter to the performance, and the optimal value
of this parameter is stimulus dependent. Finally, the performance
of the LSM seems to have little relationship with the small world
properties.

6. Evolving synaptic connectivity

We have shown that both synapse density and synaptic
strength (Wscale) are important to classification performance.
More synapses may not improve the performance. Satisfactory
classification can be obtained with low synapse density, as long
as synaptic strength is increased. In fact, optimal performance is
sometimes obtained with a small number of very strong synapses.
However, for a given problem, it is not easy to find the optimal
synaptic connectivity. The experiments described above have used
a brute-force approach, in which almost all of the combinations
of Wscale and the connection parameters are simulated in order
to localize the optimal point in parameter space. In addition to
the structural optimization of synapse density and weights, the
computational complexity should be taken into consideration.
One of the most impressive capabilities of the LSM is real-time
classification. The computational complexity of the liquid filter
is crucial to real-time tasks, and increases dramatically with the
number of synapses. Fewer elements in the liquid filter will greatly
increase the computational speed. Therefore, it is desired to design
a liquid filter with aminimal number of synapses and neurons, and
still possesses good performance.
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Fig. 8. Classification accuracy versus ‘synaptic strength per neuron’ for the lambda
and axon connection models. The synaptic strength per neuron is obtained by
summing up all the synaptic weights in the liquid filter, divided by the number of
neurons. Each set of data is fit by a polynomial with degree of 15.

The LSM nonlinearly projects the input data to a high
dimensional feature space through the liquid filter that is acting as
a kernel. Because the optimal weights for the readout neuron are
calculated by Fisher’s Linear Discriminant, the liquid statemachine
is acting as a Kernel Fisher Discriminant machine. Recently,
the method of Kernel Fisher Discriminant Analysis (KFDA) (Kim,
Magnani, & Boyd, 2006; Mika et al., 2003) has attracted a lot
of interest. The performance of KFDA largely depends on the
choice of the kernel, and there are many algorithms for optimal
kernel selection in convex kernel space. However, the liquid
filter is a highly nonlinear kernel that is very difficult to analyze
mathematically. Thus, inmost of the previous studies, optimization
of the kernel was performed by tuning global parameters.

Approaches applied in evolving systems could be used to
tackle complex optimization problems. There are two types
of evolving systems: data-based learning and learning through
evolution. For the first type, tuning of parameters, such as
neurons and connections, is driven by the data samples (Kasabov,
2007). This approach has been used to evolve spiking neural
networks in an online evolvable and adaptive fashion (Wysoski,
Benuskova, & Kasabov, 2010). This type of system is similar to
life-time learning in biological organisms, which is based on
accumulation of experience. The mammalian central nervous
system has various mechanisms to learn from experience, such
as Long-term potentiation and depression (LTP/LTD) and spike-
timing dependent plasticity (STDP). STDP-like learning rules have
been studied to improve the liquid state machine’s separation
ability (Norton & Ventura, 2006, 2010). However, as discussed in
Section 4.2, the liquid statemachine performance depends not only
on its separation ability, but also on how well it can generalize.
Enhancement in separation ability is likely to cause degradation in
generalization ability. Furthermore, the computational complexity
of the liquid filter was not emphasized in these studies. In this
paper, we used the second type of evolving systems, in particular,
genetic algorithms, to seek an optimal tradeoff between separation
and generalization abilities, while minimizing the kernel. Our
genetic algorithm approach mimics biological evolution that
happens in millions of years, rather than life-time learning of an
organism.

Genetic algorithms have been widely used for solving complex
optimization problems. In fact, various methods to evolve feed-
forward Spiking Neural Networks (SNN) have been proposed
and studied, such as the Quantum-inspired SNN (Schliebs,
Defoin-Platel, & Kasabov, 2010) and Probabilistic Evolving SNN
(Hamed, Kasabov, & Shamsuddin, 2010). These frameworks
directly use genetic algorithms or integrate them with particle
swarm optimization (Hamed, Kasabov, & Shamsuddin, 2012)
to select relevant features and optimize parameters. They can
potentially substitute the readout neuron in the LSM to extract
information and select discriminative neurons from the liquid
filter. This paper focuses on the connectivity of the liquid filter;
optimization of the readout function has not been addressed. It
may be possible to achieve even better performance if both the
liquid filter and the readout function are evolved, employing the
above frameworks.

Neuro-Evolution of Augmenting Topologies (NEAT) (Stanley &
Miikkulainen, 2002) is a genetic algorithm that evolves both the
neurons and the connections in the network. This algorithm can
be used to evolve the liquid filter towards an optimal kernel. NEAT
starts from a minimal network structure and gradually increase
the network complexity through evolution by adding neurons and
synaptic connections. The inherent characteristic of ‘‘augmenting
topologies’’ makes NEAT a suitable candidate to find the optimal
liquid filter with a minimal number of synaptic connections.

6.1. Network settings

For each individual, the liquid filter is fixed to have 6 × 6 ×

15 neurons with 80% excitatory and 20% inhibitory neurons, the
same as before, but with no connections at the first generation.
Each input neuron is randomly connected to 10% of the neurons
in the liquid filter during the initialization phase, which is the
same as in all the connection models discussed above. Since we
are focusing on evaluating the quality of the liquid filter, the input
connections remain untouched once they are initialized. Therefore,
in every generation, the input connections of all the individuals
in the population are exactly the same, and they are not involved
in the evolution process. Unlike NEAT, which evolves the number
of neurons in the network, we only evolve synapses. At the first
generation, because there is no kernel connectivity, only those
neurons having incoming connections from the input neurons
may fire. All the other liquid neurons that do not fire during the
simulation are ‘‘redundant’’ neurons, as they do not contribute
any information to the readout or the classification result. Thus,
the liquid filter starts from a minimal structure that consists of
only those neurons receiving input synapses. More neurons will
fire and become useful when new synapses are added into the
network during evolution. Here we call the neurons that fired at
least one spike during the presentation of all the input stimuli
‘active neurons’.

6.2. Parameter settings

Each gene, representing a synapse, has three properties: the
indexes of the pre- and post-synaptic neurons it connects, and its
synaptic weight. When a new synapse is created, depending on
the connection type, a random weight is generated in the range of
[10−9–10−5] (excitatory synapses) or [−10−5–−10−9] (inhibitory
synapses). Like the original work (Stanley & Miikkulainen, 2002),
each synaptic weight has a probability of 0.9 to mutate in each
generation. Because theweights are represented as real numbers, a
mutation adds a random value in the range of [−1.5×10−8–1.5×

10−8]. Weight values are constrained between 10−10 and 3×10−5.
The general concept of speciation is that two individuals belong

to different species if their difference is larger than a speciation
threshold. The difference δ between two individuals is calculated
as the weighted sum of the number of different connections (G),
and the weight difference W̃ between those same connections, i.e.

δ = αG + βW̃
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Fig. 9. Connection structures that are considered for the synaptic deletion process.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

where α and β are two coefficients, set to 1 and 2 × 108

respectively. The speciation threshold is set to 600. 80% of
individuals in each species will participate in the crossover
process, and 30% of each species with the lowest performance
will be discarded in each generation. Interspecies crossover is not
allowed. Linear ranking selection is used. To limit computational
complexity, the population size is set to 20.

6.3. Create/delete synaptic connections

In each generation, a random number of new synapses (in the
range of [1–20]) will be added to the kernel. The new connection’s
pre-synaptic neuron must be an active neuron, because there will
not be any effect if a connection is outgoing from a silent neuron.
Duplicated connections and self-connections are not allowed.

Besides adding synapses, a synaptic deletion process is needed
to prevent an explosion of the number of connections. The
deletion process is not enabled at the beginning as there are
no connections in the kernel yet. For each generation, a random
number of synapses (between [1–20]) are deleted from the kernel.
Connections should not be deleted randomly, because itmay result
in an unconnected graph in the network topology. Unconnected
parts are redundant and will never fire, but still consume
computational resources. If unconnected parts are allowed to
persist, they may become connected by the addition of a new
synapse, causing a large change in the network. This is undesirable,
as it does not follow the concept of genetic algorithms, where
performance adjusts incrementally through each new generation.

Therefore, we have to examine the network topology to
determine whether a connection can be deleted or not. In Fig. 9(A)
the post-synaptic neuron of the red connection is important in the
sense that it is disseminating information to many other neurons.
If the red connection is deleted, its post-synaptic neuron still has
other incoming connections. The network will not change a lot
by deleting such connections. If the post-synaptic neuron does
not have any outgoing connections (Fig. 9(B)), it is also safe to
delete. However, in Fig. 9(C), many other neurons are connected
to the post-synaptic neuron, which is the hub of the network,
and the red synapse is the only incoming connection to the post-
synaptic neuron. Therefore, the deletion of the red connectionmay
result in an unconnected part. In summary, the connection deletion
rule is: a connection can be deleted when either its post-synaptic
neuron has more than 1 incoming synapse, or less than 2 outgoing
synapses.

6.4. Fitness calculation

Fitness calculation for each individual in the population
is crucial to Genetic Algorithms as it drives the evolution
process. Fitness should directly measure the quality of the kernel
quantitatively, such that the algorithm knows which direction to
evolve into. As discussed before, the LSMcan be thought as a Kernel
Fisher Linear Discriminant machine. The measure for the kernel
quality, i.e. the fitness value for each individual, should be from
the perspective of the FLD readout, because once the kernel is
constructed, the classification performance is determined. Below,
we derive the calculation of the individual fitness.

We use SK (m) to denote the final state vector that is obtained
by injecting input stimulus m into the liquid filter (kernel) K .
Suppose that we are dealing with a binary classification problem.
The stimuli are arranged such that the first n1 instances belong to
class 1, and the remaining n2 instances belong to the other class.
Themean of the final state vectors for the two stimuli classes,when
using a kernel K are

µ1
K =

1
n1

n1
m=1

SK (m), µ2
K =

1
n2

n1+n2
m=n1+1

SK (m)

and the covariance is

Σ1
K =

1
n1

n1
m=1

(SK (m) − µ1
K )(SK (m) − µ1

K )T

Σ2
K =

1
n2

n1+n2
m=n1+1

(SK (m) − µ2
K )(SK (m) − µ2

K )T .

The within-class scatter matrix MK
W and the between-class scatter

matrix MK
B for kernel K are defined as:

MK
W = Σ1

K + Σ2
K + αI

MK
B = (µ1

K − µ2
K )(µ1

K − µ2
K )T .

Note that the covariance matrix could be singular; thus we
add a small regularization term αI(α > 0) to MK

W . Fisher’s Linear
Discriminant tries to maximize the distance between the means
of the two classes and minimizing the variance of each class. We
therefore maximize the Fisher discriminant ratio (FDR) J:

J(K ,W ) =
W TMK

B W
W TMK

WW
.

By solving ∂ J(K ,W )

∂W = 0, the maximum J is

Jmax(K) = (µ1
K − µ2

K )T (MK
W )−1(µ1

K − µ2
K )

where the weight vector is

W (K) = (MK
W )−1(µ1

K − µ2
K ).

The maximum classification accuracy that can be achieved by
using the kernel K is determined by the maximum FDR value Jmax.
A larger Jmax means that the kernel (liquid filter) K can better
transform the data, i.e. the liquid filter’s projection of input stimuli
into feature space results in a better separation by FLD.

The main goal of the genetic algorithm is to optimize the
fitness value. Therefore, Jmax(K) is used as the fitness for each
individual during evolution. Note that two kernels giving the same
classification accuracymost probably have different FDRs, showing
which kernel is better. Therefore,we are not using the classification
accuracy as the fitness, because it is inexact and only indirectly
reflects the quality of the liquid filter, as compared to the FDR
which measure fitness directly.

6.5. Simulation results

The classification accuracy of the liquid state machine is
strongly dependent on the number of synapses in the kernel.
Therefore, synapse deletion should be enabled at a suitable time
during evolution in order to prevent the development of excessive
synapses. We cannot start the deletion at the first generation
because there is no connection in the liquid filter at the beginning.
Therefore, the evolution is divided into two phases: adding
synapses and evolving topologies. The phase in which synapses
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Fig. 10. Simulation results using different synaptic weight limits. (A) The maximum classification accuracy of the population when the synaptic weights have larger limits,
capped to±3×10−5 . (B) Themaximumclassification accuracywhen theweights have smaller limits, capped to±10−5 . (C) The average number of synapses in the population
during evolution for both the cases of larger and smaller weight limits. (D) The distribution of the synaptic weights for the whole population at generation 500. Excluding
the zero bin and the last bin which are the bounds of the positive weights, the fitting curves are ∼Gamma (1.99, 5.5e−6), and ∼lognormal (−11.7, 0.82).
are added has an element of supervision. After the deletion is
enabled, the genetic algorithm has to refine the connectivity
through evolution and strive for better performance. This second
phase is unsupervised.

We start the connection deletion process when the fitness
starts to drop due to excessive synapses. Linear regression on the
mean population fitness over the past 30 generations was used
to detect the performance drop. By using this method, when the
performance drop is detected, the number of synapses in the liquid
filter is already more than needed because the linear regression is
done over the past 30 generations. Thus, it should be expected that
the number of synapses will decrease after the synaptic deletion
is enabled. The result is shown in Fig. 10(A). At generation 90,
the performance started to drop, and the synaptic deletion was
enabled. It can be seen that the classification accuracy for both
the training and testing started to increase after the deletion was
enabled. The number of synapses keeps decreasing, and converges
to around 650 synapses.

We also ran another experiment by using smaller synaptic
weights: new synapses had 10 times smaller weights and the
mutated weights are capped in a smaller range (Fig. 10(B)). The
maximum performance seems slightly lower than the previous
case with larger weights. Fig. 10(C) plots the average number of
synapses in the population for both the experiments together.
In Section 5, we have discussed that smaller weights need
more synapses to achieve satisfactory performance. This was
confirmed by the genetic algorithm,where the number of synapses
converged to 900 and 650 for the smaller and larger weights,
respectively.

The distribution of the weights for the whole population at
generation 500 for the largeweight case is plotted in Fig. 10(D). The
histogram seems to follow a gamma distribution. The parameters
for the distribution are estimated using maximum likelihood
estimation. In rat visual cortex, the synaptic strength distribution
in layer 5 pyramidal neurons follows a lognormal distribution
(Song, Sjostrom, Reigl, Nelson, & Chklovskii, 2005). Lognormal
and Gamma distributions have similar shapes. A similar shape
of weight distributions was also found in cortical layer 2/3
pyramidal–pyramidal synapses, hippocampal CA3–CA1 synapses,
and cerebellar granule cell–Purkinje cell synapses (Barbour,
Brunel, Hakim, & Nadal, 2007). Notice that the bin near zero
has the highest magnitude, indicating that there are many silent
synapses after evolving 500 generations. Experimental results
show that in cerebellar cortex, many unitary granule cell–Purkinje
cell synapses do not generate detectable electrical responses (Isope
& Barbour, 2002), and it has been shown that silent synapses are a
necessary by-product of optimizing learning and reliability for the
classical perceptron, which is a prototype of feed-forward neural
network (Brunel, Hakim, Isope, Nadal, & Barbour, 2004). Hence, the
genetically evolved liquid filter optimized for binary classification
by FLD has a biologically realistic synaptic weight distribution.

As we optimize classification performance by evolving network
connections, the final generation of the population may contain
some structural properties of an optimal liquid filter. To investigate
this, we performed an additional 3 experiments using NEAT
optimization, and pooled all the evolved networks to statistically
evaluate the clustering coefficients and average shortest paths
length. No significant correlation was found between the fitness of
each individual and its clustering coefficient; but there is a weak
positive correlation with the average shortest path length (the
correlation coefficient is 0.3155, p = 0.0014). This indicates that
larger path length could be beneficial to performance. However,
the results from the small-world experiments have shown that
the average shortest path length does not have an obvious
effect on performance. A possible explanation for this apparent
contradiction is that, for the small world networks described in
Section 3.2, the average shortest path length is below 9 due to
thousands of connections; however, for the evolved networkswith
only hundreds of connections, the path lengths ranged between 6
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Table 1
Best classification accuracy.

Highest training performance (%) Highest testing performance (%)

Lambda model 93.8 88.2
Axon model 95.5 89.2
Small-world lattice a 95.3 87.8
Small-world lattice b 92.2 83.4
GA with NEAT (large weights) 96.1 91.0
GA with NEAT (small weights) 96.3 90.4
and 15. The effect of the path length may be only obvious in this
extended range.

In all the above experiments, the simulation results show that,
given a synaptic weight scale, performance reaches an optimum at
an intermediate synapse density. The proposed genetic algorithm,
which evolves both the connection topology and weights in the
kernel, eventually finds this range of number of synapses, no
matter how many synapses there are at the beginning of the
evolution. We performed another experiment by starting the
connection deletion process much earlier at generation 10. The
network is still able to converge to the optimal number of synapses,
but the convergence speed is much slower.

Table 1 lists the best classification accuracy on the Poisson spike
templates classification task as described in the Section 4.1, for
the exhaustive searches done for all the connection topologies and
the genetic algorithm that we have discussed. They all share the
same data set for fair comparison. The genetic algorithm using
NEAT gives the highest classification accuracy for both training
and testing. This could be due to the fact that GA has the freedom
to construct any type of topology and adjust individual synaptic
strength, as long as the network connections form a connected
graph; whereas all the other models are restricted, for example,
the axonmodel has directional connections and the lambdamodel
has more local connections.

7. Conclusions

The highly nonlinear, recurrent and (potentially) chaotic nature
of the liquid filter makes LSMs difficult to analyze analytically.
While deriving analytical methods to construct an optimal kernel
is therefore infeasible, empirical rules may facilitate the design of
the LSM. As the LSM is a biologically realistic model, biologically
inspired approaches could be helpful in refining LSMs for improved
performance.

In the experiments described here, we have investigated the
effects of synaptic connectivity on the performance of the LSM, in
terms of both synaptic weights and topology. Various connection
models have been explored, including the lambda model, an axon
growth model, and small world networks. The quality of the
liquid filter has little relationship with the small world property,
but is highly dependent on synapse density and the distribution
of synaptic weight. These two parameters are strongly inter-
dependent. One possible explanation to the insensitivity of the
small-world properties is that the brain functional network is a
small-world across brain regions, but not within brain regions. The
LSM is a cortical column model that has few hundreds of neurons;
therefore, the effect of small-world is not obvious.

In addition, we conclude that large weights are required when
the number of synapses is small. For any given distribution of
synapticweights, identifying the optimal synapse density is critical
for performance.We propose amethod of using genetic algorithms
to evolve the liquid filter’s connectivity to efficiently identify
the optimal number of synapses. The simulation results show
that the evolved LSM combines high classification accuracy with
low computational complexity. Interestingly, the distribution of
synaptic weights arrived at the end of evolution has a shape that is
similar to mammalian cortical circuitry.
As there are too many potential connection topologies in bio-
logical neural networks, it is impossible for us to address them all;
however, we still can find some rules from the models discussed
in this paper. In addition, in this paper we simulated the LSM in
the scale of hundreds of neurons and thousands of synapses due
to the limitation of computation power. Larger scale simulation
of neural networks in future could yield better liquid filter from
the proposed genetic algorithm, and may provide more insights
on brain networks. However, to fully understand the astronomi-
cal complexity of brain networks with 100 trillion connections, we
still have a long way to go.
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